37th Meeting of the LNF Scientific Committee

1st December 2008

KLOE Analysis Report

Federico Nguyen - INFN Roma TRE for the KLOE Collaboration

Analysis Achievements in 2008

- 10 published papers
 - 1 submitted paper
 - 2 drafts in writing
 - 2 published reviews

"Precision Kaon and Hadron Physics with KLOE", Riv. Nuovo Cim.31(2008)531

- " $|V_{us}|$ and lepton universality from kaon decays with KLOE", JHEP0804(2008)059
- 30 contributions to Conferences/Workshops

\succ hadronic σ

- hadron spectroscopy
- > kaon physics

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))$ measurement

ACCEPTED by PLB: ArXiv:0809.3950

Doctopic: Experiments	ARTICLE IN PRESS	PLB:25375
	Physics Letters B ••• (••••) •••-•••	
	Contents lists available at ScienceDirect	PHYSICS LETTERS 8
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	- Viterano Alexandre

Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))$ and the dipion contribution to the muon anomaly with the KLOE detector

KLOE Collaboration

1) $\frac{d\sigma_{_{\pi\pi\gamma(\gamma)}}^{obs}}{dM_{_{\pi\pi}}^2} = \frac{\Delta N_{\rm Obs} - \Delta N_{\rm Bkg}}{\Delta M_{_{\pi\pi}}^2} \cdot \frac{1}{\varepsilon_{\rm Sel}} \cdot \frac{1}{\int Ldt}$

2)
$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

 $\mathbf{3)} \quad \left| \mathbf{F}_{\pi} \right|^2 = \frac{3s}{\pi \alpha^2 \beta_{\pi}^3} \sigma_{\pi\pi}(\mathbf{s})$

 $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*:

Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s):

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
π /e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance ($\theta_{\pi\pi}$)	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√ s dep. Of H	0.2%
Luminosity(0.1 th ⊕ 0.3 sip)%	0.3%

experimental fractional error on $a_{\mu} = 0.6$ %

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6$ %

$$\Delta a_{\mu}^{\pi\pi} = \frac{1}{4\pi^3} \int_{0.35 \text{GeV}^2}^{0.95 \text{GeV}^2} ds \,\sigma(e^+e^- \to \pi^+\pi^-) \,K(s)$$

much better agreement in spectrum between different experiments than in the past

ACCEPTED by PLB: ArXiv:0809.3950

average value = 359.2 \pm 2.1 with $\,\chi^2/dof = 1.24/2\,$ confidence level of 54%

Federico Nguyen 01-12-2008

7

Recent comparisons on F_{π}

from M. Davier's talk at TAU 2008

\succ hadronic σ

hadron spectroscopy

> kaon physics

Main $\boldsymbol{\omega}$ branching ratios

PUBLISHED: PLB669(2008)223

large interference between non-resonant $e^+e^- \rightarrow \omega \pi^0$ and $\phi \rightarrow \omega \pi$ decay energy scan data ~ 600 pb⁻¹ \rightarrow measure x-sec & BR($\phi \rightarrow \omega \pi$).

Search for $a_0(980)/f_0(980) \rightarrow K^0\overline{K}^0$ Writing the paper ✓ probe of the internal $\phi[J^{PC}=1^{--}] \rightarrow (K^{0}\bar{K}^{0})\gamma[J^{PC}=1^{--}]$ structure of scalar mesons \checkmark look for the decay $\phi \rightarrow K\overline{K}\gamma$ $\frac{1}{\sqrt{2}} \left(|K_s K_s \rangle - |K_L K_L \rangle \right)$ having the kaon pair $J^{PC} = O^{++}$ i look for $\phi \rightarrow K_S K_S \gamma \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma$, $E_{\gamma} \sim 24 \text{ MeV}$ $\mathbb{B.R.}(\Phi \to K^{o} \overline{K}^{o} \gamma) < \frac{UL(\mu_{sig}) @ 90\%CL}{\left[Ldt \cdot \sigma(e^{+}e^{-} \to \Phi) \cdot \frac{1}{2} \cdot B.R.(K_{s} \to \pi^{+}\pi^{-})^{2} \cdot \epsilon \right]}$ N_{obs}=5 observed events Ks N_{bkg}=3.2 expected background events -Ks π^+ $UL(\mu_{sia})$ at 90% C.L. = 6.79 π Federico Nguyen 11 01-12-2008

FINAL:

FINAL: Writing the paper

B.R. $(\phi \rightarrow (f_0 + a_0)\gamma \rightarrow K^0 \overline{K}^0 \gamma) < 1.7 \cdot 10^{-8}$ at 90% C.L.

- 1. S.Fajfer, R.J.Oakes, Phys.Rev.D42 (1990) 2392
- 2. A.Bramon, A.Grau, G.Pancheri, Phys.Lett.B289, 97 (1992)
- 3. J.A.Oller Phys.Lett.**B426**, 7 (1998)
- 4. J.A.Oller, Nucl.Phys.A714 (2003) 161
- 5. R.Escribano, Eur.Phys.J.A31, 454 (2007)
- 6. S.Nussinov, T.N.Truong, Phys.Rev.Lett.63 (1989) 1349, Erratum 2003
- 7. N.N.Achasov, V.N.Ivanchenko, Nucl.Phys.B315, 465 (1989)
- 8. J.Lucio, J.Pestieau, Phys.Rev.D42 (1990) 3253
- 9. N.N.Achasov, V.V.Gubin, Phys.Rev.D64, 094016 (2001)
- 10. A.Gokalp, C.S.Korkmaz, O.Yilmaz, hep-ph/0702214

B.R. $(\phi \rightarrow (f_0 + a_0)\gamma \rightarrow K^0 \overline{K}^0 \gamma) < 1.7 \cdot 10^{-8}$ at 90% C.L.

KLOE postdiction after fits of the $\phi \rightarrow f_0 \gamma \rightarrow \pi \pi \gamma$ and $\phi \rightarrow a_0 \gamma \rightarrow \eta \pi \gamma$ spectra

- 1. S.Fajfer, R.J.Oakes, Phys.Rev.D42 (1990) 2392
- 2. A.Bramon, A.Grau, G.Pancheri, Phys.Lett.B289, 97 (1992)
- 3. J.A.Oller Phys.Lett.**B426**, 7 (1998)
- 4. J.A.Oller, Nucl.Phys.A714 (2003) 161
- 5. R.Escribano, Eur.Phys.J.A31, 454 (2007)
- 6. S.Nussinov, T.N.Truong, Phys.Rev.Lett.63 (1989) 1349, Erratum 2003
- 7. N.N.Achasov, V.N.Ivanchenko, Nucl.Phys.B315, 465 (1989)
- 8. J.Lucio, J.Pestieau, Phys.Rev.D42 (1990) 3253
- 9. N.N.Achasov, V.V.Gubin, Phys.Rev.D64, 094016 (2001)
- 10. A.Gokalp, C.S.Korkmaz, O.Yilmaz, hep-ph/0702214

Measurement of BR($\eta \rightarrow \pi \pi ee(\gamma)$)

FINAL: Writing the paper

Search for
$$\gamma\gamma \rightarrow \sigma \rightarrow \pi^0\pi^0$$
 PRELIMINARY:
2nd best communication at SIF

long debate about the experimental evidence of the σ meson,

BES	$J/\psi \rightarrow \omega \sigma \rightarrow \omega \pi^+ \pi^-$
CLEO	$D^0 \longrightarrow K_S \sigma \longrightarrow K_S \pi^+ \pi^-$
E791	$D^+ \longrightarrow \pi^+ \sigma \longrightarrow \pi^+ \pi^+ \pi^-$

M = 541 MeV, Γ = 504 MeV M = 513 MeV, Γ = 335 MeV M = 478 MeV, Γ = 324 MeV

$e^+e^- \rightarrow e^+e^-\pi^0\pi^0 \rightarrow e^+e^-4\gamma$ at $\sqrt{s} = 1$ GeV

from Off-Peak (suppressed ϕ decays) data

\succ hadronic σ

- hadron spectroscopy
- > kaon physics

- New measurements were only available for $BR(K_{\ell 3})$ and $BR(K_{\ell 3}/\pi\pi^0)$
- For channels like ππ⁰ and π⁺π⁺π⁻, fit rested heavily on Chiang '72 Six BRs constrained by Σ BR = 1, but correlations unavailable No radiative corrections

In data sample we find $N_{obs} = 0$ and 0 events in MC BKG sample.

The Upper limit for the number of signal events μ_{sig} is: UL(μ_{sig}) = 2.3 @ 90% CL

KLOE measurement of $K_{e2}/K_{\mu 2}$

PRELIMINARY: ArXiv:0707.4623

KLOE perspectives on $K_{e2}/K_{\mu 2}$

Improved PID + better understanding of P_{lepton} measurement tails ~ 13K events selected with full statistics (2.2 fb⁻¹)

MC & Offline activities

✓ Whole KLOE data sample reconstructed with the same Datarec
Version, DBV26: COMPLETED

✓ Off-Peak data sample reconstructed with DBV27, where the only difference wrt DBV26 is a dedicated filter for $\gamma\gamma(\rightarrow\sigma,\eta)$ physics, otherwise rejected (large missing energy) by On-Peak filters

✓ MC productions dedicated to Ke2 analysis (according to 2004-05 data samples)

✓ new generator for $\eta \rightarrow e^+e^-e^+e^-$ and fixed s dependence in $a_1\pi,\omega\pi \rightarrow \pi^+\pi^-\pi^+\pi^-$

Future plans

\succ hadronic σ

completion of F_{π} from large angle analysis (lower $M_{\pi\pi}$ region)

- F_{π} from ratio of $\pi\pi\gamma$ to $\mu\mu\gamma$ events
- F_{π} from off peak (suppressed ϕ decays) data
- >hadron spectroscopy

analysis of $\eta \rightarrow e^+e^-e^+e^-$ and $\eta \rightarrow 3\pi^0$ (cusp effect?)

- study of other $\eta (\rightarrow \pi \pi \gamma / \mu \mu \gamma / ee \gamma / \mu \mu / \pi^0 \gamma \gamma)$ channels
- analysis of $\gamma\gamma \rightarrow \pi^0\pi^0$ to search for the $\sigma(600)$
- > kaon physics

finalize $K^+ \rightarrow \pi^+ \pi^- \pi^-$ and CPT tests from interferometry

semileptonic form factors in K^{\pm} and K_L updates

updates of K^{\pm} and K_L lifetimes

new (e.g. $K_S \rightarrow \pi \pi ee$) and updated (e.g. $K_S \rightarrow 3\pi^0$) rare K_S decays

SPARES

ACCEPTED by PLB: ArXiv:0809.3950

29

KLOE results on charged kaons

Constrained fit: $\Sigma BRi = 1$, accounting for BR vs τ dependence

$BR(K^+ \rightarrow \mu^+ \nu)$	0.6376(12)	0.2%
$BR(K^+ \rightarrow \pi^+\pi^0)$	0.2071(9)	0.4%
$BR(K^{\pm} \rightarrow \pi^{\pm}\pi^{-})$	0.0553(9)	input PDG '04
$BR(K^{\pm} \rightarrow \pi^0 e^{\pm} v)$	0.0499(5)	1.0%
$BR(K^{\pm} \rightarrow \pi^{0}\mu^{\pm}\nu)$	0.0325(4)	1.2%
$BR(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0})$	0.0177(3)	1.7%
τ(K [±])	12.344(30) ns	0.24%

 χ^2 /d.o.f. = 0.60/1, CL = 44%

Measurement of $BR(K_L \rightarrow \pi e v \gamma)$

PUBLISHED: EPJC55(2008)539

Federico Nguyen 01-12-2008

31

The $V_{\rm us}$ master formula

Vector transition protected against SU(3) corrections: [Ademolio

$$\Gamma(\mathsf{K}_{\ell^{3}(\gamma)}) = \frac{C_{\kappa}^{2} M_{\kappa}^{5}}{192\pi^{3}} S_{EW} \mathsf{G}_{\mathsf{F}}^{2} |\mathsf{V}_{\mathsf{us}}|^{2} |f_{+}^{\kappa^{0}\pi^{-}}(0)|^{2} \times$$

with $K \in \{K^+, K^0\}$; $\ell \in \{e, \mu\}$, and: $C_{\kappa^2}^2$ 1/2 for K^+ , 1 for K^0 S_{EW} Universal SD EW correction (1.0232)

Inputs from theory:

 $f_{+}^{\kappa^{0}\pi^{-}}(0)$

Hadronic matrix element (form factor) at zero momentum transfer (t = 0)

 $\Delta_{\kappa}^{SU(2)}$

 $\Delta_{\kappa \ell}^{EM}$

Form-factor correction for SU(2) breaking

Form-factor correction for long-distance EM effects

Inputs from experiment:

Rates with well-determined treatment of radiative decays:

" Branching ratios " Kaon lifetimes

 $I_{\kappa\rho}(\{\lambda\}_{\kappa\rho}) (1 + 2\Delta_{\kappa}^{SU(2)} + 2\Delta_{\kappa\rho}^{EM})$

 $I_{\kappa e}(\{\lambda\}_{\kappa e})$

 $\Gamma(K_{\ell^{3}(\gamma)})$

Integral of dalitz density (includes ff) over phase space

Data

3-body

260

280

 $p_{\pi}(MeV/c)$

300

Fit

- New measurements were only available for $BR(K_{\ell 3})$ and $BR(K_{\ell 3}/\pi\pi^0)$
- For channels like ππ⁰ and π⁺π⁺π⁻, fit rested heavily on Chiang '72 Six BRs constrained by Σ BR = 1, but correlations unavailable No radiative corrections

 $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (21, 18 \pm 0.28)\%$

$\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))$ improvements

ACCEPTED by PLB: ArXiv:0809.3950

PLB606(2005)12

Trigger	0.3%
Reconstruction filter	0.6%
Background	0.3%
M _{trk} cuts	0.2%
Particle ID	0.1%
Tracking	0.3%
Vertex	0.3%
Acceptance	0.3%
Unfolding	0.2%
Luminosity $(0.5_{th} \oplus 0.3_{exp})\%$	0.6%

2008: efficiencies evaluated either from 2

This work (2008):

Trigger	0.1%
Reconstruction filter	-
Background	0.3%
M _{ttk} cuts	0.2%
Particle ID	-
Tracking	0.3%
Vertex	-
Acceptance	0.1%
Unfolding	-
Software Trigger	0.1%
\sqrt{s} dep. of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

Σ_{exp,2008} = 0.6% (⊕0.6%Th)

different control samples or 2 independent methods

$\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))$ background

ACCEPTED by PLB: ArXiv:0809.3950

Achievements in 2008

Precision Kaon and Hadron Physics with KLOE, Riv. Nuovo Cim.31(2008)531

$e^+e \rightarrow \pi^+\pi^-\gamma$	Δa_{μ}^{**} to 0.9%	arXiv:0807.1612, 0809.3950	Accepted by PLB	φ to ψ, QCD08, ICHEP08, Tau08
e⁺e→ ωπ⁰		PLB669(2008)223		MoriondQCD
φ→η π ⁰ γ	$BR(\phi \to a_0 \gamma)$	PLB 536(2002) 209	arXiv:0707.4609	SCADRONfest, PANIC08
$UL \mathbf{a}_0/\mathbf{f}_0 \!\rightarrow\! \mathbf{K}_{\mathbf{s}} \mathbf{K}_{\mathbf{s}}$	to 10 ⁻⁸	arXiv:0707.4148, 0805.2521		QCD08, PANIC08
$\eta \rightarrow \pi^+\pi^-\pi^0$	Dalitz plot	JHEP 05(2008)006		Flavianet
η $\rightarrow \pi^0 \pi^0 \pi^0$	Dalitz plot	arXiv:0707.4137		Confinement08
$\eta \rightarrow \pi^+ \pi^- e^+ e^-$	BR to 4%	arXiv:0805.2521		Hadron07, Flavianet
γγ→π⁰π⁰	look for σ	SIF award paper		Italian Physical Society (SIF)

Achievements in 2008

$K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$	Quantum Interference	PLB642(2006)315	Update	HQL08
$K_s \rightarrow \gamma \gamma$	BR to 5.7%	JHEP05(2008)051		Flavianet, HQL08
$K_s \rightarrow e^+e^-$	UL to 10-8	arXiv:0811.1007		
$K_L \rightarrow \pi e \nu \gamma$	BR to ~2%, DE component	EPJC55(2008)539		
$K^+ \rightarrow \pi^+ \pi^0$	BR to ~ 0.3%	PLB 666(2008) 305		
$K^{\pm} \rightarrow \pi^{0} I \nu$	BR's to ~ 1.2%	JHEP 02(2008)98		
K [±] lifetime	to ~ 0.4%: 2 independent methods	JHEP 01(2008)73	Update	IFAE08
K [±] → e [±] ν	BR's to ~1%	KAON 050(2008)		HQL08,ICHEP08, CKM08
V _{us} , LU	Unitarity at 0.1%	JHEP04(2008)059		Flavianet, HQL08, Be ach08, ICHEP08, CK M08

