Electron-Phonon Interaction and Charge Instabilities in Strongly Correlated Electron Systems

Rome, October 21, 2008

Ph-D Candidate - Andrea Di Ciolo
andrea.diciolo@roma1.infn.it

Physics Department, University of Rome “Sapienza”
Piazzale A. Moro, 2 - 00185 Rome, Italy
PH-D ADVISORS

Dr. J. G. Lorenzana
University of Rome “Sapienza”, SMC-INFM and ISC-CNR, Italy

Prof. M. Grilli
University of Rome “Sapienza” and SMC-INFM, Italy

COLLABORATOR

Prof. G. Seibold
Institut für Physik, BTU Cottbus, Germany
Contents

- Charge Density Waves + Anomalous Phonon Softening in the Cuprates
- Hubbard-Holstein Model + Gutzwiller-RPA Method
- Homogeneous Metal \Rightarrow Charge Inhomogeneities
- Stripes \Rightarrow Anomalous Phonon Softening
- Conclusions
Charge Density Wave (CDW) Materials

Classical CDW’s

1D-blue bronzes \((A_{0.30}MoO_3\) with \(A = K, Rb\));
2D-dichalcogenides \((MC_2\) with \(M=Ta, Ti, Nb, Mo\) and \(C=S, Se\)) ...

Strongly Correlated CDW’s

cuprates, manganites, nickelates, cobaltites ...
Charge Density Wave (CDW) Materials

$Rb_{0.3}MoO_3$[Brun05] $Ca_{2-x}Na_xCuO_2Cl_2$[Hanaguri04] Dy-BSCCO[Kohsaka07]

CDW’s in STM (Scansion Tunnelling Microscope) experiments
Anomalous Phonon Softening in the Cuprates

OUR IDEA: STRIPES \Rightarrow Nearly 1D-metallic structures

\Rightarrow [Kohn Anomaly] ANOMALOUS SOFTENING OF THE BOND-STRETCHING PHONON BRANCH
Hubbard-Holstein Model + Gutzwiller-RPA Method

\[\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} \implies \text{ELECTRONIC KINETIC TERM} \]
\[\sum_{i} U \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \implies \text{E-E INTERACTIONS} \]
\[\sum_{i} \beta x_{i}(\hat{n}_{i} - n) \implies \text{E-PH COUPLING} \]
\[\sum_{i} \left(\frac{1}{2M} P_{i}^{2} + \frac{1}{2} K x_{i}^{2} \right) \implies \text{PHONONIC TERM} \]

ADIABATIC LIMIT \((M \to \infty) \implies \kappa_{q}^{\text{eph}} = \frac{\kappa_{q}}{1 - \lambda \kappa_{q} / \chi_{0}^{0}} \text{ exact relation} \)

\(\lambda = \chi_{0}^{0} \beta^{2} / K \to \text{e-ph coupling} \)
\(\chi_{0}^{0} \to \text{density of states of the non-interacting system} \)

GUTZWILLER APPROXIMATION (GA) \(\implies\) electronic GROUND STATE + low-energy excitations (quasiparticles)

RANDOM PHASE APPROXIMATION (RPA) \(\implies\) FLUCTUATIONS \(\implies\)
\(\kappa_{q} \text{ (without e-ph coupling)} \implies \kappa_{q}^{\text{eph}} \text{ (with e-ph coupling)} \)
Homogeneous Metal \implies Charge Inhomogeneities

$n=1, \ U=U_c \rightarrow$ Metal-Insulator Transition

$$ \kappa_{q}^{eph} = \frac{\kappa_{q}}{1 - \lambda \kappa_{q}/\chi_{0}} $$

$U=0 \implies \kappa_{q}=2k_F$ maximum \implies strong phonon anomaly (KOHN ANOMALY)

SMALL $U \implies$ PEIERLS CDW

LARGE $U \implies$ PHASE SEPARATION (PS)
Homogeneous Metal \implies Charge Inhomogeneities

$$\overset{GA}{\Rightarrow} \text{Charge Inhomogeneities}$$

GA is accurate

U WEAKENS THE EFFECTIVE E-PH COUPLING

$$g_q = z_0^2 \frac{\kappa_q}{\kappa_0}$$

$z_0 \Rightarrow$ GA renormalized hopping

$$t \rightarrow t z_0^2$$
Homogeneous Metal \rightarrow Charge Inhomogeneities

2D - PHASE DIAGRAM OF THE PARAMAGNETIC METAL
Kohn Anomaly in 1D and 2D

\[\omega_0 \to \text{bare phonon frequency} \]

Results for \(n = 0.8 \) and \(\lambda = 0.5 \). **U SUPPRESSES THE KOHN ANOMALY.**
Stripes \rightarrow Anomalous Phonon Softening

REALISTIC PARAMETERS $\rightarrow n = 0.875, \ U/t = 8, \ \text{next-nearest hopping} \ t'/t = -0.2$
Stripes \rightarrow Anomalous Phonon Softening

Our optical phonon branches vs experimental branches

Strong asymmetry well reproduced

Not trivial result
Conclusions

- $e-ph$ coupling suppressed by $e-e$ interaction

- Homogeneous Metal $\Rightarrow \lambda \Rightarrow$ Charge Inhomogeneities

- Peierls CDW $\xrightarrow{U} \text{PS}$

- Optical Phonons + Stripes $\Rightarrow U \Rightarrow$ Anomalous Phonon Softening
Anomalous Phonon Softening in the Cuprates

Half-Breathing Phonon Mode

Longitudinal Optical Branch [Pintschovius99]
The susceptibility κ_q has all the information on how $e-e$ interaction renormalizes $e-ph$ interaction:

$$\kappa_{q}^{eph} = \frac{\kappa_q}{1 - \lambda \kappa_q/\chi_0^0} = \frac{\kappa_q}{1 - \tilde{\lambda}_q}, \quad \tilde{\lambda}_q = \lambda \frac{\kappa_q}{\chi_0^0}$$

- In the absence of other (first-order) instabilities, for $\lambda = \lambda_c = \chi_0^0/\kappa_{q_c}$, the system undergoes a transition to a CDW state with a typical q_c.
- Increasing $U \Rightarrow \kappa_q$ reduced with respect to $\kappa_q^0 \Rightarrow \tilde{\lambda}_q$ reduced $\Rightarrow U$ WEAKENS the $e-ph$ coupling.
- The problem is then reduced to the study of the electronic susceptibility for $\lambda = 0$.
The Hubbard model: \(H_e = \sum_{ij\sigma} t_{ij} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) + \sum_i U \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \)

GZW TRIAL STATE: \(|\psi_G\rangle = \hat{P}_g |Sd\rangle \implies |Sd\rangle \rightarrow \text{SLATER DETERMINANT} \)

\[\hat{P}_g = \prod_i [1 - (1 - g)\hat{n}_{i\uparrow} \hat{n}_{i\downarrow}] = \prod_i [1 - (1 - g)\hat{D}_i] \]

For \(g < 1 \), \(\hat{P}_g \) suppresses double occupancies \(D_i \).

For \(g = 0 \), all the configurations with \(D_i \neq 0 \) are ruled out.

\[E_e[\rho, D] = \langle \psi_G |H_e|\psi_G\rangle \simeq \sum_{ij\sigma} t_{ij} \zeta_{i\sigma} \zeta_{j\sigma} \rho_{ji\sigma} + \sum_i UD_i \]

\[\zeta_{i\sigma}[\rho_{ii\sigma}, \rho_{ii,-\sigma}, D_i] \rightarrow \text{GZW-renormalized hopping factors} \]

\[\rho_{ji\sigma} = \langle Sd |c_{i\sigma}^\dagger c_{j\sigma}|Sd\rangle \rightarrow \text{uncorrelated single fermion DENSITY MATRIX} \]
Computations with the GA+RPA method [Seibold-Lorenzana0103], generalization of the HF+RPA technique [Ring80, Blaizot86]

An external field induces small amplitude deviations δD and $\delta \rho$ around the GA saddle point \Rightarrow

$$E_e[\rho, D] = E_{e0} + Tr[h_0 \delta \rho] + \frac{1}{2} \delta \rho^\dagger L_0 \delta \rho + \delta DS_0 \delta \rho + \frac{1}{2} \delta D^t K_0 \delta D$$

with $h = \delta E_e / \delta \rho$.

$$\frac{\partial E}{\partial \delta D} = 0$$

eliminates the δD deviations \Rightarrow

2nd order energy deviation: $\delta E_e = \frac{1}{2} \delta \rho^\dagger W \delta \rho$

The interaction kernel W mediates local and intersite charge deviations.
Homogeneous Metal \Longrightarrow Charge Inhomogeneities

![Graph 1](image1.png)

1D
\(n = 0.75 \)
- \(q = \pi \)
- \(q = 2k_F = 3\pi/4 \)
- \(q = \pi/2 \)
- \(q = 0 \)

\(\kappa_q \) vs. \(U/U_c \)

![Graph 2](image2.png)

1D
\(n = 0.875 \)
- \(q = \pi \)
- \(q = 2k_F = 7\pi/8 \)
- \(q = \pi/2 \)
- \(q = 0 \)

\(\varepsilon \) vs. \(U/U_c \)
Homogeneous Metal \implies Charge Inhomogeneities

\[
D = \infty
\]

\[
\eta_q = \frac{1}{d} \sum_{\nu=1}^{d} \cos q_\nu
\]
Stripes \implies Anomalous Phonon Softening

4×2 UNIT CELL \implies FIRST REDUCED BRILLOUIN ZONE