
Automation of the leading order calculations for
e
+
e
− → hadrons

Karol Kołodziej

Institute of Physics
University of Silesia
Katowice

Radio Monte Carlo Working Group meeting

Frascati, 18 – 19 November, 2014

Karol Kołodziej Automation of LO calculations for e+e− → hadrons 1/13



Motivation

The knowledge of σe+e−→hadrons(s) allows, through dispersion
relations, for determination of hadronic contributions to the
vacuum polarization.
⇒ Better precision of theoretical predictions for the muon
anomalous magnetic moment and evolution of the fine structure
constant from the Thomson limit to high energy scales.
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Automation of calculations with carlomat

At low energies, the hadronic final states consist mostly of pions or
kaons, accompanied by one or more photons.
Light fermion pairs, as e+e−, µ

+
µ
− or N̄N, can also be present.
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carlomat v2.0

Version 2 of carlomat was released in summer 2013 and the
paper: KK, Comput. Phys. Commun. 185 (2014) 323,
[arXiv:1305.5096],
was published in the beginning of 2014.
Substantial modifications with respect to version 1 of the program
include:
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Anomalous Wtb coupling

The effective Lagrangian of the Wtb interaction containing
operators of dimension four and five has the following form:

LWtb =
g√
2
Vtb

[

W−
µ
b̄ γµ

(

f L
1
PL+ f

R

1
PR

)

t

−
1

mW
∂νW

−
µ
b̄σµν

(

f L2 PL+ f
R

2 PR

)

t

]

+h.c.

Couplings f L
i
, f R
i
, i = 1,2, can be complex in general. In the SM,

f L
1
= 1 and other couplings are 0.
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Vertices of sQED

The bound state nature of the charged pion can be taken into
account by the substitutions:

e→ eFπ(q
2), e2→ e2

∣

∣Fπ(q
2)
∣

∣

2
,

where Fπ(q
2) is the charged pion form factor (not implemented).

Implementation of new triple vertices, as e.g.

Karol Kołodziej Automation of LO calculations for e+e− → hadrons 8/13



Vertices of sQED

The bound state nature of the charged pion can be taken into
account by the substitutions:

e→ eFπ(q
2), e2→ e2

∣

∣Fπ(q
2)
∣

∣

2
,

where Fπ(q
2) is the charged pion form factor (not implemented).

Implementation of new triple vertices, as e.g.

Aµ

K+, K0

K−, K̄0

≡ iefγPP (p+ − p−)
µ

V µ

π+, K+, K0

π−, K−, K̄0

≡ iefV PP (p+ − p−)
µ

Karol Kołodziej Automation of LO calculations for e+e− → hadrons 8/13



Vertices of sQED

The bound state nature of the charged pion can be taken into
account by the substitutions:

e→ eFπ(q
2), e2→ e2

∣

∣Fπ(q
2)
∣

∣

2
,

where Fπ(q
2) is the charged pion form factor (not implemented).

Implementation of new triple vertices, as e.g.

Aµ

K+, K0

K−, K̄0

≡ iefγPP (p+ − p−)
µ

V µ

π+, K+, K0

π−, K−, K̄0

≡ iefV PP (p+ − p−)
µ

with V = ρ,ω,ϕ, or

Karol Kołodziej Automation of LO calculations for e+e− → hadrons 8/13



Vertices of sQED

The bound state nature of the charged pion can be taken into
account by the substitutions:

e→ eFπ(q
2), e2→ e2

∣

∣Fπ(q
2)
∣

∣

2
,

where Fπ(q
2) is the charged pion form factor (not implemented).

Implementation of new triple vertices, as e.g.

Aµ

K+, K0

K−, K̄0

≡ iefγPP (p+ − p−)
µ

V µ

π+, K+, K0

π−, K−, K̄0

≡ iefV PP (p+ − p−)
µ

with V = ρ,ω,ϕ, or

W± µ

π∓, K∓

π0, K0

≡ iefWPP (p+ − p−)
µ

ρ± µ

π∓, K∓

π0, K0

≡ iefρPP (p+ − p−)
µ

is straightforward.
Karol Kołodziej Automation of LO calculations for e+e− → hadrons 8/13



Vertices of sQED

The bound state nature of the charged pion can be taken into
account by the substitutions:

e→ eFπ(q
2), e2→ e2

∣

∣Fπ(q
2)
∣

∣

2
,

where Fπ(q
2) is the charged pion form factor (not implemented).

Implementation of new triple vertices, as e.g.

Aµ

K+, K0

K−, K̄0

≡ iefγPP (p+ − p−)
µ

V µ

π+, K+, K0

π−, K−, K̄0

≡ iefV PP (p+ − p−)
µ

with V = ρ,ω,ϕ, or

W± µ

π∓, K∓

π0, K0

≡ iefWPP (p+ − p−)
µ

ρ± µ

π∓, K∓

π0, K0

≡ iefρPP (p+ − p−)
µ

is straightforward.
Karol Kołodziej Automation of LO calculations for e+e− → hadrons 8/13



Vertices of sQED and particle mixing

Similarly, quartic vertices such as:
ρ0µ

Aν

π+

π−

≡ 2iegρππg
µν

ρ+µ

ρ− ν

π+

π−

≡ 2ig2ρππg
µν

can also be implemented in a straightforward manner.

Implementation of the particle mixing such as, e.g.
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Topology generation in carlomat

Topologies are generated for models with triple and quartic
couplings, starting with 1 topology of a 3 particle process.

1

3

2

Line 4 is attached to each line and to the vertex ⇒ 4 topologies
of a 4 particle process.
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Line 5 is attached to each line, including the internal ones, and to
each triple vertex ⇒ 25 topologies of a 5 particle process.
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Topology generation in carlomat

# of topologies grows dramatically with # of external particles.

# of particles # of topologies
6 220
7 2 485
8 34 300
9 559 405
10 10 525 900
11 224 449 225

n external particles ⇒ topologies for n−1 particles needed
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Vertices of RChPT

Vertices of the Resonance Chiral Perturbation Theory (RChPT):

π0

Aµ(k1)

Aν(k2)

≡ e2gπγγε
µναβk1αk2β

π0

Aµ(k1)

ρ0 ν(k2)

≡ iegπ0γρ0ε
µναβk1αk2β

π0

Aµ

π+

π−

≡ −egγπππε
µναβk0 νk+αk−β

π0

ρ0µ

π+

π−

≡ −egωπππε
µναβk0 νk+αk−β

Their implementation in the program required just a few new
subroutines for computation of the corresponding helicity
amplitudes.
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Outlook

At the moment, all the form factors are set to 1 or e.

They should be implemented soon in collaboration with Fred
Jegerlehner, who provided me with the Feynman rules of the
RChPT.
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