The role of experimental data as input for precise hadronic calculations: $(\mathrm{g}-2)_{\mu}, \mathrm{P} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \eta-\eta^{\prime}$ mixing

Pere Masjuan Johannes Gutenberg-Universität Mainz (masjuan@kph.uni-mainz.de)

Work done in collaboration with Pablo Sanchez-Puertas

Outline

- Pseudoscalar Transition Form Factors
- How to use data for dressing the TFFs
- Applications
- (g-2), $\mathrm{P} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \eta-\eta^{\prime}$ mixing, time-like TFF
- Conclusions

Pseudoscalar Transition Form Factors

- Study of ee \rightarrow ee $\gamma^{*} \gamma^{*}$ with $\gamma^{*} \gamma^{*} \rightarrow \pi, \eta, \eta$ ' but also $P \rightarrow e e \gamma, 4 e, 2 e$

- Meson Structure
- Transition Form Factors (TFF) give access to Meson Distribution Amplitudes
- Precision Tests of the Standard Model
- Relation to mixing parameters, rare decays, and muon anomaly ($\mathrm{g}-2)_{\mu}$

How do we do that?

- Single Tag Method can access the Meson Transition Form Factor

Selection criteria

- 1 e- detected
-1 e $^{+}$along beam axis
- Meson full reconstructed

Momentum transfer

- tagged: $Q^{2}=-q_{1}^{2}=-\left(p-p^{\prime}\right)^{2}$
\Rightarrow highly virtual photon
- untagged: $q^{2}=-q_{2}^{2} \sim 0 \mathrm{GeV}^{2}$
\Rightarrow quasi-real photon

How do we do that?

Cross section for P production depends only on $F\left(q_{1}^{2}, q_{2}^{2}\right)$

With the Single Tag Method: $F\left(q_{1}^{2}, q_{2}^{2}\right) \rightarrow F\left(Q^{2}\right)$

$$
F\left(Q^{2}\right)=\int T_{H}\left(x, Q^{2}\right) \Phi_{P}\left(x, \mu_{F}\right) \mathrm{d} x
$$

- μ_{F} is scale between soft and hard
- x -dependence of $\Phi_{\mathrm{P}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ not known but models
- Experimental data on $F\left(Q^{2}\right)$ is needed
convolution of perturbative and nor-perturbative regimes

The role of experimental data

$$
F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

Use hadronic models constrained with chiral and large-Nc arguments

Use data from the Transition Form Factor for input calculations

The role of experimental data

The role of experimental data

$$
F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

- We want a method, not a model
- Simple (not black box as disp. rel)
- Approaches yes (improvable), assumptions no
- Systematic:
- easy to update with new data
- error from incompleteness of the data set
- Predictive (checkable)

The role of experimental data

Use data from
the Transition Form Factor

$$
F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

The role of experimental data

Use data from
the Transition Form Factor for numerical integrat

$$
F_{P \gamma^{*} \gamma^{*}}\left(m_{P}^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

double-tag method

The role of experimental data

Use data from
the Transition Form Factor for numerical integrat

$$
F_{P \gamma^{*} \gamma}\left(m_{P}^{2}, q_{1}^{2}, 0\right)
$$

single-tag method the Transition Form Factor to constrain your hadronic model

The role of experimental data

Use data from the Transition Form Factor for numerical integral

How??

Nice synergy between experiment and theory

Simple, easy, systematic, user friendly method

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{gathered}
F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0}^{P}\left(1+b_{P} \frac{Q^{2}}{m_{P}^{2}}+\underset{\varlimsup_{P \rightarrow \gamma \gamma}}{c_{P}} \frac{Q^{4}}{m_{P}^{4}}+\ldots\right) \\
\Gamma_{P l o p e}^{\uparrow}{ }_{\text {curvature }}
\end{gathered}
$$

We have published space-like data for $Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)$

$$
Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots
$$

$$
P_{M}^{N}\left(Q^{2}\right)=\frac{T_{N}\left(Q^{2}\right)}{R_{M}\left(Q^{2}\right)}=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\cdots+\mathcal{O}\left(\left(Q^{2}\right)^{N+M+1}\right)
$$

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{gathered}
F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0}^{P}\left(1+b_{P} \frac{Q^{2}}{m_{P}^{2}}+\underset{\varlimsup_{P \rightarrow \gamma \gamma}}{c_{P}} \frac{Q^{4}}{m_{P}^{4}}+\ldots\right) \\
\Gamma_{P l o p e}^{\uparrow}{ }_{\text {curvature }}
\end{gathered}
$$

We have published space-like data for $Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)$

$$
Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots
$$

$$
P_{1}^{1}\left(Q^{2}\right)=\frac{a_{0} Q^{2}}{1-a_{1} Q^{2}} \longrightarrow \begin{aligned}
& P_{1}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{1}^{2}\left(Q^{2}\right), P_{1}^{3}\left(Q^{2}\right), \ldots \\
& P_{N}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{2}^{2}\left(Q^{2}\right), P_{3}^{3}\left(Q^{2}\right), \ldots
\end{aligned}
$$

sequence of approximations, i.e., theoretical error

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{aligned}
& Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots \\
& P_{1}^{1}\left(Q^{2}\right)=\frac{a_{0} Q^{2}}{1-a_{1} Q^{2}} \longrightarrow \begin{array}{l}
P_{1}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{1}^{2}\left(Q^{2}\right), P_{1}^{3}\left(Q^{2}\right), \ldots \\
P_{N}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{2}^{2}\left(Q^{2}\right), P_{3}^{3}\left(Q^{2}\right), \ldots
\end{array}
\end{aligned}
$$

Convergence (making use of analytical properties):

$$
\lim _{N \rightarrow \infty} P_{1}^{N}\left(Q^{2}\right)=F_{P \gamma^{*} \gamma}\left(Q^{2}, 0\right) \quad \text { Montessus Theorem }
$$

Conv. from pole at $-Q^{2}$ to $Q^{* 2}$: good at LE, bad at HE. Fantastic for LEPs and cheap

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
We need low-energy region (data driven) + high-energy tail we don't want a model rather a method providing systematics

$$
\begin{aligned}
& Q^{2} F_{P \gamma * \gamma}\left(Q^{2}, 0\right)=a_{0} Q^{2}+a_{1} Q^{4}+a_{2} Q^{6}+\ldots \\
& P_{1}^{1}\left(Q^{2}\right)=\frac{a_{0} Q^{2}}{1-a_{1} Q^{2}} \longrightarrow \begin{array}{l}
P_{1}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{1}^{2}\left(Q^{2}\right), P_{1}^{3}\left(Q^{2}\right), \ldots \\
P_{N}^{N}\left(Q^{2}\right)=P_{1}^{1}\left(Q^{2}\right), P_{2}^{2}\left(Q^{2}\right), P_{3}^{3}\left(Q^{2}\right), \ldots
\end{array}
\end{aligned}
$$

Convergence (making use of analytical properties):

$$
\lim _{N \rightarrow \infty} P_{N}^{N}\left(Q^{2}\right)=F_{P \gamma^{*} \gamma}\left(Q^{2}, 0\right) \quad \text { Pommerenke Theorem }
$$

Conv. from cut at $-Q^{2}$ to ∞ : good at LE and HE. Good for LEPs and no cheap

Our proposal: use Padé Approximants

[P.M.'I2; P.M., M.Vanderhaeghen'I2; R. Escribano, P.M., P. Sanchez-Puertas, 'I3]
Fit to Space-like data: CELLO'9I, CLEO'98, BABAR'09 and Belle'I2

$$
\begin{equation*}
P_{1}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=5 \tag{P.M,'12}
\end{equation*}
$$

$$
P_{N}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=3
$$

Accurate description of the low-energy region making full use of available experimental data

Fit to Space-like data: CELLO'9I, CLEO'98, BABAR'II+ $\Gamma_{\eta \rightarrow \gamma \gamma}$
[R.Escribano, P.M., P. Sanchez-Puertas, 'I3]

$$
P_{1}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=4
$$

$$
P_{N}^{N}\left(Q^{2}\right) \text { up to } \mathrm{N}=2
$$

$$
\lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\eta \gamma * \gamma}\left(Q^{2}, 0\right)=0.164(2) G e V
$$

П'-TFF

Fit to Space-like data: CELLO'9I, CLEO'98, L3'98, BABAR'II + $\Gamma_{\eta^{\prime} \rightarrow \gamma \gamma}$
[R.Escribano, P.M., P. Sanchez-Puertas, 'I3]

П-TFF

Predictive method!

- Study Dalitz decays $\eta \rightarrow \gamma^{*} \gamma \rightarrow e^{+} e^{-} \gamma$
- Prediction of the time-like from space-like data

A2@MAMI

[A2 Coll. PRC89 2014]

П-TFF

Fit to Space-like data [CELLO'9I, CLEO'98, BABAR'II] $+\Gamma_{\eta \rightarrow \gamma \gamma}$ + Time-like data [NA60'09, A2'II, A2'|3]
[R.Escribano, P.M., P. Sanchez-Puertas, 'I4]

П-TFF

Fit to Space-like data [CELLO'91, CLEO'98, BABAR'II] $+\Gamma_{\eta \rightarrow \gamma \gamma}$ + Time-like data [NA60'09,A2'|I, A2'|3]
[R.Escribano, P.M., P. Sanchez-Puertas, 'I4]

$$
P_{1}^{N}\left(Q^{2}\right) \quad \text { up to } \mathrm{N}=7
$$

П-TFF

Fit to Space-like data [CELLO'9I, CLEO'98, BABAR'II] $+\Gamma_{\eta \rightarrow \gamma \gamma}$ + Time-like data [NA60'09, A2' 1 I, A2'I3]
[R.Escribano, P.M., P. Sanchez-Puertas, 'I4]

A word on systematics

-Consider a model for η TFF
-Generate a pseudodata set emulating the physical situation (SL+TL)
-Build up your PA sequence

- Fit and compare

PS-TFF

space-like and time-like data

Applications

I. Hadronic Light-by-Light contribution to muon (g-2)
2. PS decays into lepton pairs $\left(\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$
3. $\eta-\eta$ ' mixing
4. Time-like TFF prediction (charmonium backgrounds)

Applications

I. Hadronic Light-by-Light contribution to muon (g-2)
2. PS decays into lepton pairs $\left(\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$
3. $\eta-\eta ’$ mixing
4. Time-like TFF prediction (charmonium backgrounds)

Dissection of the HLBL contribution

$$
a_{\mu}^{L b L ; P}=-e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m^{2}\right]\left[\left(p-q_{2}\right)^{2}-m^{2}\right]}
$$

$$
\left.\left.\begin{array}{rl}
& \times\left(\frac{F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{1}^{2},\left(q_{1}+q_{2}\right)^{2}\right) F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{2}^{2}, 0\right)}{q_{2}^{2}-M_{P}^{2}} T_{1}\left(q_{1}, q_{2} ; p\right)\right. \\
+ & F_{P^{*} \gamma^{*} \gamma^{*}}\left(\left(q_{1}+q_{2}\right)^{2}, q_{1}^{2}, q_{2}^{2}\right) F_{P^{*} \gamma^{*} \gamma^{*}}\left(\left(q_{1}+q_{2}\right)^{2},\left(q_{1}+q_{2}\right)^{2}, 0\right) \\
\left(q_{1}+q_{2}\right)^{2}-M_{P}^{2}
\end{array} T_{2}\left(q_{1}, q_{2} ; p\right)\right)\right) .
$$

Dissection of the HLBL contribution

$$
a_{\mu}^{L b y L ; \pi^{0}}=e^{6} \int \frac{d^{4} Q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} Q_{2}}{(2 \pi)^{4}} K\left(Q_{1}^{2}, Q_{2}^{2}\right)
$$

$$
\text { Using } F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q_{1}^{2}, Q_{2}^{2}\right) \sim \operatorname{VMD}\left(Q_{1}^{2}, Q_{2}^{2}\right)
$$

(main energy range from 0 to $I \mathrm{GeV}^{2}$)

Dissection of the HLBL contribution

a la Knecht-Nyffeler

Central value:

$$
F_{\pi^{0} \gamma^{*} \gamma^{*}}^{L M D+V}\left(q_{1}^{2}, q_{2}^{2}\right)=\frac{f_{\pi}}{3} \frac{q_{1}^{2} q_{2}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{1}\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+h_{2} q_{1}^{2} q_{2}^{2}+h_{5}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{7}}{\left(q_{1}^{2}-M_{V_{1}}^{2}\right)\left(q_{1}^{2}-M_{V_{2}}^{2}\right)\left(q_{2}^{2}-M_{V_{1}}^{2}\right)\left(q_{2}^{2}-M_{V_{2}}^{2}\right)}
$$

Publication:

$$
\begin{aligned}
F_{\pi} & =92.4 \mathrm{MeV} \\
m_{\rho} & =769 \mathrm{MeV} \\
m_{\rho^{\prime}} & =1465 \mathrm{MeV} \\
h_{1} & =0(\mathrm{BL} \text { limit }) \\
h_{5} & =6.93 \mathrm{GeV}^{4} \\
h_{2} & =-10 \mathrm{GeV}^{2} \\
a_{\mu}^{\mathrm{HLBL}, \pi} & =6.3 \times 10^{-10}
\end{aligned}
$$

Dissection of the HLBL contribution

a la Knecht-Nyffeler

Central value:

$$
F_{\pi^{0} r^{*} \gamma^{*}}^{L M+V}\left(q_{1}^{2}, q_{2}^{2}\right)=\frac{f_{\pi}}{3} \frac{q_{1}^{2} q_{2}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{1}\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+h_{2} q_{1}^{2} q_{2}^{2}+h_{5}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{7}}{\left(q_{1}^{2}-M_{V_{1}}^{2}\right)\left(q_{1}^{2}-M_{V_{2}}^{2}\right)\left(q_{2}^{2}-M_{V_{1}}^{2}\right)\left(q_{2}^{2}-M_{V_{2}}^{2}\right)}
$$

Publication:

$$
\begin{aligned}
F_{\pi} & =92.4 \mathrm{MeV} \\
m_{\rho} & =769 \mathrm{MeV} \\
m_{\rho^{\prime}} & =1465 \mathrm{MeV} \\
h_{1} & =0(\mathrm{BL} \text { limit }) \\
h_{5} & =6.93 \mathrm{GeV}^{4} \\
h_{2} & =-10 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
a_{\mu}^{\mathrm{HLBL}, \pi}=6.3 \times 10^{-10}
$$

Preliminary, using exp data:

$$
\begin{aligned}
& \Gamma_{\pi^{0} \rightarrow \gamma \gamma} \\
& m_{\rho}=775 \mathrm{MeV} \\
& \text { curvature } \\
& h_{1}=0(\mathrm{BL} \text { limit }) \\
& \text { slope } \\
& h_{2}=-10 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
a_{\mu}^{\mathrm{HLBL}, \pi}=7.5 \times 10^{-10}
$$

Dissection of the HLBL contribution

a la Knecht-Nyffeler

Error budget:

$$
\begin{aligned}
F_{\pi^{0} \gamma^{*} \gamma^{*}}^{V M D}\left(q_{1}^{2}, q_{2}^{2}\right) & =-\frac{N_{c}}{12 \pi^{2} f_{\pi}} \frac{M_{V}^{2}}{\left(q_{1}^{2}-M_{V}^{2}\right)} \frac{M_{V}^{2}}{\left(q_{2}^{2}-M_{V}^{2}\right)} \\
F_{\pi^{0} r^{2} r^{*}}^{L M D}\left(q_{1}^{2}, q_{2}^{2}\right) & =\frac{f_{\pi}}{3} \frac{\left(q_{1}^{2}+q_{2}^{2}\right)-c_{V}}{\left(q_{1}^{2}-M_{V}^{2}\right)\left(q_{2}^{2}-M_{V}^{2}\right)} \\
F_{\pi^{0} \gamma^{2} r^{r}}^{L M D+V}\left(q_{1}^{2}, q_{2}^{2}\right) & =\frac{f_{\pi}}{3} \frac{q_{1}^{2} q_{2}^{2}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{1}\left(q_{1}^{2}+q_{2}^{2}\right)^{2}+h_{2} q_{1}^{2} 1_{2}^{2}+h_{5}\left(q_{1}^{2}+q_{2}^{2}\right)+h_{7}}{\left(q_{1}^{2}-M_{\left.V_{1}\right)}^{2}\right)\left(q_{1}^{2}-M_{V_{2}}^{2}\right)\left(q_{2}^{2}-M_{V_{1}}^{2}\right)\left(q_{2}^{2}-M_{V_{2}}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\Delta F_{\pi} & \Rightarrow 2 \Delta a_{\mu}^{\mathrm{HLBL}, \mathrm{P}} \\
\Delta \text { slope } & \Rightarrow 0.75 \Delta a_{\mu}^{\mathrm{HLBL}, \mathrm{P}} \\
\Delta \text { curv. } & \Rightarrow 0.5 \Delta a_{\mu}^{\mathrm{HLBL}, \mathrm{P}} \\
\Delta m_{\rho}=\Gamma / 2 & \Rightarrow 1.3 \Delta a_{\mu}^{\mathrm{HLBL}, \mathrm{P}}
\end{aligned}
$$

Current exp. precision:

$$
\begin{aligned}
\Delta F_{\pi} & \sim 1.1 \% \\
\Delta \text { slope } & \sim 13 \% \\
\Delta \text { curvature } & \sim 25 \%
\end{aligned}
$$

Chiral limit

$$
F_{0} \rightarrow F_{\pi} \sim 5 \%
$$

$$
\Delta a_{\mu}^{\mathrm{HLBL}, \pi} \sim 15 \%
$$

I / Nc

$$
\Delta m_{\rho} \sim 10 \%
$$

Dissection of the HLBL contribution

a la Padé

P.M., S. Peris, 07 P.M.' 12
P.M.,Vanderhaeghen'l2
R. Escribano, P.M., P. Sanchez-Puertas, I3

$$
\begin{aligned}
& F_{P^{*} \gamma^{*} \gamma^{*}}^{P 01}\left(P_{P}^{2}, Q_{1}^{2}, Q_{2}^{2}\right)=a \frac{b}{Q_{1}^{2}+b} \frac{b}{Q_{2}^{2}+b}\left(1+c P_{P}^{2}\right) \quad \text { R. Escribano, P.M., P.s } \\
& F_{P^{*} \gamma^{*} \gamma^{*}}^{P 12}\left(P_{P}^{2}, Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a+b Q_{1}^{2}}{\left(Q_{1}^{2}+c\right)\left(Q_{1}^{2}+d\right)} \frac{a+b Q_{2}^{2}}{\left(Q_{2}^{2}+c\right)\left(Q_{2}^{2}+d\right)}\left(1+c P_{P}^{2}\right)
\end{aligned}
$$

	b_{P}	c_{P}	$\lim _{Q^{2} \rightarrow \infty} Q^{2} F_{P \gamma^{*} \gamma}\left(Q^{2}\right)$	$a_{\mu}^{\mathrm{HLBL} ; \mathrm{P}}$
π^{0}	$0.0324(22)$	$1.06(27) \cdot 10^{-3}$	$2 f_{\pi}$	$6.49(56) \cdot 10^{-10}$
η	$0.60(7)$	$0.37(12)$	$0.160(24) \mathrm{GeV}$	$1.25(15) \cdot 10^{-10}$
η^{\prime}	$1.30(17)$	$1.72(58)$	$0.255(4) \mathrm{GeV}$	$1.27(19) \cdot 10^{-10}$

Systematic error from approach:

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right) \text { vs } P_{2}^{1}\left(Q_{1}^{2}, Q_{2}^{2}\right) \longrightarrow 5 \%
$$

[P.M.,Peris,'07]

Applications

I. Hadronic Light-by-Light contribution to muon (g-2)
2. PS decays into lepton pairs $\left(\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$
3. $\eta-\eta$ ' mixing
4. Time-like TFF prediction (charmonium backgrounds)

Introduction and Motivation
 Experiment

$$
\begin{aligned}
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}= & \left.\frac{2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)}{}\right)\left.\mathcal{A}\left(m_{P}^{2}\right)\right|^{2} \\
& \sim 1.5 \cdot 10^{-10}
\end{aligned}
$$

KTeV '07:

$$
B R\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)=(6.44 \pm 0.25 \pm 0.22) \times 10^{-8}
$$

Extrapolation to $\mathrm{x}=\mathrm{I}+$ radiative correction + Dalitz decay background

$$
B R_{\mathrm{KTeV}}^{w / \text { orad }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(7.48 \pm 0.29 \pm 0.25) \times 10^{-8}
$$

(dominates de PDG)

Introduction and Motivation Theory

$$
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2}
$$

The only unknown $\mathcal{A}\left(m_{P}^{2}\right)$ from loop calculation where the TFF enters.

$$
\mathcal{A}\left(q^{2}\right)=\frac{2 i}{\pi^{2}} \int d^{4} k \frac{q^{2} k^{2}-(k \cdot q)^{2}}{k^{2}(k-q)^{2}\left((p-k)-m_{\ell}^{2}\right)} \frac{F_{P \gamma^{*} \gamma^{*}}\left(k^{2},(q-k)^{2}\right)}{F_{P \gamma \gamma}(0,0)}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

As model independent as possible:

Cutcosky rules provides the imaginary part

$$
\begin{array}{r}
\operatorname{Im} \mathcal{A}\left(q^{2}\right)=\frac{\pi}{2 \beta_{l}\left(q^{2}\right)} \ln \left(\frac{1-\beta_{l}\left(q^{2}\right)}{1+\beta_{l}\left(q^{2}\right)}\right) ; \quad \beta_{l}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \\
q^{2}=m_{P}^{2}
\end{array}
$$

Assuming $|\mathcal{A}|^{2} \geq(\operatorname{Im} \mathcal{A})^{2}$

$$
B\left(\pi^{0} \rightarrow e^{+} e^{-}\right) \geq B^{\text {unitary }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=4.69 \cdot 10^{-8}
$$

Dissection of $\Pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{gathered}
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\left(-\frac{5}{4}+\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)\right)+\frac{\pi^{2}}{12}+\ln ^{2}\left(\frac{m_{l}}{m_{P}}\right) \\
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
\end{gathered}
$$

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

- Its contribution is negative: lowers the BR.
- Peaks at $\sim 2 m_{e}$ and
$\langle Q\rangle=0.09 \mathrm{GeV}$.
- Low energies relevant only: slope is enough.

Dissection of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

$$
\operatorname{Re}\left(\mathcal{A}\left(m_{P}^{2}\right)\right)=\int_{0}^{\infty} d Q^{2} \operatorname{Kernel}\left(Q^{2}\right)+30.7
$$

Dubna contribution: corrections $\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\pi}, \mathrm{m}_{\mathrm{e}} / \Lambda$

Dorokhov and Ivanov, '08

$$
\mathcal{O}\left(\frac{m_{e}}{\Lambda}\right)^{2} \quad \mathcal{O}\left(\frac{m_{e}}{\Lambda} \log \frac{m_{e}}{\Lambda}\right)^{2}
$$

Dorokhov, Ivanov and Kovalenko '09

$$
\mathcal{O}\left(\frac{m_{\pi}}{\Lambda}\right)^{2} \quad \mathcal{O}\left(\frac{m_{e}}{m_{\pi}}\right)^{2}
$$

Resummation of power corrections using Mellin-Barnes techniques. Conclusion: corrections negligible!

$$
B R_{\mathrm{SM}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.23 \pm 0.09) \times 10^{-8} \sim 3 \sigma
$$

Prague contribution: Radiative corrections

Vasko, Novotny 'II + Husek, Kampf, Novotny'l4

$$
\begin{aligned}
& \frac{\operatorname{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}(\gamma), x>0.95\right)}{\operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}= \\
& \quad \frac{\Gamma\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}\left[1+\delta^{(2)}(0.95)+\Delta^{B S}(0.95)+\delta^{D}(0.95)\right] \\
& \delta^{(2)}(0.95) \equiv \delta^{\text {virt. }}+\delta_{\text {soft }}^{\mathrm{BS}}(0.95)=(-5.8 \pm 0.2) \% \quad \text { vS } \sim-13 \% \\
& \Delta^{\mathrm{BS}}(0.95)=(0.30 \pm 0.01) \% \quad \delta^{D}(0.95)=\frac{1.75 \times 10^{-15}}{\left[\Gamma^{\mathrm{LO}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right) / \mathrm{MeV}\right]}
\end{aligned}
$$

$$
B R_{" \mathrm{KTeV} "}^{w / o \text { orad }}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.87 \pm 0.36) \times 10^{-8}
$$

Mainz contribution:TFF parameterization

Use data from
the Transition Form Factor
for numerical integral

$$
F_{P \gamma^{*} \gamma^{*}}\left(m_{P}^{2}, q_{1}^{2}, q_{2}^{2}\right) \quad \text { double-tag method }
$$

Remember: only low-energy region is needed

Doubly virtual $\Pi^{0}-$ TFF

[P.M., P. Sanchez-Puertas, in preparation]
For $B R_{S M}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)$we need $F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q^{2}, Q^{2}\right)$

Proposal: bivariate PA

Chisholm '73

$$
\begin{gathered}
P_{M}^{N}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{T_{N}\left(Q_{1}^{2}, Q_{2}^{2}\right)}{R_{M}\left(Q_{1}^{2}, Q_{2}^{2}\right)}=a_{0}+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+a_{1,1} Q_{1}^{2} Q_{2}^{2}+a_{2}\left(Q_{1}^{4}+Q_{2}^{4}\right)+\cdots \\
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
\end{gathered}
$$

Doubly virtual $\Pi^{0}-$ TFF

Proposal: bivariate PA
Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data
$a_{1,1}$ from a systematic fit to doubly virtual SL data

Doubly virtual Π^{0}-TFF

Proposal: bivariate PA
Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data
$a_{1,1}$ from a systematic fit to doubly virtual SL data

OPE indicates: $\lim _{Q^{2} \rightarrow \infty} P_{1}^{0}\left(Q^{2}, Q^{2}\right) \sim Q^{-2}$ i.e., $a_{1,1}=2 a_{1}^{2}$

Doubly virtual Π^{0}-TFF

Proposal: bivariate PA

Chisholm '73

$$
P_{1}^{0}\left(Q_{1}^{2}, Q_{2}^{2}\right)=\frac{a_{0}}{1+a_{1}\left(Q_{1}^{2}+Q_{2}^{2}\right)+\left(2 a_{1}^{2}-a_{1,1}\right) Q_{1}^{2} Q_{2}^{2}}
$$

a_{1} from accurate study of space-like data

$$
\begin{gathered}
0 \leq a_{1,1} \leq 2 a_{1}^{2} \\
B R_{S M}^{P A}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.22-6.36)(4) \times 10^{-8} \\
\text { statistics+theoretical error }
\end{gathered}
$$

Doubly virtual $\Pi^{0}-$ TFF

$$
B R_{" \mathrm{KTeV} "}^{w / \operatorname{orad}^{2}}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.87 \pm 0.36) \times 10^{-8}
$$

$$
B R_{S M}^{P A}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)=(6.22-6.36)(4) \times 10^{-8}
$$

Impact of $\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$on HLBL

-500	Model	Published model		Modified model	
		$\pi^{0} \rightarrow e^{+} e^{-}$ $\left(\times 10^{8}\right)$	$H L B L$ $\left(\times 10^{10}\right)$	$\pi^{0} \rightarrow e^{+} e^{-}$ $\left(\times 10^{8}\right)$	$H L B L$ $\left(\times 10^{10}\right)$
	LMD+V	6.33	6.29	6.47	5.22
Dorokhov et al '09	VMD	6.34	5.64	6.87	2.44
- Our proposal '14	PA	6.36	5.53	6.87	2.85

$$
\begin{aligned}
& \Delta a_{\mu}^{S M} \sim 6 \times 10^{-10} \\
& \Delta a_{\mu}^{H L B L} \sim 4 \times 10^{-10} \\
& \Delta a_{\mu}^{H L B L} ; \pi^{0} \rightarrow e^{+} e^{-} \sim(2-3) \times 10^{-10} \\
&+ \text { similar effect for the } \eta \text { decay! }
\end{aligned}
$$

The role of doubly virtual TFF data

Dissection of $\left.\eta \rightarrow I^{+}\right|^{-}$

PDG value dominated by the KTeV measurement

$$
\begin{aligned}
\frac{B R(P \rightarrow \bar{\ell} \ell)}{B R(P \rightarrow \gamma \gamma)}=2\left(\frac{\alpha m_{\ell}}{\pi m_{P}}\right)^{2} \beta_{\ell}\left(m_{P}^{2}\right)\left|\mathcal{A}\left(m_{P}^{2}\right)\right|^{2} & =5.8(8) \cdot 10^{-6} \quad\left(\mu^{+} \mu^{-}\right) \\
& \leq 5.6 \cdot 10^{-6} \quad\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)
\end{aligned}
$$

Unitary Bound for the $\mu \mu$ case $=4.37 \cdot 10^{-6}$
SM calculations with $m_{\eta}^{2} / \Lambda^{2} \sim 0=4.99 \cdot 10^{-6}$ Our result from SL+TL (full result) $=4.51(2) \cdot 10^{-6}$

Applications

I. Hadronic Light-by-Light contribution to muon (g-2)
2. PS decays into lepton pairs ($\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$)
3. $\eta-\eta ’$ mixing
4. Time-like TFF prediction (charmonium backgrounds)

$\eta-\eta ’$ mixing

$\eta-\eta$ ' mixing in the flavor basis

$$
\left(\begin{array}{cc}
f_{\eta}^{q} & f_{\eta}^{s} \\
f_{\eta^{\prime}}^{q} & f_{\eta^{\prime}}^{s}
\end{array}\right)=\left(\begin{array}{cc}
f_{q} \cos [\phi] & -f_{s} \sin [\phi] \\
f_{q} \sin [\phi] & f_{s} \cos [\phi]
\end{array}\right)
$$

From the TFFs we can determine f_{q}, f_{s}, ϕ

$$
\begin{array}{|l}
\Gamma_{\eta \rightarrow \gamma \gamma}=\frac{9 \alpha^{2}}{32 \pi^{3}} M_{\eta}^{3}\left(\frac{C_{q} \cos [\phi]}{f_{q}}-\frac{C_{s} \sin [\phi]}{f_{s}}\right)^{2} \\
\Gamma_{\eta^{\prime} \rightarrow \gamma \gamma}=\frac{9 \alpha^{2}}{32 \pi^{3}} M_{\eta^{\prime}}^{3}\left(\frac{C_{q} \sin [\phi]}{f_{q}}+\frac{C_{s} \cos [\phi]}{f_{s}}\right)^{2}
\end{array} \quad \begin{aligned}
& \lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\eta \gamma \gamma^{*}}\left(Q^{2}\right)=f_{\eta}^{q} \frac{10}{3}+f_{\eta}^{s} \frac{2 \sqrt{2}}{3}, \\
& \lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\eta^{\prime} \gamma \gamma^{*}}\left(Q^{2}\right)=f_{\eta^{\prime}}^{q} \frac{10}{3}+f_{\eta^{\prime}}^{s} \frac{2 \sqrt{2}}{3} .
\end{aligned}
$$

$\eta-\eta ’$ mixing

$\eta-\eta$ ' mixing in the flavor basis

$$
\left(\begin{array}{cc}
f_{\eta}^{q} & f_{\eta}^{s} \\
f_{\eta^{\prime}}^{q} & f_{\eta^{\prime}}^{s}
\end{array}\right)=\left(\begin{array}{cc}
f_{q} \cos [\phi] & -f_{s} \sin [\phi] \\
f_{q} \sin [\phi] & f_{s} \cos [\phi]
\end{array}\right)
$$

From the TFFs we can determine f_{q}, f_{s}, ϕ

$$
\begin{array}{|c}
\Gamma_{\eta \rightarrow \gamma \gamma}=\frac{9 \alpha^{2}}{32 \pi^{3}} M_{\eta}^{3}\left(\frac{C_{q} \cos [\phi]}{f_{q}}-\frac{C_{s} \sin [\phi]}{f_{s}}\right)^{2} \\
\Gamma_{\eta^{\prime} \rightarrow \gamma \gamma}=\frac{9 \alpha^{2}}{32 \pi^{3}} M_{\eta^{\prime}}^{3}\left(\frac{C_{q} \sin [\phi]}{f_{q}}+\frac{C_{s} \cos [\phi]}{f_{s}}\right)^{2}
\end{array} \quad \begin{aligned}
& \lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\eta \gamma \gamma^{*}}\left(Q^{2}\right)=f_{\eta}^{q} \frac{10}{3}+f_{\eta}^{s} \frac{2 \sqrt{2}}{3} \\
& \lim _{Q^{2} \rightarrow \infty} Q^{2} F_{\eta^{\prime} \gamma \gamma^{*}}\left(Q^{2}\right)=f_{\eta^{\prime}}^{q} \frac{10}{3}+f_{\eta^{\prime}}^{s} \frac{2 \sqrt{2}}{3} .
\end{aligned}
$$

[R.Escribano, P.M., P. Sanchez-Puertas, 'I4]

$$
f_{q}=1.07(1) f_{\pi}, \quad f_{s}=1.39(14) f_{\pi}, \quad \phi=39.3(1.3)^{\circ}
$$

Update of Frere-Escribano '05 with PDGI2 using 9 inputs

$$
f_{q}=1.07(1) f_{\pi}, \quad f_{s}=1.63(2) f_{\pi}, \quad \phi=40.4(0.3)^{\circ}
$$

$\eta-\eta ’$ mixing

$\eta-\eta$ ' mixing in the flavor basis

From the TFFs we can determine F_{q}, F_{s}, ϕ

FKS: Feldmann, Kroll, Stech, PLB 449, 339, (1999)
EF: Escribano, Frere, JHEP 0506, 029 (2005) updated in Escribano, P.M, Sanchez-Puertas, 2013.

$\eta-\eta ’$ mixing

From the TFFs we can determine F_{q}, F_{s}, ϕ and the VPY and J/ Ψ decays used in FKS and EF as inputs

Our predictions Experimental determinations

$g_{\rho \eta \gamma}$	$1.55(4)$	$1.58(5)$
$g_{\rho \eta^{\prime} \gamma}$	$1.19(5)$	$1.32(3)$
$g_{\omega \eta \gamma}$	$0.56(2)$	$0.45(2)$
$g_{\omega \eta^{\prime} \gamma}$	$0.54(2)$	$0.43(2)$
$g_{\phi \eta \gamma}$	$-0.83(11)$	$-0.69(1)$
$g_{\phi \eta^{\prime} \gamma}$	$0.98(14)$	$0.72(1)$
$\frac{J / \Psi \rightarrow \eta^{\prime} \gamma}{J / \Psi \rightarrow \eta \gamma}$	$4.74(60)$	$4.67(20)$

Applications

I. Hadronic Light-by-Light contribution to muon (g-2)
2. DS decays into lepton pairs ($\mathrm{T}^{0} \longrightarrow \mathrm{C}^{+} \mathrm{C}^{-}$)
3. ワ-n' mixing
4. Time-like TFF prediction (charmonium backgrounds)

Time-like TFF: prediction

- Asymptotic limits in time-like and space-like FFs are expected to be close, is important to measure this time-like FF because:
- the charmonium region is between the perturbative and nonperturbative regimes of the $\pi-, \eta$-, and η '-TFF
- background for charmonium decays: charm quark mass determination

Time-like TFF: prediction

Differential cross section:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma P\right)}{d(\cos \theta)}=\frac{\pi^{2} \alpha^{3}}{4}\left(F_{P \gamma^{*} \gamma}(s, 0)\right)^{2}\left(1-\frac{M_{P}^{2}}{s}\right)^{3}\left(1+\cos ^{2} \theta\right)
$$

Integrating with respect to $\cos \theta$

$$
\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma P\right)=\frac{2 \pi^{2} \alpha^{3}}{3}\left(F_{P \gamma^{*} \gamma}(s, 0)\right)^{2}\left(1-\frac{M_{P}^{2}}{s}\right)^{3}
$$

Conclusions

- Transition Form Factors are a good laboratory to study meson properties (one and two virtualities)
- Need for a model independent approach: we use Padé App.
- Padé Approximants' method is easy, systematic and can be improved upon by including new data
- Considering space- and time-like data
- provides very accurate LECs and asymptotic limits
- provides insight in mixing scheme and meson structure
- predicts VP γ, J/ Ψ, rare decays, continuum...
- beautiful synergy experiment - theory

back-up

Dissection of the HLBL contribution

$$
F_{P^{*} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}\right)
$$

Use hadronic models constrained with chiral and large-Nc arguments

Use data from the Transition Form Factor for numerical integral

Dissection of the HLBL contribution

Use hadronic models constrained with chiral and large-Nc arguments

$$
\begin{gathered}
F(0)=\frac{1}{4 \pi^{2} f_{\pi}}, \quad F\left(Q^{2}\right) \rightarrow \frac{6 f_{\pi}}{N_{c} Q^{2}}+\cdots \quad \quad \mathrm{ABJ} \text { and } \mathrm{BL} \\
\\
F\left(Q^{2}\right)=\frac{1}{4 \pi^{2} f_{\pi}} \frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}} \quad f_{\pi}=? \quad m_{\rho}=?
\end{gathered}
$$

Dissection of the HLBL contribution

Use hadronic models constrained with chiral and large-Nc arguments

$$
\begin{gathered}
F(0)=\frac{1}{4 \pi^{2} f_{\pi}}, \quad F\left(Q^{2}\right) \rightarrow \frac{6 f_{\pi}}{N_{c} Q^{2}}+\cdots \quad \quad \mathrm{ABJ} \text { and } \mathrm{BL} \\
\\
F\left(Q^{2}\right)=\frac{1}{4 \pi^{2} f_{\pi}} \frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}} \quad f_{\pi}=? \quad m_{\rho}=?
\end{gathered}
$$

$$
\begin{aligned}
& f_{\pi}=92.21(14) \mathrm{MeV} \quad \text { from PDG } \\
& f_{\pi}=f_{0}=88.1(4.1) \mathrm{MeV} \text { from lattice [Ecker et al ' } 14 \text {] } \\
& f_{\pi}=93(1) \mathrm{MeV} \quad \text { from } \Gamma_{\pi^{0} \gamma \gamma} \\
& m_{\rho}^{2}=\frac{24 \pi^{2} f_{\pi}^{2}}{N_{c}}, \text { imposing } \mathrm{BL} \\
& m_{\rho} \sim 780-820 \mathrm{MeV}
\end{aligned}
$$

Large-Nc and the half-width rule

- Mass shift and Width are of the same order in I/Nc
- Example: 2 point GF $\quad D(s)=\frac{1}{s-m_{0}^{2}-\Sigma(s)}$
-The resonance pole $s=s_{R}=m_{R}^{2}-i m_{R} \Gamma_{R}$ is give by:

$$
s_{R}-m_{0}^{2}-\Sigma\left(s_{R}\right)=0
$$

- In large-Nc (perturbative) expansion:

$$
\begin{array}{rlrl}
s_{R} & =m_{0}^{2}+\mathcal{O}\left(N_{c}^{-1}\right) \\
s_{R} & =m_{0}^{2}+2 m_{0} \Delta m_{R}-i \Gamma_{R} m_{0}+\mathcal{O}\left(N_{c}^{-2}\right) & \Delta m_{R} & =\frac{1}{2 m_{0}} \operatorname{Re} \Sigma\left(m_{0}^{2}\right) \\
\Gamma_{R} & =-\frac{1}{m_{0}} \operatorname{Im} \Sigma\left(m_{0}^{2}\right)
\end{array}
$$

Dissection of the HLBL contribution

Use hadronic models constrained with chiral and large-Nc arguments

$$
\begin{gathered}
F(0)=\frac{1}{4 \pi^{2} f_{\pi}}, \quad F\left(Q^{2}\right) \rightarrow \frac{6 f_{\pi}}{N_{c} Q^{2}}+\cdots \quad \quad \mathrm{ABJ} \text { and } \mathrm{BL} \\
\\
F\left(Q^{2}\right)=\frac{1}{4 \pi^{2} f_{\pi}} \frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}} \quad f_{\pi}=? \quad m_{\rho}=?
\end{gathered}
$$

$$
\begin{aligned}
& f_{\pi}=92.21(14) \mathrm{MeV} \quad \text { from PDG } \\
& f_{\pi}=f_{0}=88.1(4.1) \mathrm{MeV} \text { from lattice [Ecker et al ' } 14 \text {] } \\
& f_{\pi}=93(1) \mathrm{MeV} \quad \text { from } \Gamma_{\pi^{0} \gamma \gamma} \\
& m_{\rho}^{2}=\frac{24 \pi^{2} f_{\pi}^{2}}{N_{c}}, \text { imposing } \mathrm{BL} \\
& m_{\rho} \sim 780-820 \mathrm{MeV} \\
& m_{\rho}=\left(775 \pm \Delta m_{\rho, N_{c} \rightarrow \infty}\right) \mathrm{MeV} \\
& m_{\rho}=(775 \pm \Gamma / 2) \mathrm{MeV} \\
& \text { half-width rule [P.M., Ruiz-Arriola, Broniowski,' } 13]
\end{aligned}
$$

Dissection of the HLBL contribution

Use hadronic models constrained with chiral and large-Nc arguments

$$
\begin{aligned}
& F(0)=\frac{1}{4 \pi^{2} f_{\pi}}, \quad F\left(Q^{2}\right) \rightarrow \frac{6 f_{\pi}}{N_{c} Q^{2}}+\cdots \\
& F\left(Q^{2}\right)=\frac{1}{4 \pi^{2} f_{\pi}} \frac{m_{\rho}^{2} m_{\rho^{\prime}}^{2}+24 f_{\pi}^{2} \pi^{2} Q^{2} / N_{c}}{\left(m_{\rho}^{2}+Q^{2}\right)\left(m_{\rho^{\prime}}^{2}+Q^{2}\right)}
\end{aligned}
$$

$f_{\pi}=92.21(14) \mathrm{MeV} \quad$ from PDG
$f_{\pi}=f_{0}=88.1(4.1) \mathrm{MeV}$ from lattice [Ecker et al '14]
$f_{\pi}=93(1) \mathrm{MeV} \quad$ from $\Gamma_{\pi^{0} \gamma \gamma}$

$$
\begin{aligned}
m_{\rho} & =\left(775 \pm \Delta m_{\rho, N_{c} \rightarrow \infty}\right) \mathrm{MeV} \\
m_{\rho} & =(775 \pm \Gamma / 2) \mathrm{MeV} \\
m_{\rho^{\prime}} & =(1465 \pm 400 / 2) \mathrm{MeV}
\end{aligned}
$$

half-width rule [P.M., Ruiz-Arriola, Broniowski,'I3]

Naive New Physics contributions

$$
\begin{gathered}
\frac{\operatorname{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}=2\left(\frac{\alpha m_{e}}{\pi m_{\pi}}\right)^{2} \beta_{e}\left|\mathcal{A}\left(q^{2}\right)+\frac{\sqrt{2} F_{\pi} G_{F}}{4 \alpha^{2} F_{\pi \gamma \gamma}}\left(\frac{4 m_{W}}{m_{A(P)}}\right)^{2} \times f^{A(P)}\right|^{2} \\
f^{A}=c_{e}^{A}\left(c_{u}^{A}-c_{d}^{A}\right) \quad f^{P}=\frac{1}{4} c_{e}^{P}\left(c_{u}^{P}-c_{d}^{P}\right) \frac{m_{\pi}^{2}}{m_{\pi}^{2}-m_{P}^{2}} \quad c \sim \mathcal{O}\left(\frac{g}{g_{S U(2)_{L}}}\right) \\
\frac{\mathrm{BR}\left(\pi^{0} \rightarrow e^{+} e^{-}\right)}{\mathrm{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)}=\mathrm{SM}\left(1+\epsilon_{Z, N P} \times 5 \%\right) \\
\text { Z contribution (Arnellos, Marciano, Parsa ‘82) } \quad \epsilon_{Z} \sim 0.3 \% \\
\text { Our estimate based on existing exp. constrains: } \quad \epsilon_{N P} \sim 0.3 \%
\end{gathered}
$$

negligible!

$\eta-\eta ’$ mixing

$\eta-\eta$ ' mixing in the flavor basis

From the TFFs we can determine F_{q}, F_{s}, ϕ

PA vs DR

PA vs DR

