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• Pseudoscalar Transition Form Factors

• How to use data for dressing the TFFs

• Applications

• (g-2), P→e+e-, η-η’ mixing, time-like TFF

• Conclusions
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Pseudoscalar Transition Form Factors

• Study of ee→eeγ*γ* 
  with γ*γ*→π,η,η’
  but also P→eeγ, 4e,2e

• Meson Structure
- Transition Form Factors (TFF) give access to Meson Distribution Amplitudes

• Precision Tests of the Standard Model
- Relation to mixing parameters, rare decays, and muon anomaly (g-2)μ
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How do we do that?
• Single Tag Method can access the Meson Transition Form Factor

Selection criteria
- 1 e- detected
- 1 e+ along beam axis
- Meson full reconstructed

Momentum transfer
- tagged:
⇒highly virtual photon

- untagged:
⇒quasi-real photon

q2 = �q22 ⇠ 0GeV2
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How do we do that?

�⇤

� P

F (Q2) =

Z
TH(x,Q2)�P (x, µF )dx

Cross section for P production depends only on F (q21 , q
2
2)

With the Single Tag Method: F (q21 , q
2
2) ! F (Q2)

convolution of perturbative and nor-perturbative regimes

TH(�⇤� ! qq̄) �P (qq̄ ! P )

• μF is scale between soft and hard
• x-dependence of ΦP(x,Q2)
not known but models
 
• Experimental data on F(Q2) is needed
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The role of experimental data
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constrained with 
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Use data from
the Transition Form Factor
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The role of experimental data
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• We want a method, not a model

• Simple (not black box as disp. rel)

• Approaches yes (improvable), assumptions no

• Systematic:

• easy to update with new data

• error from incompleteness of the data set

• Predictive (checkable)



Use data from
the Transition Form Factor

for numerical integral
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Use data from
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How??

Nice synergy between experiment and theory

Use data from
the Transition Form Factor

to constrain your
hadronic model

The role of experimental data

Simple, easy, systematic, user friendly method
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Our proposal: use Padé Approximants
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We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics
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Our proposal: use Padé Approximants

We have published space-like data for 
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sequence of approximations, i.e., theoretical error
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Convergence (making use of analytical properties): 

lim
N!1

PN
1 (Q2) = FP�⇤�(Q

2, 0) Montessus Theorem

Conv. from pole at -Q2 to Q*2: good at LE, bad at HE. Fantastic for LEPs and cheap
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lim
N!1

PN
N (Q2) = FP�⇤�(Q

2, 0) Pommerenke Theorem

Conv. from cut at -Q2 to ∞: good at LE and HE. Good for LEPs and no cheap

Convergence (making use of analytical properties): 



Fit to Space-like data: CELLO’91, CLEO’98, BABAR’09 and Belle’12

PN
1 (Q2)

PN
N (Q2)

up to N=5

up to N=3
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Accurate description of the low-energy region making full use of available experimental data
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the

Our proposal: use Padé Approximants
[P.M.’12;  P.M., M. Vanderhaeghen’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]

Radio MCLow WG, Frascati, 18 Nov



η-TFF
�⌘!��Fit to Space-like data: CELLO’91, CLEO’98, BABAR’11+

PN
1 (Q2)

PN
N (Q2)

up to N=4

up to N=2 lim
Q2!1

Q2F⌘�⇤�(Q
2, 0) = 0.164(2)GeV
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[R.Escribano, P.M., P. Sanchez-Puertas, ’13]

fitted poles range ffiffiffiffiffisp
p ¼ ð0.71–0.77Þ GeV and ffiffiffiffiffisp

p ¼
ð0.83–0.86Þ GeV, as can be seen in Fig. 4. For comparison,
we also show as orange and blue bands what would
correspond to the effective VMD meson resonance
meff [39], using mρ ¼ 0.775 GeV, Γρ ¼ 0.148 GeV,
mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV, mϕ ¼ 1.019 GeV,
and Γϕ ¼ 0.004 GeV. The bands represent the range of
such mass values due to the half-width rule [40–42], i.e.,
meff $ Γeff=2. We obtain meff ¼ 0.732ð71Þ GeV for the η
case and meff ¼ 0.822ð58Þ GeV for the η0, with errors due
to the half-width rule. Notice that raising the poles lowers
the LEPs (slope and curvature) and vice versa. As shown,
fitting spacelike data does not produce an accurate deter-
mination of the resonance poles as already indicated in

Refs. [25,26,43,44]. Thus, we do not recommend to apply
this method for such determinations. That includes the use
of VMD fits to determine the resonance parameters. An
alternative model-independent procedure of extracting
these parameters using PAs can be found in Ref. [45].
To reproduce the asymptotic behavior of the TFFs, we

have also considered the PN
NðQ2Þ sequence (second row in

Tables I and II). The results obtained are in nice agreement
with our previous determinations. The best fits are shown
as black solid lines in Fig. 1. We reach N ¼ 2 for the η case
and N ¼ 1 for the η0. Since these approximants contain
the correct high-energy behavior built in, they can be
extrapolated up to infinity (black dashed lines in Fig. 1) and
then predict the leading 1=Q2 coefficient:
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FIG. 1 (color online). η (left panel) and η0 (right panel) TFF best fits. Blue dashed lines show our best PL
1 ðQ2Þ when the measured two-

photon partial decay widths are not included in the fits, green dot-dashed lines show our best PL
1 ðQ2Þ when the two-photon widths are

included, and black solid lines show our best PN
NðQ2Þ in the latter case. Black dashed lines display the extrapolation of the PN

NðQ2Þ at
Q2 ¼ 0 and Q2 → ∞. Experimental data points are from CELLO (red circles) [32], CLEO (purple triangles) [33], L3 (blue diamonds)
[34], and BABAR (orange squares) [35] Collaborations.

TABLE I. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data without including the measured
two-photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with
that sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF
(degrees of freedom). Errors are only statistical and symmetrized.

η TFF η0 TFF
N bη cη Fηγγð0Þ GeV−1 χ2=DOF N bη0 cη0 Fη0γγð0Þ GeV−1 χ2=DOF

PN
1 ðQ2Þ 2 0.45(13) 0.20(12) 0.235(53) 0.79 5 1.25(16) 1.57(42) 0.339(17) 0.70

PN
NðQ2Þ 1 0.36(6) 0.13(4) 0.201(28) 0.78 1 1.19(6) 1.42(15) 0.332(15) 0.68

Final 0.45(13) 0.20(12) 0.235(53) 1.25(16) 1.57(42) 0.339(17)

TABLE II. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data including the measured two-
photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with that
sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF. Errors
are only statistical and symmetrized.

η TFF η0 TFF
N bη cη χ2=DOF N bη0 cη0 χ2=DOF

PN
1 ðQ2Þ 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

PN
NðQ2Þ 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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η’-TFF
Fit to Space-like data: CELLO’91, CLEO’98, L3’98, BABAR’11+�⌘0!��

PN
1 (Q2)

PN
N (Q2)

up to N=5

up to N=1 lim
Q2!1

Q2F⌘0�⇤�(Q
2, 0) = 0.254(4)GeV
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fitted poles range ffiffiffiffiffisp
p ¼ ð0.71–0.77Þ GeV and ffiffiffiffiffisp

p ¼
ð0.83–0.86Þ GeV, as can be seen in Fig. 4. For comparison,
we also show as orange and blue bands what would
correspond to the effective VMD meson resonance
meff [39], using mρ ¼ 0.775 GeV, Γρ ¼ 0.148 GeV,
mω ¼ 0.783 GeV, Γω ¼ 0.008 GeV, mϕ ¼ 1.019 GeV,
and Γϕ ¼ 0.004 GeV. The bands represent the range of
such mass values due to the half-width rule [40–42], i.e.,
meff $ Γeff=2. We obtain meff ¼ 0.732ð71Þ GeV for the η
case and meff ¼ 0.822ð58Þ GeV for the η0, with errors due
to the half-width rule. Notice that raising the poles lowers
the LEPs (slope and curvature) and vice versa. As shown,
fitting spacelike data does not produce an accurate deter-
mination of the resonance poles as already indicated in

Refs. [25,26,43,44]. Thus, we do not recommend to apply
this method for such determinations. That includes the use
of VMD fits to determine the resonance parameters. An
alternative model-independent procedure of extracting
these parameters using PAs can be found in Ref. [45].
To reproduce the asymptotic behavior of the TFFs, we

have also considered the PN
NðQ2Þ sequence (second row in

Tables I and II). The results obtained are in nice agreement
with our previous determinations. The best fits are shown
as black solid lines in Fig. 1. We reach N ¼ 2 for the η case
and N ¼ 1 for the η0. Since these approximants contain
the correct high-energy behavior built in, they can be
extrapolated up to infinity (black dashed lines in Fig. 1) and
then predict the leading 1=Q2 coefficient:
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FIG. 1 (color online). η (left panel) and η0 (right panel) TFF best fits. Blue dashed lines show our best PL
1 ðQ2Þ when the measured two-

photon partial decay widths are not included in the fits, green dot-dashed lines show our best PL
1 ðQ2Þ when the two-photon widths are

included, and black solid lines show our best PN
NðQ2Þ in the latter case. Black dashed lines display the extrapolation of the PN

NðQ2Þ at
Q2 ¼ 0 and Q2 → ∞. Experimental data points are from CELLO (red circles) [32], CLEO (purple triangles) [33], L3 (blue diamonds)
[34], and BABAR (orange squares) [35] Collaborations.

TABLE I. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data without including the measured
two-photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with
that sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF
(degrees of freedom). Errors are only statistical and symmetrized.

η TFF η0 TFF
N bη cη Fηγγð0Þ GeV−1 χ2=DOF N bη0 cη0 Fη0γγð0Þ GeV−1 χ2=DOF

PN
1 ðQ2Þ 2 0.45(13) 0.20(12) 0.235(53) 0.79 5 1.25(16) 1.57(42) 0.339(17) 0.70

PN
NðQ2Þ 1 0.36(6) 0.13(4) 0.201(28) 0.78 1 1.19(6) 1.42(15) 0.332(15) 0.68

Final 0.45(13) 0.20(12) 0.235(53) 1.25(16) 1.57(42) 0.339(17)

TABLE II. Low-energy parameters for the η and η0 TFFs obtained from the PA fits to experimental data including the measured two-
photon partial decay widths. The first column indicates the type of sequence used for the fit and N is the highest order reached with that
sequence. The last row shows the weighted average result for each LEP. We also present the quality of the fits in terms of χ2=DOF. Errors
are only statistical and symmetrized.

η TFF η0 TFF
N bη cη χ2=DOF N bη0 cη0 χ2=DOF

PN
1 ðQ2Þ 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

PN
NðQ2Þ 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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lim
Q2→∞

Q2Fηγ!γðQ2Þ ¼ 0.160ð24Þ GeV;

lim
Q2→∞

Q2Fη0γ!γðQ2Þ ¼ 0.255ð4Þ GeV: (4)

We emphasize once more the importance of including the
measured two-photon partial widths in the fits, that for the
case of the η TFF allows us to reach N ¼ 2 and then reduce
the uncertainty drastically. Otherwise, we would have
remained at N ¼ 1 with errors 5 times larger.
Finally, our combined weighted average results from

Table II, taking into account both types of sequences,
give

bη ¼ 0.60ð6Þstatð3Þsys; cη ¼ 0.37ð10Þstatð7Þsys;

bη0 ¼ 1.30ð15Þstatð7Þsys; cη0 ¼ 1.72ð47Þstatð34Þsys; (5)

where the second error is systematic (of the order of 5% and
20% for bP and cP, respectively). When the spread of
central values considered for the weighted averaged result
is larger than the error after averaging, we enlarge this error

to cover that spread5 [36]. Equation (5) represents the main
results of this work. For the case of the η0, with the PN

NðQ2Þ
sequence we could only reach N ¼ 1, which turns out to be
the first element on the PL

1 ðQ2Þ sequence. The first element
of each sequence is the worst and should not be taken for
final averaged results.
For the η, the slope of the TFF obtained in Eq. (5) can be

compared with bη ¼ 0.428ð89Þ from CELLO [32] and
bη ¼ 0.501ð38Þ from CLEO [33]. The TFF was also
measured in the timelike region with the results bη ¼
0.57ð12Þ from Lepton-G [46], bη ¼ 0.585ð51Þ from NA60
[47], bη ¼ 0.58ð11Þ from A2 [48], and bη ¼ 0.68ð26Þ
from WASA [49]. Recently, the A2 Collaboration reported
bη ¼ 0.59ð5Þ [50], the most precise experimental extraction
up to date. For the η0, the slope in Eq. (5) can be compared
with bη0 ¼ 1.46ð23Þ from CELLO [32], bη0 ¼ 1.24ð8Þ from
CLEO [33], and bη0 ¼ 1.6ð4Þ from the timelike analysis by
the Lepton-G Collaboration (cited in Ref. [39]). One should
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FIG. 2 (color online). Slope predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).
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FIG. 3 (color online). Curvature predictions for the η (left panel) and η0 (right panel) TFFs using the PL
1 ðQ2Þ up to L ¼ 5 for the η and

L ¼ 6 for the η0, respectively (blue circles). The internal bands correspond to the statistical error of the different fits and the external ones
are the combination of statistical and systematic errors determined as explained in the main text. The CELLO determination is also
shown for comparison (empty red squares).

5We thank C. F. Redmer for discussions on the average
procedure.
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•  Study Dalitz decays 
η→γ*γ→e+e-γ

• Prediction of the time-like
  from space-like data

21

[A2 Coll. PRC89 2014] 

CB2013: Data
CB2013: Fit p0=1
TL calculation
PA 

A2@MAMI 

η-TFF
Predictive method!
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η-TFF
�⌘!��Fit to Space-like data [CELLO’91, CLEO’98, BABAR’11]+

+ Time-like data [NA60’09, A2’11,  A2’13]

PN
1 (Q2)

PN
N (Q2)

up to N=7

up to N=2
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Q2F⌘�⇤�(Q
2, 0) = 0.177(15)GeV
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η-TFF
�⌘!��Fit to Space-like data [CELLO’91, CLEO’98, BABAR’11]+

+ Time-like data [NA60’09, A2’11,  A2’13]
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η-TFF
�⌘!��Fit to Space-like data [CELLO’91, CLEO’98, BABAR’11]+

+ Time-like data [NA60’09, A2’11,  A2’13]
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A word on systematics
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•Consider a model for η TFF
•Generate a pseudodata set emulating the physical situation (SL+TL)
•Build up your PA sequence
•Fit and compare

VMD

Radio MCLow WG, Frascati, 18 Nov



PS-TFF
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up to the third derivative!
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Applications

1. Hadronic Light-by-Light contribution to muon (g-2)

2. PS decays into lepton pairs (π0→e+e-)

3. η-η’ mixing

4. Time-like TFF prediction (charmonium backgrounds)
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Dissection of the HLBL contribution

q1q1+q2

q2

q2 q1

q1

q1+q2
q2 q1

q1+q2

q1+q2

q2

aLbL;P
µ = �e6

Z
d4q1
(2⇡)4

Z
d4q2
(2⇡)4

1

q21q
2
2(q1 + q2)2[(p+ q1)2 �m2][(p� q2)2 �m2]

⇥
 
FP⇤�⇤�⇤(q22 , q

2
1 , (q1 + q2)2)FP⇤�⇤�⇤(q22 , q

2
2 , 0)

q22 �M2
P

T1(q1, q2; p)

+
FP⇤�⇤�⇤((q1 + q2)2, q21 , q

2
2)FP⇤�⇤�⇤((q1 + q2)2, (q1 + q2)2, 0)

(q1 + q2)2 �M2
P

T2(q1, q2; p)

!

29Pere Masjuan Radio MCLow WG, Frascati, 18 Nov



Dissection of the HLBL contribution

aLbyL;⇡0

µ = e6
Z

d4Q1

(2⇡)4

Z
d4Q2

(2⇡)4
K(Q2

1, Q
2
2)

K(Q2
1, Q

2
2)

Q2
2

Q2
1

(main energy range 
from 0 to 1 GeV2)

Pere Masjuan

Using F⇡0�⇤�⇤(Q2
1, Q

2
2) ⇠ VMD(Q2

1, Q
2
2)

30Radio MCLow WG, Frascati, 18 Nov



Dissection of the HLBL contribution
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General constraints on the Light-by-Light scattering contribution to the (g�2)µ

Pere Masjuan1, ⇤
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)

stat

(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into

⇤Electronic address: masjuan@ugr.es

account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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with c

v

= N

c

4p2
M

4
v

f

2
p

. The constants h1,h2,h5 and h7 should be
determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).

F

V MD

p0g⇤g(q
2,0) is indeed a T

0
1 (M

V

⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M

V

to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M

V

⌘ Mr ) with
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a la Knecht-Nyffeler
Central value:

Publication:

aHLBL,⇡
µ = 6.3⇥ 10�10

m⇢0 = 1465 MeV
h1 = 0 ( BL limit)
h5 = 6.93 GeV4

F⇡ = 92.4 MeV
m⇢ = 769 MeV

h2 = �10 GeV2
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a
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We want to evaluate the impact of our results on the
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I. INTRODUCTION

The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)

stat

(33)
sys

⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The

main ingredient on the determination of the pion-exchange
process a

LbyL,p0
µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q

2
2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a

LbyL;p0
µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a

LbyL;p0
µ .

We want to evaluate the impact of our results on the
a

LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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. The constants h1,h2,h5 and h7 should be
determined by experimental input or matching conditions.

With the VMD, LMD and LMD+V parameterizations the
authors of [? ] obtained a

LbyL;p0
µ = 5.6⇥ 10�10,7.3⇥ 10�10

and 5.8(1.0)⇥10�10 respectively. A way to ascribe a system-
atic error for the model-dependency of these ansätze would
account for the difference between the results of one approxi-
mant and the following one on the same sequence (see Refs.[?
? ? ] for a discussion on how to obtain this systematic error).
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2,0) is indeed a T
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⌘ Mr ) with only one free
parameter that matches the anomaly a0 = 1/4p2

fp . Instead
of fixing the pole at Mr we could match the M

V

to reproduce
our ap . In that case the VMD parametrization would be a P

0
1 ,

we would obtain M

V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M

V
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In view of these proposals, it is important to have better con-
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demands also better control on the TFF studied so far.
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nant part of this contribution comes from the one-particle re-
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by the h and h 0 contributions (aLbyL;h ,h 0
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nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N
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framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
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limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
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2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a
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µ .
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Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
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The hadronic contributions to the anomalous magnetic mo-
ment of the muon aµ consists on three categories: vacuum po-
larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
(42�47)⇥10�11 [? ], 49⇥10�11 [? ].

For comparison, the precision of the Brookhaven g�2 ex-
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⇥10�11 [? ]. Recent proposals for
new g� 2 experiments at Fermilab [? ] and at J-PARC [? ]
plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.

A compleat discussion of hadronic light-by-light contribu-
tions involves the full rank-four hadronic vacuum polarization
Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
ducible pion-exchange piece, a

LbyL;p0
µ ⇠ 70⇥10�11, followed

by the h and h 0 contributions (aLbyL;h ,h 0
µ ⇠ 30⇥ 10�11). The
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process a
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µ is the double off-shell pion-photon-photon

transition form factor Fp0⇤g⇤g⇤((q1 +q2)2,q2
1,q
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2) with a domi-

nant piece when the pion is on-shell[? ] (off-shellness effects
seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
that single-resonance exchange is the dominant effect on the
LbyL contribution.

On the Large-N
c

limit, QCD Green’s functions consist of
infinitely many non-interacting sharp mesons states whose
masses and decay constants are in principle unknown. VMD
(and extensions) considers instead of an infinite number of
resonances just a finite set inspired by resonance saturation
and the effect of the spectrum truncation should be taken into
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account on the final systematic error [? ? ].
Another important source of uncertainty for these models

depends on the experimental input used. It is, in fact, more
important to have a good description at small and intermediate
energies, e.g., by reproducing the slope and curvature of the
TFF at q

2 ! 0 than a detailed short-distance analysis since
the angular integrals used to compute a
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µ do not seem to

be very sensitive to the correct asymptotic behavior for large
momenta [? ]. With our model-independent results for the
low-energy constants on the TFF we expect to have a good
control of the impact of this uncertainty on the a
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µ .

We want to evaluate the impact of our results on the
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LbyL;p0
µ . For doing that we will follow the pioneer work of

Ref. [? ] where a detailed study of different parameteriza-
tions were considered for the off-shell photons FF. We analyse
here three of them, the VMD form factor, the Lowest-Meson-
Dominance (LMD) form factor and the LMD+V form factor,
defined as:
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larization, higher-order electroweak contributions and Light-
by-Light (LbyL) scattering. The latter can not be extracted
experimentally and one should rely on theoretical estimations
using well-motivated hadronic models [? ? ? ? ]. In-
deed, the theoretical value of aµ is currently limited by un-
certainties from the LbyL scattering contribution and leads to
an uncertainty in aµ of (26� 40)⇥ 10�11 [? ] which is al-
most as large as the one from hadronic vacuum polarization
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For comparison, the precision of the Brookhaven g�2 ex-
periment is (54)
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plan to improve on the precision up to a level of 10⇥ 10�11.
In view of these proposals, it is important to have better con-
trol on the hadronic LbyL contribution which as we will see
demands also better control on the TFF studied so far.
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Pµnlr(q1,q2,q3). However, it is believed [? ] that the domi-
nant part of this contribution comes from the one-particle re-
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seems to be mild [? ]).

Different parameterizations have been used in the past to
evaluate the pion-exchange piece contribution, mainly based
on the 1/N

c

framework [? ? ? ] which turns out to be a
suitable tool to address the problem due to the observation
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V

= 0.768(16)GeV, very similar to Mr but

slightly smaller, and a

LbyL;p0
µ = 5.65(10)⇥10�10.

F

LMD

p0g⇤g(q
2,0) is also a PTA, the T

1
1 (again M

V

⌘ Mr ) with

�F⇡ ) 2�aHLBL, P
µ

� slope ) 0.75�aHLBL, P
µ

a la Knecht-Nyffeler

�m⇢ = �/2 ) 1.3�aHLBL, P
µ

Error budget:

Current exp. precision: 

F0 ! F⇡ ⇠ 5%

�m⇢ ⇠ 10%

�aHLBL,⇡
µ ⇠ 15%

Chiral limit

1/Nc

�F⇡ ⇠ 1.1%
� slope ⇠ 13%

� curvature ⇠ 25%

� curv. ) 0.5�aHLBL, P
µ
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the

a la Padé

FP12
P⇤�⇤�⇤(P 2

P , Q
2
1, Q

2
2) =

a+ bQ2
1

(Q2
1 + c)(Q2

1 + d)

a+ bQ2
2

(Q2
2 + c)(Q2

2 + d)
(1 + cP 2

P )

P.M., S. Peris, 07 P.M. ’12
P.M., Vanderhaeghen’12

M2
Vρ

¼ M2
Vω

¼ 1

a
M2

Vϕ
¼ M2 þ nΛ2;

FVρ
¼ NcVω ¼ − Ncffiffiffi

2
p Vϕ ≡ F

with a ¼ 1.3 [4,39]. The combination of sums in Eq. (B1)
can be expressed in terms of the Digamma function
ψðzÞ ¼ d

dz log ΓðzÞ:

FPγ%γ%ðq21; q22Þ ¼ FPγ%γ% ðQ2; AÞ

¼ c
NcAQ2

"
ψ

#
M2

Λ2
þQ2ð1þ AÞ

2Λ2

$

− ψ
#
M2

Λ2
þQ2ð1 − AÞ

2Λ2

$%
; (B2)

where Q2 ¼ −ðq21 þ q22Þ, A ¼ q21−q22
q21þq22

and c is a constant
[101,102].
To reassemble the physical case we consider Nc ¼ 3,

Λ2 ¼ 1.3 GeV2 (as suggested by the recent light non-
strange qq̄ meson spectrum analysis [40] using the half-
width rule [41]), A ¼ 1=2, M2 ¼ λ × 0.64 GeV2 (λ ¼ 0.95
for the η TFF and λ ¼ 1.05 for the η0 TFF using the standard
VMD scheme [39]) and the constant c in such a way that
the anomaly FPγγð0; 0Þ ¼ 1=ð4π2FPÞ is recovered. In the
following, we consider only the example for the η TFF. The
η0 case is very similar and does not gives new information.
Once the model is defined, by generating a set of

pseudodata we can test how fast the PA sequence converge
to Q2FPγ%γðQ2Þ. Considering 10 points in the region
0.6 < Q2 < 2.2 GeV2, 15 points in the region 2.7 < Q2 <
7.6 GeV2, and 10 more points in the region 8.9 <
Q2 < 34 GeV2, we are able to resemble the physical
situation. We fit these pseudodata with a PL

1 ðQ2Þ sequence
and we collect the LEPs obtained with them (going up to
L ¼ 7) in Table V.
The last column in Table V shows the LEPs calculated

from the model. Comparing each entry in this table with the
corresponding value from the last column we can clearly
see a pattern of convergence. For example, with a P4

1ðQ2Þ
the slope and the curvature are determined with 6% and
19% of error, respectively. With a P6

1ðQ2Þ, such errors
reduce to 3% and 10%, respectively. A similar study can be
done with the PN

NðQ2Þ sequence. In this case, with the
P1
1ðQ2Þ, slope and curvature are determined with 15% and

50% of error, respectively. With the P2
2ðQ2Þ the errors

reduce drastically to 0.5% and 2%, respectively. Since the

uncertainty of the LEPs determination with the P1
1ðQ2Þ is

much larger than with the P2
2ðQ2Þ, the P1

1ðQ2Þ is never used
in this work. Moreover, the errors for the LEPs from the
P2
2ðQ2Þ are even smaller than those from the P5

1ðQ2Þ,
allowing a comparison among them. Since our pseudodata
have no errors, these determinations give us an idea of the
genuine error done due to the fact that the PA sequence is
finite, independently of the statistical errors in the data
points. We call such a kind of error a systematic error. Such
errors depend also on the amount of data points. Including
more data points, especially in the low-energy region,
diminishes all the systematic errors. This exercise is model
dependent. In Ref. [25] different models were analyzed
with the purpose of obtaining a conservative systematic
error for each LEPs at a given L, ascribing as a final
systematic error a value around 5% and 20% for slope and
curvature, respectively, for a P5

1ðQ2Þ. These are the results
used in the present work.
Equations (B1) and (B2) use the large-Nc and chiral

limits and thus have an analytic structure in the complex
momentum plane which consists of an infinity of isolated
poles but no branch cut; i.e., they become meromorphic
functions. As such, they have a well-defined series expan-
sion in powers of momentum around the origin with a finite
radius of convergence given by the first resonance mass. It
is well known [97] and largely explored in the context of
large Nc [43,44,96] that the convergence of any near
diagonal PA sequence to the original function for any
finite momentum over the whole complex plane (except
perhaps in a zero-area set) is guaranteed.

TABLE V. Pattern of convergence for a PL
1 ðQ2Þ sequence up to L ¼ 6 for the value Fηγγð0; 0Þ and the first two derivatives bη and cη.

The last column shows the exact results obtained with the model in Eq. (B2).

P1
1ðQ2Þ P2

1ðQ2Þ P3
1ðQ2Þ P4

1ðQ2Þ P5
1ðQ2Þ P6

1ðQ2Þ P7
1ðQ2Þ Fηγ%γðQ2; 0Þ

Fηγγð0; 0Þ 0.278 0.276 0.276 0.276 0.275 0.275 0.275 0.275
bη 0.492 0.471 0.458 0.450 0.442 0.437 0.434 0.426
cη 0.242 0.220 0.205 0.196 0.188 0.182 0.178 0.166
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FIG. 6 (color online). Relative error for the first and second
elements of the PN

Nþ1ðQ2Þ sequence compared to the TFF
function Eq. (B2) (blue and red dashed lines, respectively).
The green dot-dashed line represents the relative error between
the first and the second element on the approximant sequence.
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Applications

1. Hadronic Light-by-Light contribution to muon (g-2)

2. PS decays into lepton pairs (π0→e+e-)

3. η-η’ mixing

4. Time-like TFF prediction (charmonium backgrounds)
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The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

P

`

`

BR(P ! ``)

BR(P ! ��)
= 2

✓
↵m`

⇡mP

◆2

�`(m
2
P)|A(m2

P)|2

The only unknown A(m2
P) from loop calculation where the TFF enters.

A(q2) =
2i

⇡2

Z
d

4
k

q

2
k

2 � (k · q)2
k

2(k � q)2((p � k)�m

2
`)

FP�⇤�⇤(k2, (q � k)2)

FP��(0, 0)

At this point: input your favorite model and integrate.
This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

BR(⇡0 ! e

+
e

�(�), x > 0.95) = (6.44± 0.25± 0.22)⇥ 10�8

36

KTeV ’07:
⇠ 1.5 · 10�10

BRw/o rad

KTeV (⇡0 ! e+e�) = (7.48± 0.29± 0.25)⇥ 10�8

Extrapolation to x=1   +    radiative correction   +  Dalitz decay background

(dominates de PDG)

Experiment
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This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

Dissectioning the ⇡ ! e

+
e

�

• The ⇡ ! e

+
e

� decay provides the best scenario for such discussion.
• Try the most model-independent approach we can.

Cutcosky rules provides the imaginary part of this integral

ImA(q2) =
⇡

2�l(q2)
ln

✓
1� �l(q2)

1 + �l(q2)

◆
; �l(q

2) =

s

1� 4m2
l

q

2

Use dispersion relation to get the real part

Substraction term gets all the e↵ects from the TFF behavior.
⇤From now on I will quote results in the chiral limit m⇡ ! 0

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

As model independent as possible:

Cutcosky rules provides the imaginary part

Dissection of π0→e+e-

q2 = m2
P

38

Assuming |A|2 � (ImA)2

 A !q2" # 2i
q2

Z d4k
!2

q2k2 $ !qk"2
!k2 % i""!!k$ q"2 % i""!!k$ p"2 $m2

e % i""
F!"&"& !$k2;$!k$ q"2"; (4)

where q2 # m2
!, p2 # m2

e. We put the sign minus in the
arguments of the form factor explicitly to emphasize that
Eq. (4) is written in the Minkowski space. The form factor
is normalized as F!"&"& !0; 0" # 1 and falls down quite
rapidly in the Euclidean region of momenta to provide
the ultraviolet convergence of the integral. A number of
model calculations of the amplitude A!q2"was performed
[4,8–13] by employing different shapes of the form factor
F!"&"& . We discuss some of them below.

The aim of the present paper is to calculate the branch-
ing ratio B!!0 ! e%e$" and estimate the uncertainties by
using the available experimental and theoretical informa-
tion on the pion transition form factor. In particular, the
important constraints follow from the results obtained by
the CELLO and CLEO collaborations and restrictions set
by QCD.

First, we derive a suitable representation for the ampli-
tude in Eq. (4) which would help us to perform a straight-
forward analysis by using the available information on the
pion transition form factor. To do this, we employ the
dispersive approach to the calculation of the amplitude
developed in many papers (see, e.g. [12] and references
therein). The imaginary part of the amplitude in Eq. (4)

 

ImA!q2" # !
2#e!q2" ln!ye!q2"";

ye!q2" # 1$ #e!q2"
1% #e!q2" ;

(5)

comes from the contribution of real photons in the inter-
mediate state and is model independent since
F!"&"& !0; 0" # 1. Using jAj2 ' !ImA"2 and neglecting
radiative corrections one can get the well-known unitary
bound for the branching ratio in Eq. (3) [8]

 B!!0 ! e%e$" ' Bunitary!!0 ! e%e$" # 4:69 ( 10$8:
(6)

A once-subtracted dispersion relation for the amplitude
in Eq. (4) is written as [12]

 A !q2" #A!q2 # 0" % q
2

!

Z 1
0
ds

ImA!s"
s!s$ q2" : (7)

The second term in Eq. (7) takes into account strong q2

dependence of the amplitude around the point q2 # 0
occurring due to the branch cut coming from the two-
photon intermediate state. Integrating Eq. (7) one arrives
for q2 ' 4m2

e at [14–16]

 

ReA!q2" #A!q2 # 0" % 1

#e!q2"

!
1
4

ln2!ye!q2"" % !
2

12

% Li2!$ye!q2""
"
; (8)

where Li2!z" # $
Rz

0!dt=t" ln!1$ t" is the dilogarithm
function.1 For the pion in the leading order in !me=m!"2,
one gets

 ReA!m2
!" #A!q2 # 0" % ln2

#
me

m!

$
% !

2

12
: (9)

Thus, the nontrivial dynamics is only contained in the
subtraction constant A!q2 # 0". We evaluate this quantity
in the following way [10]. We use the double Mellin
representation for the pion transition form factor reducing
the integral in Eq. (4) to the convolution of propagatorlike
expressions. Then we perform the loop integration by using
the standard Feynman $ representation. Finally, we are
able to expand the integral over the ratios of the electron
and pion masses to the characteristic scale of the pion form
factor ! / m% by closing the Mellin contours in the ap-
propriate manner and take the leading term of expansion.
We arrive at the following representation:

 A !q2 # 0" # 3 ln
#
me

&

$
% 'P!&"; (10)

where the constant 'P!&" is defined by

 'P!&" # $
5
4
% 3

2

Z 1
0
dt ln

#
t
&2

$@F!"&"& !t; t"
@t

# $ 5
4
$ 3

2

!Z &2

0
dt
F!"&"& !t; t" $ 1

t

%
Z 1
&2
dt
F!"&"& !t; t"

t

"
; (11)

with F!"&"& !t; t" being the physical pion transition form
factor given in symmetric kinematics for spacelike photon
momenta t # Q2 # $q2 > 0. One has to note that the
logarithmic dependence on the scale & appearing in
Eq. (10) as a result of the decomposition of the integral
over the dimensional variable t into two parts is compen-
sated by the scale dependence of the low-energy constant

1For completeness we give explicit expressions for the ampli-
tude ~A!q2" #A!q2" $A!0" for different regions of q2:
Re ~A!q2"# 1

#!q2")Li2!$y!q2""%!2

3 % 1
4ln2!$y!q2""*, Im ~A!q2"#

0, for q2 + 0; and Re ~A!q2" # $ 1
~#!q2"Cl2!$2(", Im ~A!q2" #

$ !
~#!q2" arctg) ~#!q2"*, for 0 + q2 + 4m2. Here #!q2" #
%%%%%%%%%%%%%%%%%%%%%%%%%
1$ 4m2=q2

p
, ~#!q2" #

%%%%%%%%%%%%%%%%%%%%%%%%%
4m2=q2 $ 1

p
, ( # arctg)1= ~#!q2"*,

and Cl2!z" # $
Rz

0 dt lnj2 sin!t=2"j is the Clausen’s integral.

ALEXANDER E. DOROKHOV AND MIKHAIL A. IVANOV PHYSICAL REVIEW D 75, 114007 (2007)

114007-2

(doesn’t depend on TFF)
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The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyL
µ

P ! `` (PRELIMINARY)

Dissectioning the ⇡ ! e

+
e

�

• The ⇡ ! e

+
e

� decay provides the best scenario for such discussion.
• Try the most model-independent approach we can.

Cutcosky rules provides the imaginary part of this integral
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◆

Substraction term gets all the e↵ects from the TFF behavior.
⇤From now on I will quote results in the chiral limit m⇡ ! 0

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

Dissection of π0→e+e-

Re(A(m2
P )) =

Z 1

0
dQ2Kernel(Q2) + 30.7
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Dissection of π0→e+e-

Re(A(m2
P )) =

Z 1

0
dQ2Kernel(Q2) + 30.7

The Transition Form Factor
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• Its contribution is negative:
lowers the BR.
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hQi = 0.09 GeV.
• Low energies relevant only: slope
is enough.

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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Dissection of π0→e+e-
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Dubna contribution: corrections me/mπ, me/Λ

O
✓
me

m⇡

◆2

Dorokhov and Ivanov, ’08

O
⇣me

⇤

⌘2
O
⇣me

⇤

log

me

⇤

⌘2

Dorokhov, Ivanov and Kovalenko ’09

O
⇣m⇡

⇤

⌘2

BRSM(⇡0 ! e+e�) = (6.23± 0.09)⇥ 10�8 ⇠ 3�

Resummation of power corrections using Mellin-Barnes techniques.
Conclusion: corrections negligible!

Λ 
the cut-off 

or
 VMD “mass”
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Prague contribution: Radiative corrections

Husek, Kampf, Novotny’14Vasko, Novotny ’11  +

43

Eur. Phys. J. C (2014) 74:3010 Page 3 of 11 3010

Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We

123

3010 Page 4 of 11 Eur. Phys. J. C (2014) 74:3010

can write the theoretical prediction for the branching ratio
measured by KTeV as

B(π0 → e+e−(γ ), x > 0.95) = #LO(π0 → e+e−)

#(π0 → γ γ )

× B(π0 → γ γ )[1 + δ(2)(0.95)+%BS(0.95)+δD(0.95)],
(16)

where the only experimental input is the precise branching
ratio B(π0 → γ γ ) = (98.823 ± 0.034) %. In the above
formula,

δD(xcut) = 1
#LO(π0 → e+e−)

∫ 1

xcut
dx
(

d#Dalitz

dx

)NLO

1γ I R

= 1.75 × 10−15

[#LO(π0 → e+e−)/MeV] (17)

corresponds to the unsubtracted fraction of the Dalitz decay
background4 omitted in the KTeV analysis and discussed
in [3,14]. In what follows we will concentrate on the last
missing ingredient of the formula (16), namely

%BS(xcut) ≡ δBS(xcut) − δBS
soft(xcut), (18)

which is the difference between the exact bremsstrahlung and
its soft photon approximation. This difference has been only
roughly estimated in [3] and this estimate has been taken as
a source of the error. Our aim is to calculate %BS exactly and
test the adequacy of the soft photon approximation for the
cut xcut = 0.95 used in the KTeV analysis.

4 Bremsstrahlung

In this section, we discuss the above mentioned exact
bremsstrahlung (BS), i.e. the real radiative correction cor-
responding to the process π0 → e+e−(γ ) beyond the soft-
photon approximation. As a consequence of the gauge invari-
ance, the invariant amplitude for the BS correction,

M(λ)(p, q, k) ≡ ε
∗ρ
(λ)(k)MBS

ρ (p, q, k) (19)

(where k and ε
∗ρ
(λ)(k) is the photon momentum and polariza-

tion vector, respectively), has to satisfy the Ward identity

kρMBS
ρ = 0 (20)

4 This fraction comes form the contribution of the interference term of
the NLO one-photon-irreducible (1γ I R) graph with the leading order
Dalitz amplitude. See [3] and [14] for more details.

for on-shell k and thus it can be generally expressed in the
form [14]

iMBS
ρ (p, q, k) = ie5

8π2 F
× {P(x, y)[(k · p)qρ − (k · q)pρ][ū(p, m)γ5v(q, m)]
+A(x, y)[ū(p, m)[γρ(k · p) − pρ(k · γ )]γ5v(q, m)]
−A(x,−y)[ū(p, m)[γρ(k · q) − qρ(k · γ )]γ5v(q, m)]
+T (x, y)[ū(p, m)γρ/kγ5v(q, m)]} (21)

in terms of the scalar form factors P , A, and T . These
are functions of two independent kinematic variables (x, y),
defined as

x = (p + q)2

M2 , y = − 2
M2

[
k · (p − q)

1 − x

]

x ∈ [ν2, 1] , y ∈



−
√

1 − ν2

x
,

√

1 − ν2

x



 . (22)

As mentioned above, x is the Dalitz variable (i.e. a normal-
ized square of the total energy of e+e− pair in their CMS)
and y has the meaning of a rescaled cosine of the angle
included by the directions of outgoing photon and positron
in the e+e− CMS. The modulus squared of the amplitude has
the form [14]

∣∣MBS(x, y)
∣∣2 ≡

∑

polarizations

∣∣M(λ)(p, q, k)
∣∣2 =

= 16πα5

F2

M4(1 − x)2

8

{
M2[x(1 − y2) − ν2][x M2|P|2

+2νM Re{P∗[A(x, y) + A(x,−y)]} − 4 Re{P∗T }]
+2M2(x − ν2)(1 − y)2|A(x, y)|2 + (y → −y)

−8νMy(1 − y) Re{A(x, y)T ∗} + (y → −y)

−4ν2 M2 y2 Re{A(x, y)A(x,−y)∗} + 8(1 − y2)|T |2
}

(23)

and using the variables x , y the differential decay rate is

d#BS(x, y) = M
(8π)3

∣∣MBS(x, y)
∣∣2(1 − x) dx dy. (24)

To the amplitude M(λ)(p, q, k) five Feynman diagrams con-
tribute (cf. Fig. 3). Four of them correspond to the photon
emission from the outgoing fermion lines (see Fig. 3a–d).
Naively, one would expect that only these four diagrams are
necessary to consider since only they include IR divergences
which are needed to cancel the IR divergences stemming
from the virtual corrections (see graph d in Fig. 2 and the
corresponding one-loop diagram with counterterm). How-
ever, this result would not be complete.
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(a) (b)

χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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BRw/o rad

"KTeV"(⇡
0 ! e+e�) = (6.87± 0.36)⇥ 10�8

vs ⇠ �13%

BR(⇡0 ! e

+
e

�(�), x > 0.95)

BR(⇡0 ! ��)
=

�(⇡0 ! e+e�)

�(⇡0 ! ��)
[1 + �(2)(0.95) +�BS(0.95) + �D(0.95)]
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Use data from
the Transition Form Factor

for numerical integral
FP�⇤�⇤(m2

P , q
2
1 , q

2
2)

Pere Masjuan

double-tag method 

⇡0, ⌘, ⌘0

e± e±

e⌥ e⌥

�⇤

�⇤
TFF 

q1

q2

F (q21 , q
2
2)

44

Mainz contribution: TFF parameterization

Remember: only low-energy region is needed
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F⇡0�⇤�⇤(Q2, Q2)BRSM (⇡0 ! e+e�) we need

Proposal: bivariate PA Chisholm ’73

PN
M (Q2

1, Q
2
2) =

TN (Q2
1, Q

2
2)

RM (Q2
1, Q

2
2)

= a0 + a1(Q
2
1 +Q2

2) + a1,1Q
2
1Q

2
2 + a2(Q

4
1 +Q4

2) + · · ·

Doubly virtual π0-TFF

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

45

For

[P.M., P. Sanchez-Puertas,  in preparation]
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Proposal: bivariate PA Chisholm ’73

a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

Doubly virtual π0-TFF
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Proposal: bivariate PA Chisholm ’73

OPE indicates: lim
Q2!1

P 0
1 (Q

2, Q2) ⇠ Q�2

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

i.e., a1,1 = 2a21

Doubly virtual π0-TFF

a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data
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Proposal: bivariate PA Chisholm ’73

0  a1,1  2a21

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

Doubly virtual π0-TFF

BRPA
SM (⇡0 ! e+e�) = (6.22� 6.36)(4)⇥ 10�8

a1 from accurate study of space-like data

statistics+theoretical error

+ to shrink the window: data (data-driven approach)
method checked for different models
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BRw/o rad

"KTeV"(⇡
0 ! e+e�) = (6.87± 0.36)⇥ 10�8

BRPA
SM (⇡0 ! e+e�) = (6.22� 6.36)(4)⇥ 10�8

⇠ (2.6� 1.4)�

Doubly virtual π0-TFF

Radio MCLow WG, Frascati, 18 Nov



Pere Masjuan

Impact of π0→e+e- on HLBL
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Model Published model Modified model

⇡0 ! e+e� HLBL ⇡0 ! e+e� HLBL

(⇥108) (⇥1010) (⇥108) (⇥1010)

Jegerlehner and Ny↵eler ’09 LMD+V 6.33 6.29 6.47 5.22

Dorokhov et al ’09 VMD 6.34 5.64 6.87 2.44

Our proposal ’14 PA 6.36 5.53 6.87 2.85

�aSM
µ ⇠ 6⇥ 10�10

�aHLBL;⇡0!e+e�

µ ⇠ (2� 3)⇥ 10�10

�aHLBL
µ ⇠ 4⇥ 10�10

+ similar effect for the η decay!
Radio MCLow WG, Frascati, 18 Nov



The role of doubly virtual TFF data
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a model independent determination which error is smaller than anyone quoted in the liter-
ature so far. We conclude that even a rough estimation of such parameter with low energy
data would determine this quantity unambiguously to the best precision ever in a model-
independent way.

4.5 Pursuing the Experimental value

Finally, we try to reproduce the experimental value with the simplest P

0
1 approximant.

Therefore, we set the a1,1 parameter free and constrain it from the experiment. For conve-
nience, we parametrize the TFF

F̃⇡0�⇤�⇤(Q2
1, Q

2
2) =

1

1 + a1(Q2
1 +Q

2
2) + �a

2
1Q

2
1Q

2
2

, (17)

where �a

2
1 = 2a21 � a1,1. To reproduce the experimental value quoted by KTeV we need

� = (407, 94, 16)@(0, 1, 2)�. (18)

Taking into account he latest radiative corrections yields

� = (34, 4)@(0, 1)�. (19)

Finally, we show the double virtual TFF at equal virtualities for di↵erent values of �(a1,1)
quoted before in Fig 2.

0 1 2 3 4 5
0.0
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Fé p
0
g*
g*
HQ2 ,

Q
2 L

Figure 2: Di↵erent estimations for the double virtual TFF. The black line indicates the
factorized result. The blue band indicates our estimation 0  a1,1  2a21. The orange
line reproduces the KTeV quoted value at (0, 1)� and the purple one the result from latest
radiative corrections at (0, 1)�.

factorization: F⇡0�⇤�⇤(Q2, Q2) = F⇡0�⇤�(Q
2, 0)⇥ F⇡0��⇤(0, Q2)

our approach

KTeV KTeV + rad corr
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PDG value dominated by the KTeV measurement

Dissection of η→l+l-The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

P

`

`

BR(P ! ``)

BR(P ! ��)
= 2

✓
↵m`

⇡mP

◆2

�`(m
2
P)|A(m2

P)|2

The only unknown A(m2
P) from loop calculation where the TFF enters.

A(q2) =
2i

⇡2

Z
d

4
k

q

2
k

2 � (k · q)2
k

2(k � q)2((p � k)�m

2
`)

FP�⇤�⇤(k2, (q � k)2)

FP��(0, 0)

At this point: input your favorite model and integrate.
This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

= 5.8(8) · 10�6 (μ+μ-)

 5.6 · 10�6 (e+e-)

= 4.37 · 10�6Unitary Bound for the μμ case

SM calculations with m2
⌘/⇤

2 ⇠ 0 = 4.99 · 10�6

Our result from SL+TL (full result) = 4.51(2) · 10�6
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Applications

1. Hadronic Light-by-Light contribution to muon (g-2)

2. PS decays into lepton pairs (π0→e+e-)

3. η-η’ mixing

4. Time-like TFF prediction (charmonium backgrounds)
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 η-η’ mixing in the flavor basis

�⌘!�� =

9↵2

32⇡3
M3

⌘

✓
Cq cos[�]

fq
� Cs sin[�]

fs

◆2

�⌘0!�� =

9↵2

32⇡3
M3

⌘0

✓
Cq sin[�]

fq
+

Cs cos[�]

fs

◆2

✓
fq
⌘ fs

⌘

fq
⌘0 fs

⌘0

◆
=

✓
fq cos[�] �fs sin[�]
fq sin[�] fs cos[�]

◆

5

TABLE I. Low-energy constants for the ⌘- and ⌘

0-Transition Form Factor obtained from the PA fits to experimental data. The
first column indicates the kind of sequence used for the fit and N is the highest order reached with that sequence. The final
raw gives the weighted averaged result for each LEC. We also give the quality of the fits represented by the �

2
/dof (degree of

freedom).

⌘TFF ⌘

0
TFF

N a⌘ b⌘ �

2
/dof N a⌘0

b⌘0
�

2
/dof

P [N, 1] 5 0.569(60) 0.328(77) 0.92 5 1.29(10) 1.66(30) 0.81

P [N, 2] 1 0.545(24) 0.298(27) 0.85 0 1.24(3) 1.53(6) 0.84

P [N,N + 1] 1 0.545(24) 0.298(27) 0.85 0 1.23(2) 1.52(6) 0.83

P

0[N,N + 1] 1 0.582(76) 0.346(108) 0.91 1 1.25(3) 1.56(9) 0.83

PT [N, 1] 6 0.545(30) 0.300(40) 0.95 6 1.29(5) 1.66(16) 0.83

Final 0.547(18) 0.304(25) 1.24(1) 1.54(4)

For the ⌘-TFF we found limQ2!1 Q

2
F⌘��⇤(Q2) =

0.18+0.15
�0.03 GeV, agreeing with the phenomenologi-

cal/theoretical range (0.13�0.19) GeV. This window can
be further constrain, however, by imposing that the qual-
ity of the fit should be �

2
/dof < 1.3 after imposing the

asymptotic limit in our P 0N
N+1(Q

2). Doing this, the win-
dow reduces to (0.154� 0.19) GeV.

These two asymptotic-limit constrains together with
the experimental values for the decay widths �⌘!�� =
520(20)(13) eV [18], and �⌘0!�� = 4.34(14) keV [41],
allow us to fix the four parameters of the mixing, shown
in Table II. In all our numerical computations we use
f⇡ = 0.0924 GeV.

limQ2!1 Q

2
F⌘��⇤(Q2) ✓8 ✓0 f8 f0

0.190 GeV �33.8� �4.3� 1.84 0.86

0.170 GeV �36.3� �3.6� 1.72 0.86

0.154 GeV �35.6� �7.2� 1.29 0.79

TABLE II. ⌘�⌘

0 mixing parameters in the singlet-octet basis.
f0,8 ⌘ f0,8 · f⇡.

The ⌘�⌘

0 mixing can also be studied in the flavor base
instead of the singlet-octet one. In this base,

 
⌘

⌘

0

!
=

 
cos�q sin�s

sin�s cos�s

! 
⌘q

⌘s

!
, (9)

and

⌘q =
uu+ ddp

2
⌘s = ss . (10)

Using this notation, the decay constants are:

 
f

q
⌘ f

s
⌘

f

q
⌘0 f

s
⌘0

!
=

 
fq cos�q �fs sin�s

fq sin�s f0 cos�s

!
, (11)

where fq,s are the light-quark (strange) decay constants
for the corresponding light- and strange-quark content of
the ⌘ and ⌘

0. The asymptotic limits take then the form:

lim
Q2!1

Q

2
F⌘��⇤(Q2) = f
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3
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p
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3
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2
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s
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2
p
2

3
.

(12)

Using Eq. (12) and the two equations for the decay
width in such base:
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(13)

we constrain the system and find the results shown in
Table III.

limQ2!1 Q

2
F⌘��⇤(Q2) �q �s fq fs

0.190 GeV 15.7� 36.9� 1.10 2.43

0.170 GeV 21.7� 37.9� 0.98 2.08

0.154 GeV 21.0� 34.7� 0.91 2.16

TABLE III. ⌘ � ⌘

0 mixing parameters in the flavor basis.
fq,s ⌘ fq,s · f⇡.

Under the assumption that the light-quark and ⇡

0 dis-
tribution amplitudes are similar to each other, the only
di↵erence between the corresponding TFF is a factor 3/5
that arises from the quark charges. A straightforward
application of the results shown in Table III is to con-
struct such light-quark form factor from ⌘- and ⌘

0-TFF.
In Fig. 3 this light-quark form factor for the set of val-
ues corresponding to the ⌘ asymptotic limit 0.170 GeV
(second row of Table III) and multiplied by 3Q2

/5 is com-
pared to the ⇡0-TFF one obtained in Ref. [6] (orange data
points as well as the corresponding fit with a P

02
3 (Q2) as

 η-η’ mixing

From the TFFs we can determine fq, fs,�
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 η-η’ mixing in the flavor basis
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5

TABLE I. Low-energy constants for the ⌘- and ⌘

0-Transition Form Factor obtained from the PA fits to experimental data. The
first column indicates the kind of sequence used for the fit and N is the highest order reached with that sequence. The final
raw gives the weighted averaged result for each LEC. We also give the quality of the fits represented by the �

2
/dof (degree of

freedom).

⌘TFF ⌘

0
TFF

N a⌘ b⌘ �

2
/dof N a⌘0

b⌘0
�

2
/dof

P [N, 1] 5 0.569(60) 0.328(77) 0.92 5 1.29(10) 1.66(30) 0.81

P [N, 2] 1 0.545(24) 0.298(27) 0.85 0 1.24(3) 1.53(6) 0.84

P [N,N + 1] 1 0.545(24) 0.298(27) 0.85 0 1.23(2) 1.52(6) 0.83

P
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PT [N, 1] 6 0.545(30) 0.300(40) 0.95 6 1.29(5) 1.66(16) 0.83

Final 0.547(18) 0.304(25) 1.24(1) 1.54(4)

For the ⌘-TFF we found limQ2!1 Q

2
F⌘��⇤(Q2) =

0.18+0.15
�0.03 GeV, agreeing with the phenomenologi-

cal/theoretical range (0.13�0.19) GeV. This window can
be further constrain, however, by imposing that the qual-
ity of the fit should be �

2
/dof < 1.3 after imposing the

asymptotic limit in our P 0N
N+1(Q

2). Doing this, the win-
dow reduces to (0.154� 0.19) GeV.
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520(20)(13) eV [18], and �⌘0!�� = 4.34(14) keV [41],
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The ⌘�⌘

0 mixing can also be studied in the flavor base
instead of the singlet-octet one. In this base,
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we constrain the system and find the results shown in
Table III.

limQ2!1 Q

2
F⌘��⇤(Q2) �q �s fq fs

0.190 GeV 15.7� 36.9� 1.10 2.43

0.170 GeV 21.7� 37.9� 0.98 2.08

0.154 GeV 21.0� 34.7� 0.91 2.16

TABLE III. ⌘ � ⌘

0 mixing parameters in the flavor basis.
fq,s ⌘ fq,s · f⇡.

Under the assumption that the light-quark and ⇡

0 dis-
tribution amplitudes are similar to each other, the only
di↵erence between the corresponding TFF is a factor 3/5
that arises from the quark charges. A straightforward
application of the results shown in Table III is to con-
struct such light-quark form factor from ⌘- and ⌘

0-TFF.
In Fig. 3 this light-quark form factor for the set of val-
ues corresponding to the ⌘ asymptotic limit 0.170 GeV
(second row of Table III) and multiplied by 3Q2

/5 is com-
pared to the ⇡0-TFF one obtained in Ref. [6] (orange data
points as well as the corresponding fit with a P

02
3 (Q2) as

 η-η’ mixing

From the TFFs we can determine fq, fs,�

Update of Frere-Escribano ’05 with PDG12 using 9 inputs

fq = 1.07(1)f⇡, fs = 1.63(2)f⇡, � = 40.4(0.3)�

[R.Escribano, P.M., P. Sanchez-Puertas, ’14]

fq = 1.07(1)f⇡, fs = 1.39(14)f⇡, � = 39.3(1.3)�
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 η-η’ mixing in the flavor basis

 η-η’ mixing
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From the TFFs we can determine Fq, Fs,�

FKS

EF

This 
Work

FKS: Feldmann, Kroll, Stech, PLB 449, 339, (1999) 
EF: Escribano, Frere, JHEP 0506, 029 (2005) updated in Escribano, P.M, Sanchez-Puertas, 2013.
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 η-η’ mixing
From the TFFs we can determine Fq, Fs,�

and the VPγ and J/Ψ decays used in FKS and EF as inputs

( using F⇡0 = 131.5± 1.4 MeV instead of F⇡� = 92.21± 0.14 MeV )

Our predictions Experimental determinations

g⇢⌘� 1.55(4) 1.58(5)
g⇢⌘0� 1.19(5) 1.32(3)
g!⌘� 0.56(2) 0.45(2)
g!⌘0� 0.54(2) 0.43(2)
g�⌘� �0.83(11) �0.69(1)
g�⌘0� 0.98(14) 0.72(1)

J/ !⌘0�
J/ !⌘� 4.74(60) 4.67(20)

1
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Applications

1. Hadronic Light-by-Light contribution to muon (g-2)

2. PS decays into lepton pairs (π0→e+e-)

3. η-η’ mixing

4. Time-like TFF prediction (charmonium backgrounds)

Radio MCLow WG, Frascati, 18 Nov



Time-like TFF: prediction

Pere Masjuan

e�

e�

�⇤

�

• Asymptotic limits in time-like and space-like FFs are expected to be 

close,  is important to measure this time-like FF because:

- the charmonium region is between the perturbative and non-

perturbative regimes of the π-, η-, and η’-TFF

- background for charmonium decays: charm quark mass determination

P = ⇡0, ⌘, ⌘0, ⌘c . . .
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Time-like TFF: prediction

Pere Masjuan

e�

e�

�⇤

�

P = ⇡0, ⌘, ⌘0, ⌘c . . .

d�(e+e� ! �⇤ ! �P )

d(cos ✓)
=

⇡2↵3

4

�
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1� M2
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(1 + cos
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1� M2
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s
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�µ = �ie2FP (Q
2)✏µ⌫⇢�p

⌫✏⇢q�

Differential cross section:

Integrating with respect to cosθ

The vertex of interest is:
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Conclusions
- Transition Form Factors are a good laboratory to study 

meson properties (one and two virtualities)

- Need for a model independent approach: we use Padé App.

- Padé Approximants’ method is easy, systematic and can be 

improved upon by including new data

- Considering space- and time-like data

- provides very accurate LECs and asymptotic limits

- provides insight in mixing scheme and meson structure

- predicts VPγ, J/Ψ, rare decays, continuum...

- beautiful synergy experiment - theory

Pere Masjuan 61Radio MCLow WG, Frascati, 18 Nov
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Dissection of the HLBL contribution

Use data from
the Transition Form Factor

for numerical integral

FP⇤�⇤�⇤(q23 , q
2
1 , q

2
2)

63Pere Masjuan

Use hadronic models 
constrained with 

chiral and large-Nc 
arguments
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Dissection of the HLBL contribution
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Use hadronic models constrained with chiral and large-Nc arguments

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
factor of Eq. (52). Points: various experimental data [61–64].
The horizontal line represents the theoretic asymptotic value
of 2f!.
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with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
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Firstly, its value at the origin is fixed by the chiral anomaly,
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ABJ and BL

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1
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which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
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The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
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factor at the origin, the parameter a! [13]:
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Figure 3 of Ref. [13] shows how the half-width rule
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determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].
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Dissection of the HLBL contribution
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Use hadronic models constrained with chiral and large-Nc arguments
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with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.
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Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,
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2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:
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4!2f!
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#0m2
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where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
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#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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f⇡ = 92.21(14) MeV
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Large-Nc and the half-width rule

- Mass shift and Width are of the same order in 1/Nc 

4

III. FINITE WIDTH CORRECTIONS

A question of fundamental and practical importance
is what mass value should one use for the meson states
in the VMD expression for the form factors [11, 17].
Naively, one might take the “experimental” value2. How-
ever, the extended VMD formula for the form factor,
Eq. (10), corresponds to the large-Nc limit. As such,
it is subject to the 1/Nc corrections which generate a
corresponding mass shift. The form of these corrections
can in principle be evaluated by computing meson loops
within the Resonance Chiral Perturbation Theory [27–
31, 47]. The general structure of the correction for the
form factor corresponds to the replacements

gnfn

m

2
n � t

! Gn(t)fn
m

2
n � t� ⌃(t)

, (16)

where ⌃(t) is the self-energy. However, the question re-
mains what the size of these corrections is numerically.
Strictly speaking, such a question can only be answered
by a lattice calculation at di↵erent values of Nc (see e.g.
Ref. [48] and references therein). Unfortunately, as we
argue below, within a purely hadronic resonance theory
we can only make an educated guess, since there are un-
determined counterterms encoding the e↵ects of the high-
energy states not considered explicitly. For instance, for
the case of the ⇢-meson we may take into account the de-
cay into 2⇡, which is a real process, but also the virtual
K̄K excitation, etc. Our lack of an explicit knowledge
on all excitations makes it di�cult, if not impossible, to
predict the mass shift reliably.

A. Mass shift and the width

To elaborate on the mass-shift e↵ect in a greater de-
tail, let us consider the two-point function yielding the
mesonic resonance propagator,

D(s) =
1

s�m

2
0 � ⌃(s)

. (17)

The mass parameter m0 is the tree level resonance mass,
which is O(N0

c ), whereas the self energy, coming from
meson loops, is suppressed, ⌃(s) = O(N�1

c ).
Let us consider, for instance, the self-energy correction

of the scalar or vector mesons due to pion loops. Ana-
lyticity implies that the self-energy satisfies a dispersion
relation3

⌃(s) = c.t.+
1

⇡

Z
1

4m2
⇡

ds

0

Im⌃(s0 + i0+)

s

0 � s

, (18)

2 This value also depends on the experimental process and may
di↵er within the half-width rule.

3 We disregard spin complications, see, e.g., [49] for details.

where c.t. means suitable subtractions. The pole posi-
tion, s = sR = m

2
R � imR�R, is given by

sR �m

2
0 � ⌃(sR) = 0. (19)

This is a complicated self-consistent equation, but within
the 1/Nc expansion it can be solved perturbatively, yield-
ing

sR = m

2
0 + 2m0�mR � i�Rm0 +O(N�2

c ), (20)

where

�mR =
1

2m0
Re⌃(m2

0), (21)

�R = � 1

m0
Im⌃(m2

0). (22)

Note that the imaginary part is proportional to the cor-
responding decay width,
In general, there appears a threshold momentum de-

pendence for the decay amplitude which is proportional
to the phase space. The form reflects the spin of the
resonance, such as

�(s) = �R


⇢(s)

⇢(m2
R)

�2J+1

, (23)

with ⇢(s) =
p

1� 4m2
⇡/s ⌘ p/

p
s, where p is the center-

of-mass momentum when m

2
0 ! s0. Obviously, the num-

ber of subtractions in Eq. (18) depends on the assumed
o↵-shellness. For the previous choice of �(s), which be-
comes a constant at large s, we need at least one sub-
traction, which we may choose to be, e.g., at s = 0 and
thus in terms of the principal value integral we have

�mR =
1

2m0

"
Re⌃(0) +

1

⇡

�
Z

1

4m2
⇡

ds

0

m

2
0

s

0

Im⌃(s0)

s

0 �m

2
0

#
.(24)

Therefore �mR depends on an arbitrary constant
Re⌃(0) = O(N�1

c ), which cannot be determined from the
dispersion integral or the lowest-order parameters and
hence naively becomes independent of the width. Other
momentum-dependent widths, not vanishing at high s,
may introduce additional subtractions. The present dis-
cussion illustrates our statement that one cannot gener-
ically compute the mass shift in a model-independent
way4.
This lack of predictive power within the purely

hadronic theory is not surprising. However, from a mi-
croscopic point of view the meson self-energy can be un-
derstood as the coupling of the qq̄ bound state to the
meson continuum and physical resonances turn into Fes-
chbach resonances. The relevant scale corresponds to the
string breaking distance, defining a physical momentum
scale which may be described as a transition form factor
from q̄q states to mesonic channels. This implies that the

4 This is so provided no further information is available.
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Therefore �mR depends on an arbitrary constant
Re⌃(0) = O(N�1

c ), which cannot be determined from the
dispersion integral or the lowest-order parameters and
hence naively becomes independent of the width. Other
momentum-dependent widths, not vanishing at high s,
may introduce additional subtractions. The present dis-
cussion illustrates our statement that one cannot gener-
ically compute the mass shift in a model-independent
way4.
This lack of predictive power within the purely

hadronic theory is not surprising. However, from a mi-
croscopic point of view the meson self-energy can be un-
derstood as the coupling of the qq̄ bound state to the
meson continuum and physical resonances turn into Fes-
chbach resonances. The relevant scale corresponds to the
string breaking distance, defining a physical momentum
scale which may be described as a transition form factor
from q̄q states to mesonic channels. This implies that the

4 This is so provided no further information is available.
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mains what the size of these corrections is numerically.
Strictly speaking, such a question can only be answered
by a lattice calculation at di↵erent values of Nc (see e.g.
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we can only make an educated guess, since there are un-
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the case of the ⇢-meson we may take into account the de-
cay into 2⇡, which is a real process, but also the virtual
K̄K excitation, etc. Our lack of an explicit knowledge
on all excitations makes it di�cult, if not impossible, to
predict the mass shift reliably.
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To elaborate on the mass-shift e↵ect in a greater de-
tail, let us consider the two-point function yielding the
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which is O(N0
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where c.t. means suitable subtractions. The pole posi-
tion, s = sR = m

2
R � imR�R, is given by

sR �m

2
0 � ⌃(sR) = 0. (19)

This is a complicated self-consistent equation, but within
the 1/Nc expansion it can be solved perturbatively, yield-
ing

sR = m

2
0 + 2m0�mR � i�Rm0 +O(N�2

c ), (20)

where

�mR =
1

2m0
Re⌃(m2

0), (21)

�R = � 1

m0
Im⌃(m2

0). (22)
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derstood as the coupling of the qq̄ bound state to the
meson continuum and physical resonances turn into Fes-
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- Example: 2 point GF

- The resonance pole                                         is give by:

- In large-Nc (perturbative) expansion:

sR = m2
0 +O(N�1

c )
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Use hadronic models constrained with chiral and large-Nc arguments

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
factor of Eq. (52). Points: various experimental data [61–64].
The horizontal line represents the theoretic asymptotic value
of 2f!.
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; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
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Firstly, its value at the origin is fixed by the chiral anomaly,
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FðQ2Þ ! 6f!
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which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,
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The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
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f⇡ =? m⇢ =?

m⇢ = (775±�m⇢,Nc!1) MeV

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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imposing BL

f⇡ = 93(1) MeV from �⇡0��

f⇡ = 92.21(14) MeV

f⇡ = f0 = 88.1(4.1) MeV
from PDG

from lattice [Ecker et al ’14]
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Dissection of the HLBL contribution

68Pere Masjuan

Use hadronic models constrained with chiral and large-Nc arguments

FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
factor of Eq. (52). Points: various experimental data [61–64].
The horizontal line represents the theoretic asymptotic value
of 2f!.
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FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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ABJ and BL

m⇢ = (775±�m⇢,Nc!1) MeV

f⇡ = 93(1) MeV from �⇡0��

f⇡ = 92.21(14) MeV

f⇡ = f0 = 88.1(4.1) MeV
from PDG

from lattice [Ecker et al ’14]

m⇢ = (775± �/2) MeV

half-width rule [P.M., Ruiz-Arriola, Broniowski,’13]
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FAðtÞ ¼ FAð0Þ
M2

A

M2
A $ t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor !0 ! ""% has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4!2f!
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f!
NcQ

2 þ ' ' ' (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4!2f!

m2
#

m2
# þQ2 ; (50)

provided one has the relation

m2
# ¼ 24!2f2!

Nc
; (51)

which givesm# ¼ 823 MeV for f! ¼ 92:6 MeV or m# ¼
770 MeV for f! ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], # and #0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4!2f!

m2
#m

2
#0 þ 24f2!!

2Q2=Nc

ðm2
# þQ2Þðm2

#0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm# ¼ 0:775 GeV,m0
# ¼

1:465 GeV, !# ¼ 0:150 GeV, and !0
# ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the #00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a! [13]:

FðQ2Þ¼ 1

4!2f!

m2
#m

2
#0m2

#00þbQ2þ24f2!!
2Q4=Nc

ðm2
#þQ2Þðm2

#0þQ2Þðm2
#00þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

#m
2
#0m2

#00ða!m2
!
þ 1

m2
#
þ 1

m2
#0
þ 1

m2
#00
Þ. Given m! ¼

0:135 GeV, m#, m0
#, m00

# ¼ 1:720ð20Þ GeV, and a! ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],"1

and "2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h!bðp0Þj"$%ð0Þj!aðpÞi ¼ 1

2
&ab½ðg$%q2 $ q$q%Þ"1ðq2Þ

þ 4P$P%"2ðq2Þ); (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 $ p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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m⇢0 = (1465± 400/2) MeV
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Naive New Physics contributions

BR(⇡0 ! e+e�)

BR(⇡0 ! ��)
= 2

✓
↵me

⇡m⇡

◆2

�e

�����A(q2) +

p
2F⇡GF

4↵2F⇡��

✓
4mW

mA(P )

◆2

⇥ fA(P )

�����

2

fA = cAe (c
A
u � cAd ) fP =

1

4
cPe (c

P
u � cPd )

m2
⇡

m2
⇡ �m2

P
c ⇠ O

✓
g

gSU(2)L

◆

BR(⇡0 ! e+e�)

BR(⇡0 ! ��)
= SM (1 + ✏Z,NP ⇥ 5%)

✏Z ⇠ 0.3%

✏NP ⇠ 0.3%

Z contribution (Arnellos, Marciano, Parsa ‘82)

Our estimate based on existing exp. constrains:

negligible!
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 η-η’ mixing in the flavor basis

 η-η’ mixing

From the TFFs we can determine 

+BaBar
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PA vs DR
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PA vs DR
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