The electron g-2: recent developments

Massimo Passera INFN Padova

Radio Monte Carlo WG LNF - Frascati November 18 2014

Outline

1. The SM prediction of the electron g-2

The QED prediction of the electron g-2

aeQED	$P = + (1/2)(\alpha/\pi) - 0.328 478 444 002 55(33)(\alpha/\pi)^2$
	Schwinger 1948 Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; CODATA Mar '12
	$A_1^{(4)} = -0.328 478 965 579 193 78 \rightarrow O(10^{-18})$ in a _e
	$A_2^{(4)} (m_e/m_\mu) = 5.197\ 386\ 68\ (26)\ x\ 10^{-7}$
	$A_2^{(4)} (m_e/m_{\tau}) = 1.83798(33) \times 10^{-9}$
	+ 1.181 234 016 816 (11) $(\alpha/\pi)^3$ O(10 ⁻¹⁹) in a _e
	Kinoshita; Barbieri; Laporta, Remiddi;, Li, Samuel; MP '06; Giudice, Paradisi, MP 2012
	$A_1^{(6)} = 1.181\ 241\ 456\ 587$
	$A_2^{(6)}(m_e/m_\mu) = -7.37394162(27) \times 10^{-6}$
	$A_2^{(6)}(m_e/m_{\tau}) = -6.5830(11) \times 10^{-8}$
	$A_3^{(6)}$ (m _e /m _µ , m _e /m _τ) = 1.909 82 (34) x 10 ⁻¹³
(m)	$-19097(20)(\alpha/\pi)^4$ 0.610^{-13} in a
	Kinoshita & Lindquist '81,, Kinoshita & Nio '05; Aoyama, Hayakawa, Kinoshita & Nio 2012;
	Kurz, Liu, Marquard & Steinhauser 2014: analytic mass dependent part.
	+ 9.16 (58) $(\alpha/\pi)^5$ Complete Result! (12672 mass indep. diagrams!)
M. Passera	Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (2012) 111807; work in progress to reduce the error. LNF Nov 18 2014 $\rightarrow 0.4 \ 10^{-13}$ in a _e NB: $(\alpha/\pi)^6 \sim O(10^{-16})_4$

The SM prediction of the electron g-2

The SM pre	diction is:	600			<u></u>			
				HAD				
	$a_e^{SM}(\alpha) = a_e^{\alpha E}$	υ(α) +	a _e [_] +	aenad		(aa)		
		600			<u>(</u>			
The EW (1&2 loop) term is: Czarnecki, Krause, Marciano '96 [value from Codata10]								
	a_ ^{EW} = 0.29	973 (52)	x 10-13					
		6						
The Hadronic contribution (LO+NLO+NNLO) is:								
Nomura & Teubner	'12, Jegerlehner & Nyffeler '09	9; Krause'97; Ki	urz, Liu, Marqu	ard & Steinhau	ser 2014	(60)		
	$a_e^{HAD} = 17$	7.10 (17)	x 10 ⁻¹³		<u></u>			
		18.66 (11) x 10 ⁻¹³	<u>fam</u>				
		2.234(14)	$v_{ac} + 0.3$	9(13)ы]	x 10 ⁻¹³	(6)		
		$) 28(1) \times$	10-13					
Which value of a should we use to compute a e ?								

The electron g-2 gives the best determination of alpha

 The 2008 measurement of the electron g-2 is: a_e^{EXP} = 11596521807.3 (2.8) × 10⁻¹³ Hanneke et al, PRL100 (2008) 120801

 vs. old (factor of 15 improvement, 1.8σ difference): a_e^{EXP} = 11596521883 (42) × 10⁻¹³ Van Dyck et al, PRL59 (1987) 26

 Equate (a_eSM(α) = a_e^{EXP} → best determination of alpha: α⁻¹ = 137.035 999 177 (34) [0.25 ppb]

Compare it with other determinations (independent of a_e):

 $\alpha^{-1} = 137.036\ 000\ 0\ (11)$ [7.7 ppb] PRA73 (2006) 032504 (Cs) $\alpha^{-1} = 137.035\ 999\ 049\ (90)$ [0.66 ppb] PRL106 (2011) 080801 (Rb)

Excellent agreement → beautiful test of QED at 4-loop level!

Old and new determinations of alpha

Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902 Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801 Bouchendira et al, PRL106 (2011) 080801

2. Testing the SM with the electron g-2

G.F. Giudice, P. Paradisi & MP, arXiv:1208.6583 (JHEP 2012)

The electron g-2: SM vs Experiment

Using α = 1/137.035 999 049 (90) [⁸⁷Rb, 2011], the SM prediction for the electron g-2 is

$$a_e^{SM}$$
 = 115 965 218 18.1 (0.6) (0.4) (0.2) (7.6) x 10⁻¹³
 $\delta C_4^{qed} \delta C_5^{qed} \delta a_e^{had}$ from $\delta \alpha$

• The EXP-SM difference is (note the negative sign):

$$\Delta a_e = a_e^{EXP} - a_e^{SM} = -10.8 (8.1) \times 10^{-13}$$

The SM is in very good agreement with experiment (1.3 σ). NB: The 4-loop contrib. to a_e^{QED} is -556 x 10⁻¹³ ~ 70 $\delta \Delta a_e$! (the 5-loop one is 6.2 x 10⁻¹³)

- The present sensitivity is $\delta \Delta a_e = 8.1 \times 10^{-13}$, ie (10⁻¹³ units): $(0.6)_{\text{QED4}}, (0.4)_{\text{QED5}}, (0.2)_{\text{HAD}}, (7.6)_{\delta\alpha}, (2.8)_{\delta a_e^{\text{EXP}}}$ (0.7)_{TH} ← may drop to 0.2 or 0.3
- The (g-2)_e exp. error may soon drop below 10⁻¹³ and work is in progress for a significant reduction of that induced by $\delta \alpha$.

 \rightarrow sensitivity of 10⁻¹³ may be reached with ongoing exp. work

In a broad class of BSM theories, contributions to a scale as

 $\frac{\Delta a_{\ell_i}}{\Delta a_{\ell_i}} = \left(\frac{m_{\ell_i}}{m_{\ell_i}}\right)^2$ This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

Summary of the exp. contributions to the relative uncertainty of Δa_e (in ppb)

F. Terranova & G.M. Tino, PRA89 (2014) 052118

- The experimental sensitivity in ∆a_e is not very far from what is needed to test if the discrepancy in (g-2)_µ also manifests itself in (g-2)_e under the naive scaling hypothesis.
- NP scenarios exist which violate Naive Scaling. They can lead to larger effects in ∆a_e and contributions to EDMs, LFV or lepton universality breaking observables.
- Example: In the MSSM with non-degenerate but aligned sleptons (vanishing flavor mixing angles), ∆a_e can reach 10⁻¹² (at the limit of the present exp sensitivity). For these values one typically has breaking effects of lepton universality at the few per mil level (within future exp reach).

The electron g-2 sensitivity and NP tests (4)

 Example: light pseudoscalars. Interplay between 1-loop and 2-loop contributions. NS systematically violated, ∆ae always lies above its naive expectation.

FIG. 4. The 1σ , 2σ and 3σ regions allowed by Δa_{μ} in the M_A -tan β plane taking the limit of $\beta - \alpha = \pi/2$ and $M_{h(H)} = 125$ (200) GeV in type II (left panel) and type X (right panel) 2HDMs. The regions below the dashed (dotted) lines are allowed at 3σ (1.4 σ) by Δa_e .

Example: 2HDMs Broggio, Chun, MP, Patel, Vempati, arXiv:1409.3199 (JHEP 2014)

3. Positronium contribution to the electron g-2

M. Fael & MP, arXiv:1402.1575 (PRD 2014)

The leading contribution of positronium to a_e comes from:

Mishima 1311.7109; Fael & MP 1402.1575; Melnikov et al. 1402.5690; Eides 1402.5860; Hayakawa 1403.0416

• The e⁺e⁻ bound states appear as poles in the vac. pol. $\Pi(q^2)$ right below the branch-point $q^2 = (2m)^2$. Their contribution is:

$$a_{e}(vp) = \frac{\alpha}{\pi^{2}} \int_{0}^{\infty} \frac{ds}{s} \operatorname{Im} \Pi(s+i\epsilon) K(s)$$

$$a_{e}^{P} = \frac{\alpha^{5}}{4\pi} \zeta(3) \left(8 \ln 2 - \frac{11}{2}\right) = 0.9 \times 10^{-13} = 1.3 \left(\frac{\alpha}{\pi}\right)^{5}$$

$$K(4m^{2})$$
Mishima 1311.7109

• Of the same magnitude of the exp. unc. of a_e & the "naively rescaled" muon Δa_{μ} . Of the same order of α as the 5-loop term!

Positronium contribution to the electron g-2 (II)

Melnikov, Vainshtein & Voloshin (MVV) 1402.5690 determined a nonpert. contrib. of the e⁺e⁻ continuum right above threshold that cancels one-half of a_e^P:

$$a_e(vp)^{cont,np} = -\frac{|\alpha|^5}{8\pi}\zeta(3)\left(8\ln 2 - \frac{11}{2}\right)$$

In fact the total positronium poles + continuum nonperturbative contribution to a_e arising from the threshold region at LO in α is:

$$a_e^{\text{thr}}(\mathrm{vp}) = -\frac{\alpha}{\pi} K(4m^2) \operatorname{Re} A(1)$$

with

$$A(\beta) = -\frac{\alpha^2}{2} \left[\gamma + \psi \left(1 - \frac{i\alpha}{2\beta} \right) \right] = \frac{\alpha^2}{2} \sum_{k=1}^{\infty} \zeta(k+1) \left(\frac{i\alpha}{2\beta} \right)^k$$

so that

$$a_e^{\rm thr}({\rm vp}) = rac{lpha^5}{8\pi} \zeta(3) \, K(4m^2) = rac{a_e^{\rm P}}{2}$$

M. Passera LNF Nov 18 2014

Positronium contribution to the electron g-2 (III)

- So, should we add this total threshold contribution a_e^P/2 to the perturbative QED 5-loop result of Kinoshita and collaborators?
- Using the Coulomb Green's function, MVV 1402.5690 argued that it is already contained in the contribution of $O(\alpha^5)$.
- Hayakawa 1403.0416 claimed that positronium contributes to a_e only through a specific class of diagrams of $O(\alpha^7)$.
- To address this question: study the 5-loop QED contribution to a_e arising from the insertion of the 4-loop VP in the photon line. This has been computed via:

Using explicit expressions for $\Pi^{(8)}(q^2)$ (Baikov, Maier, Marquard '13) in

$$a_e^{(10)}(vp) = -\frac{\alpha}{\pi} \int_0^1 dx \,(1-x) \,\Pi^{(8)} \left(-\frac{m^2 x^2}{1-x}\right)$$

we obtain:

$$a_e^{(10)}(vp) = n_e \frac{\alpha^5}{8\pi} \zeta(3) K(4m^2) + \dots = \frac{a_e^{\rm P}}{2} + \dots$$

a_e^P/2 is already included in the 5-loop contrib. of class I(i).
 There is no additional contrib of QED bound states beyond PT!

M.A. Braun 1968; Barbieri, Christillin, Remiddi 1973

Conclusions

The present sensitivity to NP effects in a_e is 8 x 10⁻¹³. It is limited by the experimental uncertainties (7.6 from α, 2.8 from a_e), but a very strong exp program is under way to improve both α & a_e.

- An improvement by roughly a factor of 10 would allow to test NP with a_e. In particular, whether in NS the muon g-2 discrepancy manifests itself also in the electron g-2!
- Many NP scenarios violate Naive Scaling. They can lead to larger effects in Δa_e , well above its naive expectation.
- The positronium contribution to a_e should not be added to that of perturbative QED. There is no additional contrib. of QED bound states beyond perturbation theory.

The End