Present accuracy and future prospects of MC generators for Bhabha and $e^+e^- \rightarrow \gamma\gamma$

C.M. Carloni Calame

Pavia University, Italy

XVI Meeting - WG on RC and MC Generators for Low Energies Frascati, November 18, 2014

> with Pavia Theory Group Montagna, Nicrosini, Piccinini (and Balossini, Barzè, Bignamini)

Outline

- ⋆ QED scattering processes & radiative corrections for luminometry
- ★ Theoretical framework of the event generator BabaYaga
- ⋆ Independent calculations and tuned comparisons
- * Theoretical accuracy: comparison to exact NNLO calculations
- ⋆ Conclusions and outlook

Main references:

- Balossini *et al.*, Nucl. Phys. **B758** (2006) 227 & Phys. Lett. **663** (2008) 209
- Actis *et al.* [WG on RC and MCG for Low Energies Collaboration], Eur. Phys. J. C **66** (2010) 585
- Carloni, Czyz, Gluza, Gunia, Montagna, Nicrosini, Piccinini, Riemann *et al.* JHEP **1107** (2011) 126

Typical theory of the MC generators

- * The most precise MC generators include exact $\mathcal{O}(\alpha)$ (NLO) photonic corrections matched with higher–order leading logarithmic contributions [+ vacuum polarisation, using a data based routine for the calculation of the non–perturbative $\Delta \alpha_{had}^{(5)}(q^2)$ contribution]
- The methods used to account for multiple photon corrections are the analytical collinear QED Structure Functions (SF), YFS exponentiation and QED Parton Shower (PS)
- The QED PS [implemented in the generators BabaYaga/BabaYaga@NLO] is a MC solution of the QED DGLAP equation for the electron SF $D(x,Q^2)$

$$Q^2 \frac{\partial}{\partial Q^2} D(x, Q^2) = \frac{\alpha}{2\pi} \int_x^1 \frac{dt}{t} P_+(t) D(\frac{x}{t}, Q^2)$$

• The PS solution can be cast into the form

 $D(x,Q^{2}) = \Pi(Q^{2}) \sum_{n=0}^{\infty} \int \frac{\delta(x-x_{1}\cdots x_{n})}{n!} \prod_{i=0}^{n} \left[\frac{\alpha}{2\pi} P(x_{i}) L dx_{i} \right]$

★ $\Pi(Q^2) \equiv e^{-\frac{\alpha}{2\pi}LI_+}$ Sudakov form factor, $I_+ \equiv \int_0^{1-\epsilon} P(x)dx L \equiv \ln Q^2/m^2$ collinear log, ϵ soft–hard separator and Q^2 virtuality scale

- The accuracy is improved by matching exact NLO with higher-order leading log corrections
 - * theoretical error starts at $\mathcal{O}(\alpha^2)$ (NNLO) QED corrections, for all QED channels [Bhabha, $\gamma\gamma$ and $\mu^+\mu^-$]

The corrections to the LO cross section can be arranged as (L collinear log)

$$\begin{array}{c|c} \mathsf{LO} & \alpha^{0} \\ \mathsf{NLO} & \alpha L & \alpha \\ \mathsf{NNLO} & \frac{1}{2}\alpha^{2}L^{2} & \frac{1}{2}\alpha^{2}L & \frac{1}{2}\alpha^{2} \\ \mathsf{h.o.} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n-1} & \cdots \end{array}$$

Blue: LL PS, LL YFS, SF

イロト イ押ト イヨト イヨト

The corrections to the LO cross section can be arranged as (L collinear log)

$$\begin{array}{c|c} \mathsf{LO} & \alpha^{0} \\ \mathsf{NLO} & \alpha L & \alpha \\ \mathsf{NNLO} & \frac{1}{2}\alpha^{2}L^{2} & \frac{1}{2}\alpha^{2}L & \frac{1}{2}\alpha^{2} \\ \mathsf{h.o.} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n} & \sum_{n=3}^{\infty} \frac{\alpha^{n}}{n!}L^{n-1} & \cdots \end{array}$$

Red: matched PS, YFS, SF + NLO

イロト イ団ト イヨト イヨト

Matching NLO and PS in BabaYaga

Exact $\mathcal{O}(\alpha)$ (NLO) soft+virtual (*SV*) corrections and hard bremsstrahlung (*H*) matrix elements can be combined with QED PS *via* a matching procedure

•
$$d\sigma_{LL}^{\infty} = \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

•
$$d\sigma_{LL}^{\alpha} = [1 + C_{\alpha,LL}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_{1,LL}|^2 d\Phi_1 \equiv d\sigma_{LL}^{SV}(\varepsilon) + d\sigma_{LL}^H(\varepsilon)$$

•
$$d\sigma_{\text{NLO}}^{\alpha} = [1 + C_{\alpha}] |\mathcal{M}_0|^2 d\Phi_0 + |\mathcal{M}_1|^2 d\Phi_1 \equiv d\sigma_{\text{NLO}}^{SV}(\varepsilon) + d\sigma_{\text{NLO}}^H(\varepsilon)$$

•
$$F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$$
 $F_H = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

$$d\sigma_{\text{matched}}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

 $d\Phi_n$ is the exact phase space for n+2 final-state particles

C.M. Carloni Calame (Pavia)

Matching NLO and PS in BabaYaga

- F_{SV} and $F_{H,i}$ are infrared/collinear safe and account for missing $\mathcal{O}(\alpha)$ non-logs, avoiding double counting of LL
- $\left[\sigma_{matched}^{\infty}\right]_{\mathcal{O}(\alpha)} = \sigma_{\text{NLO}}^{\alpha}$
- resummation of higher orders LL contributions is preserved
- the cross section is still fully differential in the momenta of the final state particles $(e^+, e^- \text{ and } n\gamma)$
- as a by-product, part of photonic $\alpha^2 L$ included by means of terms of the type $F_{SV \mid H,i} \times LL$

G. Montagna et al., PLB 385 (1996)

• the th. error is shifted to $\mathcal{O}(\alpha^2)$ (NNLO, 2 loop) not infrared terms: very naively and roughly (for photonic corrections)

$$\frac{1}{2}\alpha^2 L \equiv \frac{1}{2}\alpha^2 \log \frac{s}{m_e^2} \sim 5 \times 10^{-4}$$

Results with BabaYaga@NLO (Bhabha)

 as examples to show the features of the EG, the following setups and definitions are used (for Bhabha)

a
$$\sqrt{s} = 1.02 \text{ GeV}, E_{min} = 0.408 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$$

b $\sqrt{s} = 1.02 \text{ GeV}, E_{min} = 0.408 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$
c $\sqrt{s} = 10 \text{ GeV}, E_{min} = 4 \text{ GeV}, 20^{\circ} < \theta_{\pm} < 160^{\circ}, \xi_{max} = 10^{\circ}$
d $\sqrt{s} = 10 \text{ GeV}, E_{min} = 4 \text{ GeV}, 55^{\circ} < \theta_{\pm} < 125^{\circ}, \xi_{max} = 10^{\circ}$

$$\delta_{VP} \equiv \frac{\sigma_{0,VP} - \sigma_{0}}{\sigma_{0}} \qquad \qquad \delta_{\alpha} \equiv \frac{\sigma_{\alpha}^{NLO} - \sigma_{0}}{\sigma_{0}}$$

$$\delta_{HO} \equiv \frac{\sigma_{matched}^{PS} - \sigma_{\alpha}^{NLO}}{\sigma_{0}} \qquad \qquad \delta_{HO}^{PS} \equiv \frac{\sigma_{\alpha}^{PS} - \sigma_{\alpha}^{PS}}{\sigma_{0}}$$

$$\delta_{\alpha}^{non-log} \equiv \frac{\sigma_{\alpha}^{NLO} - \sigma_{\alpha}^{PS}}{\sigma_{0}} \qquad \qquad \delta_{\infty}^{non-log} \equiv \frac{\sigma_{matched}^{PS} - \sigma_{\alpha}^{PS}}{\sigma_{0}}$$

A D M A A A M M

- ∢ ∃ ▶

Results with BabaYaga@NLO (Bhabha)

set up	(a)	(b)	(C)	(d)
δ_{VP}	1.76	2.49	4.81	6.41
δ_{lpha}	-11.61	-14.72	-16.03	-19.57
δ_{HO}	0.39	0.82	0.73	1.44
δ^{PS}_{HO}	0.35	0.74	0.68	1.34
$\delta^{non-log}_{\alpha}$	-0.34	-0.56	-0.34	-0.56
$\delta_{\infty}^{non-log}$	-0.30	-0.49	-0.29	-0.46

Table: Relative corrections (in per cent) to the Bhabha cross section for the four setups

- * in short, the fact that $\delta_{\alpha}^{non-log} \simeq \delta_{\infty}^{non-log}$ and $\delta_{HO} \simeq \delta_{HO}^{PS}$ means that the matching algorithm preserves both the advantages of exact NLO calculation and PS approach:
 - \rightarrow it includes the missing NLO RC to the PS
 - \rightarrow it adds the missing higher-order RC to the NLO

Results with BabaYaga@NLO for $\gamma\gamma$ final state

- γγ final state has a lower x-section, but, at least up to NNLO, it does not depend on VP, which is a source of th. error
- Similar setups and definitions were used to study $\gamma\gamma$ FS

$$\begin{cases} \sqrt{s} = 1. - 3. - 10.\text{GeV} \\ E_{\gamma}^{\min} = 0.3 \times \sqrt{s} \\ \vartheta_{\gamma}^{\min} = 45^{\circ}, \quad \vartheta_{\gamma}^{\max} = 135^{\circ} \\ \xi_{\max} = 10^{\circ} \end{cases}$$
$$\delta_{\alpha} = 100 \times \frac{\sigma_{\alpha}^{\text{NLO}} - \sigma}{\sigma} \qquad \delta_{\infty} = 100 \times \frac{\sigma_{\exp} - \sigma}{\sigma} \\ \delta_{\exp} = 100 \times \frac{\sigma_{\exp} - \sigma_{\alpha}^{\text{NLO}}}{\sigma_{\alpha}^{\text{NLO}}} \qquad \delta_{\alpha}^{\text{NLL}} = 100 \times \frac{\sigma_{\alpha}^{\text{NLO}} - \sigma_{\alpha}^{\text{PS}}}{\sigma_{\alpha}^{\text{PS}}} \\ \delta_{\infty}^{\text{NLL}} = 100 \times \frac{\sigma_{\exp} - \sigma_{\exp}^{\text{PS}}}{\sigma_{\exp}^{\text{PS}}} \end{cases}$$

Results with BabaYaga@NLO for $\gamma\gamma$

\sqrt{s} (GeV)	1	3	10
σ	137.53	15.281	1.3753
$\sigma_{\alpha}^{\mathrm{PS}}$	128.55	14.111	1.2529
$\sigma_{\alpha}^{\text{NLO}}$	129.45	14.211	1.2620
σ_{\exp}^{PS}	128.92	14.169	1.2597
$\sigma_{\rm exp}$	129.77	14.263	1.2685
δ_{lpha}	-5.87	-7.00	-8.24
δ_{∞}	-5.65	-6.66	-7.77
δ_{exp}	0.24	0.37	0.51
$\delta_{\alpha}^{\mathrm{NLL}}$	0.70	0.71	0.73
$\delta_{\infty}^{\mathrm{NLL}}$	0.66	0.66	0.69

Table: Photon pair production cross sections (in nb) to different accuracy levels and relative corrections (in per cent)

Estimating the theoretical accuracy

- It is of utmost importance to compare with independent calculations/implementations, in order to
 - * asses the technical precision, spot bugs (with the same th. ingredients)
 - ★ estimate the theoretical "error" when including partial/incomplete higher-order corrections
- Generators exist on the market, some of them including QED h.o. and NLO corrections according to different approaches (collinear SF + NLO, YFS exponentiation,...)

Generator	Processes	Theory	Accuracy	Web address
BHAGENF/BKQED	$e^+e^-/\gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha)$	1%	www.lnf.infn.it/~graziano/bhagenf/bhabha.html
BabaYaga v3.5	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	Parton Shower	$\sim 0.5\%$	www.pv.infn.it/~hepcomplex/babayaga.html
BabaYaga@NLO	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha) + PS$	$\sim 0.1\%$	www.pv.infn.it/~hepcomplex/babayaga.html
BHWIDE	e^+e^-	$\mathcal{O}(\alpha)$ YFS	0.5%(LEP1)	placzek.home.cern.ch/placzek/bhwide
MCGP J	$e^+e^-, \gamma\gamma, \mu^+\mu^-$	$\mathcal{O}(\alpha) + SF$	< 0.2%	cmd.inp.nsk.su/~sibid

Large angle Bhabha: tuned comparisons & technical precision

Without vacuum polarisation, to compare QED corrections consistenly

At the Φ and τ -charm factories (cross sections in nb)

By BabaYaga people, Ping Wang and A. Sibidanov

setup	BabaYaga@NLO	BHWIDE	MCGP J	$\delta(\%)$
$\sqrt{s} = 1.02 \text{ GeV}, 20^\circ \le \vartheta_{\mp} \le 160^\circ$	6086.6(1)	6086.3(2)		0.005
$\sqrt{s} = 1.02 \text{ GeV}, 55^{\circ} \le \vartheta_{\mp} \le 125^{\circ}$	455.85(1)	455.73(1)	—	0.030
$\sqrt{s} = 3.5 \text{ GeV}, \vartheta_+ + \vartheta \pi \le 0.25 \text{ rad}$	35.20(2)	—	35.181(5)	0.050

★ Agreement well below 0.1%! ★

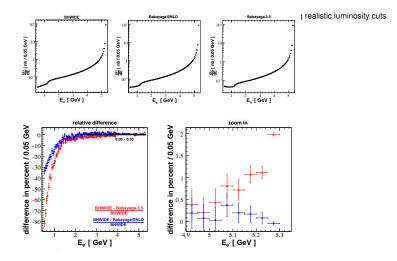
At BaBar (cross sections in nb)

By A. Hafner and A. Denig

angular acceptance cuts	BabaYaga@NLO	BHWIDE	$\delta(\%)$
$15^{\circ} \div 165^{\circ}$	119.5(1)	119.53(8)	0.025
$40^{\circ} \div 140^{\circ}$	11.67(3)	11.660(8)	0.086
$50^{\circ} \div 130^{\circ}$	6.31(3)	6.289(4)	0.332
$60^{\circ} \div 120^{\circ}$	3.554(6)	3.549(3)	0.141

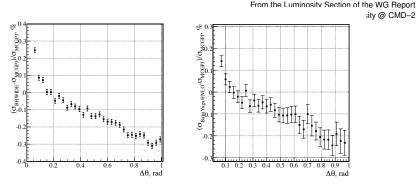
 \star Agreement at the \sim 0.1% level! \star

BabaYaga@NLO vs BHWIDE at BaBar



 BabaYaga@NLO and BHWIDE well agree (at a few per mille level) also for distributions. Larger differences correspond to very hard photon emission and do not influence noticeably the luminosity measurement

MCGPJ, BabaYaga@NLO and BHWIDE at VEPP-2M



- The three generators agree within 0.1% for the typical experimental acollinearity cut $\Delta\theta\sim 0.2 \div 0.3$ rad
- Main conclusion from tuned comparisons: technical precision of the generators well under control, the small remaining differences being due to slightly different details in the calculation of the same theoretical ingredients [additive vs factorized formulations, different scales for higher–order leading log corrections]

< ロ > < 同 > < 回 > < 回 >

Theoretical accuracy, comparisons with NNLO

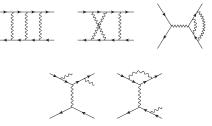
- NLO RC being included, the theoretical error starts at O(α²) (NNLO) (although large NNLO RC already included by h.o. exponentiation and by O(α) LL × finite-NLO)
- The NNLO QED corrections to Bhabha scattering have been calculated in the last years
- e.g., BabaYaga formulae can be truncated at $\mathcal{O}(\alpha^2)$ to be consistently compared with all the classes of NNLO corrections

$$\sigma^{\alpha^2} = \sigma^{\alpha^2}_{\rm SV} + \sigma^{\alpha^2}_{\rm SV,H} + \sigma^{\alpha^2}_{\rm HH}$$

- $\sigma_{SV}^{\alpha^2}$: soft+virtual photonic corrections up to $\mathcal{O}(\alpha^2) \longrightarrow$ compared with the corresponding available NNLO QED calculation
- $\sigma_{SV,H}^{\alpha^2}$: one-loop soft+virtual corrections to single hard bremsstrahlung \longrightarrow presently estimated relying on existing (partial) results
- $\sigma_{\rm HH}^{\alpha^2}$: double hard bremsstrahlung \rightarrow compared with the exact $e^+e^- \rightarrow e^+e^-\gamma\gamma$ cross section, to register really negligible differences (at the 1×10^{-5} level)

NNLO Bhabha calculations

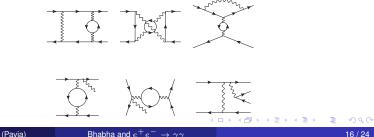
• Photonic corrections A. Penin, PRL 95 (2005) 010408 & Nucl. Phys. B734 (2006) 185



Electron loop corrections

R. Bonciani et al., Nucl. Phys. B701 (2004) 121 & Nucl. Phys. B716 (2005) 280

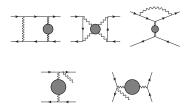
S. Actis, M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. B786 (2007) 26



Heavy fermion and hadronic loops

R. Bonciani, A. Ferroglia and A. Penin, PRL **100** (2008) 131601 S. Actis, M. Czakon, J. Gluza and T. Riemann, PRL **100** (2008) 131602

J.H. Kühn and S. Uccirati, Nucl. Phys. B806 (2009) 300



One-loop soft+virtual corrections to single hard bremsstrahlung

S. Actis, P. Mastrolia and G. Ossola, Phys. Lett. B682 (2010) 419, arXiv:0909.1750

A D M A A A M M

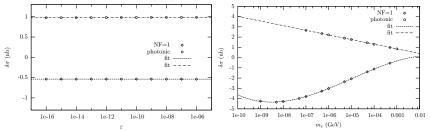
Comparison with NNLO calculation for $\sigma_{SV}^{\alpha^2}$

Comparison of $\sigma_{\rm SV}^{\alpha^2}$ calculation of BabaYaga@NLO with

Using realistic cuts for luminosity @ KLOE

A ID | A I I | A I |

 Penin (photonic): switching off the vacuum polarisation contribution in BabaYaga@NLO, as a function of the logarithm of the soft photon cut–off (left plot) and of a fictitious electron mass (right plot)



★ differences are infrared safe, as expected

- $\star \ \delta\sigma(\text{photonic})/\sigma_0 \propto \alpha^2 L$, as expected
- Numerically, for various selection criteria at the Φ and B factories

 $\sigma_{\mathrm{SV}}^{lpha^2}(\mathrm{Penin}) - \sigma_{\mathrm{SV}}^{lpha^2}(\mathrm{BabaYaga@NLO}) < 0.02\% imes \sigma_0$

Lepton and hadron loops & pairs at NNLO

- The exact NNLO soft+virtual corrections and $2 \rightarrow 4$ matrix elements $e^+e^- \rightarrow e^+e^-(l^+l^-, l=e, \mu, \tau), e^+e^-(\pi^+\pi^-)$ are now available
- In comparison with the approximation in BabaYaga@NLO and using realistic luminosity cuts ($S_i \equiv \sigma_i^{\text{NNLO}} / \sigma_{BY}$)

	\sqrt{s}		$\sigma_{ m BY}$	$S_{e^+e^-}$ [‰]	S_{lep} [‰]	S_{had} [‰]	S_{tot} [%]
KLOE	1.020	NNLO		-3.935(4)	-4.472(4)	1.02(2)	-3.45(2)
		BB@NLO	455.71	-3.445(2)	-4.001(2)	0.876(5)	-3.126(5)
BES	3.650	NNLO		-1.469(9)	-1.913(9)	-1.3(1)	-3.2(1)
		BB@NLO	116.41	-1.521(4)	-1.971(4)	-1.071(4)	-3.042(5)
BaBar	10.56	NNLO		-1.48(2)	-2.17(2)	-1.69(8)	-3.86(8)
		BB@NLO	5.195	-1.40(1)	-2.09(1)	-1.49(1)	-3.58(2)
Belle	10.58	NNLO		-4.93(2)	-6.84(2)	-4.1(1)	-10.9(1)
		BB@NLO	5.501	-4.42(1)	-6.38(1)	-3.86(1)	-10.24(2)

The uncertainty due to lepton and hadron pair corrections is at the level of a few units in 10^{-4} Carloni, Czyz, Gluza, Gunia, Montagna, Nicrosini, Piccinini, Riemann et al., JHEP 1107 (2011) 126

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vacuum polarisation: HADR5N09 vs. HMNT for Bhabha

For a discussion see the Vacuum polarisation Section of the WG Report

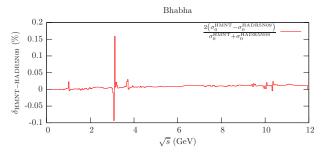
HADR5N09, F. Jegerlehner, http://www-com.physik.hu-berlin.de/~fjeger/hadr5n09.f Nucl, Phys. Proc. Suppl. 135 (2008) 181

HMNT: K. Hagiwara, A.D. Martin, D. Nomura and T. Teubner, Phys. Lett. B649 (2007) 173

T. Teubner, K. Hagiwara, R. Liao, A.D. Martin and D. Nomura

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Chinese Phys. C34 (2010) 728, arXiv:1001.5401



- Bhabha largely dominated by t-channel (space-like) scattering
- The two parameterisations agree within 0.5 $\times 10^{-3}$ for all c.m. energies, at $\sim 0.1-0.2$ % around the J/ψ

Status of the MC theoretical accuracy

Main conclusion of the Luminosity Section of the WG Report Putting the various sources of uncertainties (for large-angle Bhabha) all together...

Source of error (%)	$\Phi-factories$	\sqrt{s} = 3.5 GeV	B-factories
$\left \delta_{\mathrm{VP}}^{\mathrm{err}} ight $ [Jegerlehner]	0.00	0.01	0.03
$\left \delta_{\mathrm{VP}}^{\mathrm{err}} ight $ [HMNT]	0.02	0.01	0.02
$ \delta_{\mathrm{SV},\alpha^2}^{\mathrm{err}} $	0.02	0.02	0.02
$ \delta^{ m err}_{ m HH, lpha^2} $	0.00	0.00	0.00
$\left \delta^{ m err}_{ m SV,H,lpha^2} ight $ [in progress]	0.05	0.05	0.05
$ \delta_{ m pairs}^{ m err} $	0.03	0.016	0.03
$ \delta_{ ext{total}}^{ ext{err}} $ linearly	0.12	0.1	0.13
$ \delta_{ m total}^{ m err} $ in quadrature	0.07	0.06	0.06

- For the experiments on top of and closely around the J/ψ resonance, the accuracy slightly deteriorates, because of the differences between the predictions of independent $\Delta \alpha^{(5)}_{\rm had}(q^2)$ routines
- ★ The present error estimate appears to be rather robust and sufficient for high-precision luminosity measurements. It is comparable with that achieved for small-angle Bhabha luminosity monitoring at LEP/SLC

イロト イポト イヨト イヨト

What next? (from MC side) & conclusions

- * The present MC estimated accuracy is at the level of 0.1% (at least off the narrow hadronic resonances)
- Is a better accuracy needed for future measurements at flavour factories? If yes,
- * what can be done in the next future to improve it, from a MC point of view?
- Bhabha (and $e^+e^- \rightarrow \mu^+\mu^-$)
 - ★ implementation in all MC codes of *complex* $\alpha(Q^2)$ → more reliable also on top of narrow hadronic resonances
 - * generalisation of NLO matching to NNLO: it can be done (I think)
- $e^+e^- \rightarrow \gamma\gamma$
 - perform a more detailed and tuned comparison among existing codes
 - $\star\,$ how much of the NNLO Bhabha calculations can be transferred to $\gamma\gamma?$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BACKUP SLIDES

Bhabha and $e^+e^- \rightarrow \gamma\gamma$

크

イロト イ団ト イヨト イヨト

Resummation beyond α^2

 \star with a complete 2-loop generator at hand, (leading-log) resummation beyond α^2 can be neglected?

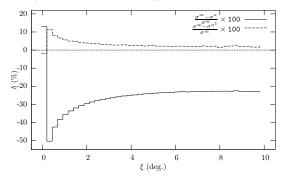


Figure: Impact of α^2 (solid line) and resummation of higher order ($\geq \alpha^3$) (dotted) corrections on the acollinearity distribution

\star resummation beyond α^2 still important!