Nucleon form factors in PHOKHARA

an update of arXiv:1407.7995

H. CZYŻ, IF, UŚ, Katowice in collaboration with J.H. Kühn and Sz. Tracz

RadioMonteCarLow WG meeting, Frascati 2014

Barion form factors

H.C., J. H. Kühn, E. Nowak and G. Rodrigo, Eur.Phys.J.C35(2004)527, first PHOKHARA implementation

Electromagnetic current describing production of baryon-antibaryon pair

$$J_{\mu} = -ie \cdot ar{u}(q_2) \left(F_1^N(Q^2) \gamma_{\mu} - rac{F_2^N(Q^2)}{4m_N} \left[\gamma_{\mu}, Q
ight]
ight) v(q_1) \; ,$$

$$G_M^N = F_1^N + F_2^N \,, \qquad G_E^N = F_1^N + au F_2^N \,,$$

 $au = Q^2/4m_N^2$, $Q = q_1+q_2$

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors - new model

$$\begin{split} F_{1,2}^p &= F_{1,2}^s + F_{1,2}^v \qquad F_{1,2}^n = F_{1,2}^s - F_{1,2}^v \\ F_1^s &= \frac{1}{2} \frac{\sum_{n=0}^N c_n^1 BW_{\omega_n}(s)}{\sum_{n=0}^N c_n^1}, \\ F_1^v &= \frac{1}{2} \frac{\sum_{n=0}^N c_n^2 BW_{\rho_n}(s)}{\sum_{n=0}^N c_n^2}, \\ F_2^s &= -\frac{1}{2} b \frac{\sum_{n=0}^N c_n^3 BW_{\omega_n}(s)}{\sum_{n=0}^N c_n^3}, \\ F_2^v &= \frac{1}{2} a \frac{\sum_{n=0}^N c_n^N BW_{\rho_n}(s)}{\sum_{n=0}^N c_n^N}, \end{split}$$

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors - new model

G. P. Lepage and S. J. Brodsky, Phys.Rev. D22, 2157(1980).

$$F_1 \sim rac{1}{(Q^2)^2}, \ \ F_2 \sim rac{1}{(Q^2)^3},$$

$$BW_i(Q^2) = rac{m_i^2}{m_i^2-Q^2-im_i\Gamma_i heta(Q^2)}.$$

 $c_i^j = c_i^{jR} + i c_i^{jI} \theta(Q^2)$

arXiv:1407.7995 fits, N=3

Experiment	nep	χ^2	Experiment	nep	χ^2
BaBar cs $[12]$	38	48	BaBar r $[12]$	6	5
$PS170_1 cs [16]$	8	120	PS170 r [16]	5	24
$PS170_2 cs [17]$	3	4	$PS170_2 cs [18]$	4	54
E760 cs [19]	3	3	$E835_1 cs [20]$	5	8
$E835_2 cs [21]$	2	2	DM2 cs $[22, 23]$	7	24
BES cs $[24]$	8	7	CLEO cs $[25]$	1	0.02
FENICE cs $[26]$	5	5	DM1 cs [27]	4	0.6
JLab 05 r $[28]$	10	4	JLab $02 r [29]$	4	0.4
JLab 01 r $[30]$	13	14	JLab 10 r $[31]$	3	4
MAMI 01 r [32]	3	1	$JLab \ 03 \ r \ [33]$	3	4
BLAST 08 r [34]	4	2	FENICE cs $[26]$	4	2

 $\chi^2 = 98$ for 118 data points and fitted 12 parameters

arXiv:1407.7995 fits, N=3

Arrington et al., Phys. Rev. C 68 (2003) 034325

 $ep \rightarrow ep$ data

Carl E. Carlson , Marc Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 57 (2007) 171-204

arXiv:1407.7995 fits, N=3

L. Andivahis et al., Phys.Rev. D50, 5491 (1994).

arXiv:1407.7995v2 fits, N=4

L. Andivahis et al., Phys.Rev. D50, 5491 (1994).

arXiv:1407.7995v2 fits, N=4

Experiment	nep	χ^2	Experiment	nep	χ^2
BaBar cs $[12]$	38	30	BaBar r $[12]$	6	0.6
$PS170_1 cs [16]$	8	109	PS170 r [16]	5	16
$PS170_2 cs [17]$	4	4	$PS170_3 cs [18]$	4	52
$E760_1 cs [19]$	3	0.5	$E835_1 cs [20]$	5	1
$E835_2 cs [21]$	2	0.03	DM2 cs $[22, 23]$	7	26
BES cs $[24]$	8	10	CLEO cs $[25]$	1	0.4
FENICE cs $[26]$	5	5	DM1 cs [27]	4	0.7
JLab 05 r $[28]$	10	16	JLab 02 r $[29]$	4	1
JLab 01 r $[30]$	13	10	JLab 10 r $[31]$	3	6
MAMI 01 r [32]	3	2	$JLab \ 03 \ r \ [33]$	3	6
BLAST 08 r [34]	4	6	FENICE cs $[26]$	4	0.6
			SLAC cs $[35]$	32	27

 $\chi^2 = 124$ for 150 data points and fitted 20 parameters

1407.7995v1 vs. 1407.7995v2

1407.7995v1 vs. 1407.7995v2

1407.7995v1 vs. 1407.7995v2

1407.7995v1 vs. 1407.7995v2

H. Czyż, IF, UŚ, Katowice,

Nucleon form factors in PHOKHARA,

FSR modelling - few remarks

\Rightarrow typical corrections - beyond CF are small

FSR modelling - problems

- \Rightarrow 2 form factors for on shell particles
- ⇒ modelling of transition form factors necessary
- \Rightarrow it has to be addressed together with $ep \rightarrow ep$ Conclusions

for pragmatic reasons further FSR modelling postponed till $\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}$