T2K and J-PARC neutrino experiments

Masashi Yokoyama Department of Physics, The University of Tokyo

XVI International Workshop on Neutrino Telescopes 2-6 March 2015, Venice

J-PARC

Japan Proton Accelerator Research Complex

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

LINAC and ion source upgrade

- Linac energy increased with ACS installation in 2013: $18 | MeV \rightarrow 400 MeV$
- Front-end system replaced with a new one to increase the peak current in 2014: $30mA \rightarrow 50mA$

Achieved higher beam intensity

Pumping port

- Frequency : 972 MHz - 21 accelerating modules

- 4 debuncher modeules

Coupling cel

Coupling slo

Accel. ce Beam axis Accel field

During the 2014 summer shutdown period, the front-end system of the linac was replaced to increase the peak current to 50 mA

RCS (3GeV) power increase

Demonstration of 1 MW-eq. beam

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

More study time is needed to optimize chromaticity correction, betatron tune, rf patterns during acceleration.

-> The 300 kW user operation will be started soon.

For higher beam power > 300 kW, manipulation of bunching factor using second harmonic rf system is necessary. Operation with a second harmonic rf system will start in JFY2015.

>300kW operation expected in 2015

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😤 東京大学

Installation of compensation injection kicker scheduled in Apr. 2015

Aim for ~350kW before summer 2015

Mid-term plan of MR

FX: Rep. rate will be increased from ~ 0.4 Hz to ~1 Hz by replacing magnet PS's, rf cavities, ...
SX: Parts of stainless steel ducts are replaced with titanium ducts to reduce residual radiation dose.

JFY	2011	2012	2013	2014	2015	2016	2017
			Li. energy upgrade	Li. current upgrade			
FX power [kW] (study/trial)	150	200	200 - 240	200 –300 (400)			750
SX power [kW] (study/trial)	3 (10)	10 (20)	25 (30)	(400) 20-50		\rightarrow	100
Cycle time of main magnet PS New magnet PS for high rep.	3.04 s	2.56 s R&D	2.48 s		Manuf install	acture ation/test	1.3 s
Present RF system New high gradient rf system	Install. #7,8	Install. #9 R&		Manufa installa	acture tion/test		•
Ring collimators	Additional shields	Add.collimato rs and shields (2kW)	Add.collimat ors (3.5kW) C,D,E,F	Back to JFY2012 (2kW)	Add. coll. C,D	Add. coll. E,F	
Injection system FX system	lnj. kicker	 Kicker PS improvement, Septa manufacture /test Kicker PS improvement, LF septum, HF septa manufacture /test 					
SX collimator / Local shields	SX collimator					_ocal shie	elds 🕨
Ti ducts and SX devices with Ti chamber		SX septum endplate	Beam ducts	Beam ducts	ESS		

Long-term plan

Several ideas under discussion, towards multi-MW facility

- RCS energy increase to reduce space charge effect
 - •~I.5MW
- New Booster Ring (8GeV) between RCS &MR
 - >2MW
- New SC proton linac for neutrino beam (Conceptual study)
 - ~9MW linac with
 >9GeV energy
 - Using KEKB tunnel?

Neutrino experiments at J-PARC

- El I:Tokai-to-Kamioka (T2K) Long Baseline Experiment
- T32, T49: Liq. Ar TPC R&D (test beam)
- E56: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility
- P58: A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande (→Shiozawa-san)
- T59:A test experiment to measure neutrino cross sections using a 3D grid-like neutrino detector with a water target at the near detector hall of J-PARC neutrino beam-line
- T60: An emulsion-based test experiment at J-PARC
- Lol: A nuPRISM Detector in the J-PARC Neutrino Beamline

Tokai-to(2)-Kamioka

Intense proton beam from J-PARC High quality off-axis beam High performance near detectors Gigantic, high performance far detector, Super-K

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😤 東京大学

T2K Collaboration

Collaboration photo Apr. 2014

Spokesperson: T.Nakaya (Kyoto) (from Feb. 2015) International Co-spokesperson: C.K.Jung (Stony Brook)

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

Accumulated POT (2010 Jan.-2014 Dec.)

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😤 東京大学

Anti-neutrino data taking

Neutrino oscillation analysis

J-PARC neeutrino abeamiline

T2K beamline status

- All horns were replaced with improved ones in 2013-2014
 - Remote handling procedure was established.
- Now 500kW acceptable, improvement for 750kW ongoing
 - Increase radioactive water/air disposal capability
- Inaccessible part (decay vol., beam dump) designed and built for multi-MW

J-PARC neutrino experiments, M. Yokoyama (U lokyo) 😽 東京大学

Beam stability (Jan.2010-Dec.2014)

Excellent stability for whole run

Neutrino flux prediction

- GEANT3 based beamline MC simulation
 - + In situ proton beam measurements during run
 - + Tuned with hadron production measurements e.g. NA61 @CERN
- ~12% uncertainty at peak energy (before ND280 constraints)
 - Still improving : latest NA61 results will be included soon, to go <10%
- Anti-neutrino (reverse horn current) flux with similar uncertainty

Near detectors

"UAI" magnet

from CERN

Off-axis detector (ND280) measure v beam properties

- Detector suite
 @ 2.5degree off-axis
 - Dipole magnet (0.2T)
 - π^0 detector (P0D)
 - FGD+TPC: target+tracker
 - EM calorimeters
 - Side Muon Range detector

On-axis detector (INGRID) Monitor direction/stability of v beam

 Iron-scintillator sandwich modules covering 10m×10m around the beam center

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

bea

ND280 ν_{μ} selection

High momentum negative track in TPC = muon candidate

Classify events into 3 samples to enhance sensitivity to interaction models

CC others

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😤 東京大学

ND280 data distributions

Constrain rate (flux × cross section) and cross section parameters with ND data

Correlation between energy/samples taken into account

 v_e at SK can be constrained by v_μ at ND(same parent particle)

Uncertainties of predictions at the far detector

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

r: Super-Kamiokande

Ikeno-yama 1km Kamioka-cho, Gifu (2700mwe) Japan **OICRR**, Univ. of 2km 3km 2011/3/11 SK Atotsu Mozumi

Un-oscillated v

 ν_{μ}

 θ_l

▶ ● <-----

neutron

 $\sim 10\%$ ($\leftarrow 2$ -body kinematics)

>11,000 50cm PMTs J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 ^{東京大学}

Observed events at SK

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😤 東京大学

arXiv:1502.01550

$V_{\mu} + V_{e}$ combined analysis

Frequentist analysis

With reactor constraint $\delta_{CP} \text{ of } \begin{bmatrix} 0.15, 0.83 \end{bmatrix} \pi \text{ (NH)} \\ \begin{bmatrix} -0.08, 1.09 \end{bmatrix} \pi \text{ (IH)} \\ \end{bmatrix}$ EXCLUDED at 90% CL

Bayesian probability

	NH	IH	Sum
$\sin^2\theta_{23} \le 0.5$	0.179	0.078	0.257
$sin^2\theta_{23}$ >0.5	0.505	0.238	0.743
Sum	0.684	0.316	1.0

More physics results

NC interaction at far detector

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

T2K: Near Future Plan

- Before summer 2015:
 - World best antineutrino oscillation measurement with ~5×10²⁰ POT

- In I-2 years:
 - Improve oscillation parameter meas. w/ neutrino beam (Will tension with reactor data remain or not?)
 - Search for the first evidence of electron anti-neutrino appearance with anti-neutrino beam
- Can accumulate $\sim 7 \times 10^{20}$ POT in 1 year with >400kW beam

Long term plans

arXiv:1409.7469 to be published in

PTEP

- Search for CP violation with up to 2.5σ level sensitivity
- Precise measurements of oscillation parameters
- Various v and \overline{v} ross section measurements
- Combination with NOvA and SK will enhance the reach

Other v experiments at J-PARC

Neutrino experiments at J-PARC

- El I:Tokai-to-Kamioka (T2K) Long Baseline Experiment
- T32, T49: Liq. Ar TPC R&D (test beam)
- E56: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility Recent Stage-Lapproval
- P58: A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande (→Shiozawa-san)
- T59:A test experiment to measure neutrino cross sections using a 3D grid-like neutrino detector with a water target at the near detector hall of J-PARC neutrino beam-line
- T60:An emulsion-based test experiment at J-PARC
- Lol:A nuPRISM Detector in the J-PARC Neutrino Beamline

New initiatives emerging in J-PARC neutrino experimental facility

E56: Detector

- 50 tons Gd-loaded liquid scintillator.
- Well established technique.
- Strength of tank / endurance for earthquakes were calculated.
- Some of Double Chooz / Daya-Bay collaborators joined E56.
- Will be located at MLF 3rd floor : the maintenance area → need to avoid interference

T59: 3D grid detector, WAGASCI

- Confirm basic performance of 3D grid detector
 - Large angular acceptance with less material
- Cross section measurements
 - Water target (fraction of water ~80%)
 - Close to 4π acceptance

T60: Emulsion

Feasibility test of Emulsion in the J-PARC environment

Future Physics goals

Neutrino Cross SectionsSterile neutrinos

Ultimate position resolution

J-PARC neutrino experiments, M.Yokoyama (UTokyo) 😚 東京大学

Lol to J-PARC PAC, arXiv:1412.3086

Summary

- Observation of V_e appearance by T2K has opened a door to the CP asymmetry study in the lepton sector!
 - T2K+reactor already placing limits on δ_{CP} .
- T2K will continue to lead the neutrino oscillation study.
 - First anti-neutrino oscillation result expected soon.
 - Collecting data with 320kW, higher intensity expected.
- Planning J-PARC beam power increase to the design value of 750kW, and beyond (>MW).
- New neutrino experiments are emerging in J-PARC with international collaborations.
- Next generation experiment: Hyper-K (→Shiozawa-san's talk)

Backup

T59: 3D grid-detector: WAGASCI

Event display (same CCQE event)

w/o grid layer

with grid layer

hard to track large scattering μ

easy to track large scattering μ

