Cosmology with massive neutrinos: constraints and perspectives

Matteo Viel – INAF/OATS & INFN/TS Neutrino Telescopes 2015 – Venice – 4th March 2015

MASSIVE NEUTRINOS

Summary

Cosmological neutrinos from linear theory to non-linearities

Introducing a "new observable": the Intergalactic Medium

Constraints on neutrino mass

Constraints on cold dark matter coldness (e.g. keV sterile neutrinos)

Future perspectives

Conclusions

COSMOLOGICAL NEUTRINOS

COSMOLOGICAL NEUTRINOS - I: WHAT TO START FROM

$$0.056 \,(0.095) \,\,{
m eV} \lesssim \, \sum_i m_i \lesssim 6 \,\,{
m eV}$$

COSMOLOGICAL NEUTRINOS - II: FREE-STREAMING SCALE

Neutrino thermal velocity
$$v_{\rm th} \equiv \frac{\langle p \rangle}{m} \simeq \frac{3T_{\nu}}{m} = \frac{3T_{\nu}^0}{m} \left(\frac{a_0}{a}\right) \simeq 150(1+z) \left(\frac{1\,{\rm eV}}{m}\right) {\rm km\,s^{-1}}$$

Neutrino free-streaming scale

$$k_{FS}(t) = \left(\frac{4\pi G\bar{\rho}(t)a^2(t)}{v_{\rm th}^2(t)}\right)^{1/2} \qquad k_{\rm nr} \simeq 0.018 \ \Omega_{\rm m}^{1/2} \left(\frac{m}{1 \,{\rm eV}}\right)^{1/2} h \,{\rm Mpc}^{-1}$$

Below k_{nr} there is suppression in power at scales that are cosmologically important

COSMOLOGICAL NEUTRINOS - III: LINEAR MATTER POWER

COSMOLOGICAL NEUTRINOS: NON-LINEAR MATTER POWER

CHARACTERIZING THE NEUTRINO HALO?

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019 Marulli, Carbone, Viel+ 2011, MNRAS, 418, 346

CHARACTERIZING NEUTRINO PECULIAR VELOCITIES

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019

MODELLING NEUTRINOS WITHOUT N-BODY SIMULATIONS

$$P(k) = \left(\frac{\bar{\rho}_{\rm c}}{\bar{\rho}}\right)^2 P_{\rm c}(k) + 2 \frac{\bar{\rho}_{\rm c}\bar{\rho}_{\nu}}{\bar{\rho}^2} P_{\rm c\nu}(k) + \left(\frac{\bar{\rho}_{\nu}}{\bar{\rho}}\right)^2 P_{\nu}(k)$$

- Assumption: all matter within haloes 1h and 2h terms
- Simple modelling of non-linear power spectra (including cross-spectra)
- When used to predict ratios w.r.t. massless case it is as good as hydro/N-body to 2% level
- When used to compute actual power it suffers from limitation and it is good at the 20% level

Massara, Villaescusa, MV (2014)

IGM

i.e. diffuse matter between galaxies

<u>The Lyman- α forest</u>

Lyman- α absorption is the main manifestation of the IGM

Tiny neutral hydrogen fraction after reionization.... But large cross-section

The Intergalactic Medium: Theory vs. Observations

CONSTRAINTS on NEUTRINO MASSES FROM Planck: I

 $\Sigma m_{v} < 0.93 \text{ eV}(2\sigma)$

Costanzi+ 2014, JCAP

 $\Sigma m_{v} < 0.24 \text{ eV}(2\sigma)$

Costanzi+ 2014

 $\Sigma m_{v} < 0.14 \text{ eV}(2\sigma)$

Costanzi+ 2014

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+old Lya: IV

Costanzi, Sartoris, MV, Borgani (2014)

29 eV 59 eV

2 eV

.9 eV

GROWTH OF STRUCTURES AT HIGH REDSHIFT

Constraint on neutrino masses from SDSS-III/BOSS $Ly\alpha$ forest and other cosmological probes

Nathalie Palanque-Delabrouille,^{*a,b*} Christophe Yèche,^{*a*} Julien Lesgourgues,^{*c,d,e*} Graziano Rossi,^{*a,f*} Arnaud Borde,^{*a*} Matteo Viel,^{*a,h*} Eric Aubourg,^{*t*} David Kirkby,^{*j*} Jean-Marc LeGoff,^{*a*} James Rich,^{*a*} Natalie Roe,^{*b*} Nicholas P. Ross,^{*k*} Donald P. Schneider,^{*t,m*} David Weinberg^{*a*}

GRID OF HYDRODYNAMICAL SIMULATIONS

	Parameter	Central value	Range
	$n_s \ldots \ldots$	0.96	± 0.05
Cosmological	$\sigma_8 \ldots \ldots$	0.83	± 0.05
Parameters	$\Omega_m \dots$	0.31	± 0.05
	$H_0 \ldots \ldots$	67.5	±5
	$T_0(z=3)$	14000	± 7000
Astrophysical	$\gamma(z=3)$.	1.3	± 0.3
Parameter	A^{τ}	0.0025	± 0.0020
	$\eta^{ au}$	3.7	± 0.4
Neutrino mass	$\sum m_{\nu}$ (eV)	0.0	0.4, 0.8

Astrophysics usually has a different redshift evolution compared to cosmology!

If my data cover a relatively wide redshift range then I can break the degeneracies

METHOD

DATA: thousands of low-res. Spectra for neutrino constraints. Few tens for cold dark matter coldness

SIMULATIONS: Gadget-III runs: 20 and 60 Mpc/h and (512³,786³,896³)

Cosmology parameters: σ_8 , n_s , Ω_m , H_0 , m_{WDM} , + neutrino mass Astrophysical parameters: z_{reio} , UV fluctuations, T_0 , γ , $\langle F \rangle$ Nuisance: resolution, S/N, metals

METHOD: Monte Carlo Markov Chains likelihood estimator + very conservative assumptions for the continuum fitting and error bars on the data

Parameter space: second order Taylor expansion of the flux power

$$P_F(k,z;\mathbf{p}) = P_F(k,z;\mathbf{p}^0) + \sum_{i}^{N} \frac{\partial P_F(k,z;p_i)}{\partial p_i} \bigg|_{\mathbf{p}=\mathbf{p}^0} (p_i - p_i^0) + \text{second order}$$

NEUTRINO IMPACT - I

NEUTRINO IMPACT - II

BAYESIAN ANALYSIS

FINAL NUMBERS

Parameter	$Ly\alpha + H_0^{tophat}$	$Ly\alpha + CMB$	$Ly\alpha + CMB$	$Ly\alpha + CMB(A_L)$
	$(62.5 \le H_0 < 72.5)$		+ BAO	
$10^{9}A_{s}$	$3.2^{+0.5}_{-0.7}$	$2.20^{+0.05}_{-0.06}$	$2.20^{+0.05}_{-0.06}$	$2.18^{+0.05}_{-0.06}$
$10^2 \omega_{\rm b}$	(fixed to 2.22)	2.20 ± 0.02	2.20 ± 0.02	2.22 ± 0.03
$\omega_{ m cdm}$	$0.110\substack{+0.008\\-0.013}$	$0.1200\substack{+0.0019\\-0.0018}$	$0.1196\substack{+0.0015\\-0.0014}$	0.1191 ± 0.002
$ au_{ m reio}$	(irrelevant)	$0.091\substack{+0.012\\-0.013}$	$0.091\substack{+0.011\\-0.013}$	$0.0871\substack{+0.012\\-0.013}$
n_s	0.931 ± 0.012	0.953 ± 0.005	0.953 ± 0.005	$0.955^{+0.005}_{-0.006}$
H_0	< 70.9 (95%)	$67.2^{+0.8}_{-0.9}$	67.4 ± 0.7	$67.5^{+1.0}_{-1.1}$
$\sum m_{\nu}$ (eV)	< 0.98 (95%)	< 0.16 (95%)	< 0.14 (95%)	< 0.21 (95%)
A_L	(fixed to 1)	(fixed to 1)	(fixed to 1)	1.12 ± 0.10
σ_8	0.84 ± 0.03	$0.830\substack{+0.017\\-0.013}$	$0.830\substack{+0.016\\-0.012}$	$0.818\substack{+0.021\\-0.014}$
Ω_{m}	$0.316^{+0.018}_{-0.021}$	0.316 ± 0.012	0.313 ± 0.009	0.312 ± 0.013

THE COLDNESS OF COLD DARK MATTER

Viel, Becker, Bolton, Haehnelt, 2013, PRD, 88, 043502

DARK MATTER DISTRIBUTION

GAS DISTRIBUTION

HI DISTRIBUTION

THE WARM DARK MATTER CUTOFF IN THE MATTER DISTRIBUTION

THE HIGH REDSHIFT WDM CUTOFF

 $\delta_{F} = F/\langle F \rangle - 1$

RESULTS FOR WDM MASS

SDSS + MIKE + HIRES CONSTRAINTS

Joint likelihood analysis

SDSS data from McDonald05,06 not BOSS

Cosmic Conspiracies?

Baldi, Villaescusa-Navarro, Viel, Puchwein, Springel, Moscardini, 2014

MASSIVE NEUTRINO FORECASTS for Euclid

Audren, Lesgourgues, Bird, Haehnelt, MV 2013

MASSIVE NEUTRINO FORECASTS for Euclid: II

GALA $k_{ m max}$	XY PO' un.	WER S	$\begin{array}{c} PECTRUM \\ 3m_{\nu} = M_{\nu} \end{array}$
$(h/{ m Mpc})$	err.	err.	(meV)
0.1	-	-	18
0.1	1/10	_	18
0.1	1/2	-	23
0.1	•	-	25
0.1	•	•	25
0.6	_	_	5.9
0.6	1/10	_	14
0.6	1/2	_	22
0.6	•	-	25
0.6	•	•	25

32 meV with cosmic shear (i.e. weak lensing)

CLUSTERS OF GALAXIES

Model		$\Lambda \text{CDM} + m_{\nu}$			
Data		Planck	P^{cl} -only	Euclid-Cl	Euclid-Cl+Planck
$\sum m_{\nu} [\text{eV}]$	68% CL	< 0.41	< 0.41	< 0.17	< 0.017
	95% CL	< 0.74	< 1.20	< 0.35	< 0.031

Costanzi, Sartoris, Xia, Biviano, Borgani, MV (2013)

CONCLUSIONS – NEUTRINOS

1D Lyman- α flux power provides the tightest constraints (<0.14 eV) on total neutrino mass.

Neutrino non-linearities modelled in the matter power spectrum. correlation function, density distribution of haloes, peculiar velocities, redshift space distortions. NEW REGIME!

Forecasting for Euclid survey: 14 meV error is doable but need to model the power spectrum to higher precision (possibly subpercent) and with physical input on the scale dependence of the effect. Very conservative 20-30 meV

CONCLUSIONS – WARM DARK MATTER

High redshift Lyman- α disfavours thermal relic models with masses that are typically chosen to solve the small-scale crisis of Λ CDM

```
Models with 1 keV are ruled out at 9σ
2 keV are ruled out at 4σ
2.5 keV are ruled out at 3σ
3.3 keV are ruled out at 2σ
↓
1) free-streaming scale is 2x10<sup>8</sup>M<sub>☉</sub>/h
2) at scales k=10 h/Mpc you cannot streams
```

2) at scales k=10 h/Mpc you cannot suppress more than 10% compared to ΛCDM

Of course they remain viable candidate for the Dark Matter (especially sterile neutrinos) but there are OBSERVATIONAL challenges

STERILES FROM COSMOLOGY

Costanzi+ 14

ACTIVE NEUTRINOS FROM COSMOLOGY

THE COSMIC WEB in WDM/LCDM scenarios

WDM ACDM [h^dMpc] 0

> -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 log (1+δ_{tot})

z=0
$$\frac{T_x}{T_{\nu}} = \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} < 1$$

$$k_{\rm FS} = \frac{2\pi}{\lambda_{\rm FS}} \sim 5 \, {\rm Mpc^{-1}} \left(\frac{m_x}{1 \, {\rm keV}}\right) \left(\frac{T_\nu}{T_x}\right)$$

$$\omega_x = \Omega_x h^2 = \beta \left(\frac{m_x}{94 \,\mathrm{eV}}
ight)$$

 $eta = (T_x/T_
u)^3$

z=2

 $k_{\rm FS} \sim 15.6 \frac{h}{\rm Mpc} \left(\frac{m_{\rm WDM}}{1 {\rm keV}}\right)^{4/3} \left(\frac{0.12}{\Omega_{\rm DM} h^2}\right)^{1/3} \label{eq:kFS}$

z=5

Viel, Markovic, Baldi & Weller 2013

IMPLICATIONS FOR STRUCTURE FORMATION

- Strong and weak lensing
- Galaxy formation
- Reionization/First Stars
- Dark Matter Haloes (mass functions)
- Luminous matter properties
- Gamma-Ray Bursts
- HI in the local Universe
- Phase space density constraints
- Radiative decays in the high-z universe

Markovic et al. 13/Faadely & Keeton 12

Menci et al 13, Kang et al. 13

Gao & Theuns 07

Pacucci et al. 13

Polisensky & Ricotti 11, Lovell et al. 09

De Souza et al. 13

Zavala et al. 09

Shi et al. 13

Boyarsky et al. 13

+ Lyman –α

Modified Gravity hydro results-I

Arnold, Puchwein & Springel 2015

- Small Impact on IGM statistics?

WHY LYMAN-**Q**???

1) ONE DIMENSIONAL

$$\langle \tilde{F}_k^2 \rangle = \frac{1}{(2\pi)^2} \int dk_x \int dk_y P(k_x, k_y, k) = \frac{1}{2\pi} \int_k^\infty P(y) y \, dy$$

e.g. Kaiser & Peacock 91

2) AND ALSO THREE DIMENSIONAL

$$P(k) = 2\pi \int_0^\infty dr_\perp r_\perp J_0(r_\perp \sqrt{k^2 - q^2}) \ \pi(q|r_\perp)$$

e.g. Viel et al. 02

3) HIGH REDSHIFT

Where you are possibly closer to primordial P(k)

... unfortunately non-linearities and thermal state of the IGM are quite important....