

Latest results from

A. Paoloni (INFN – LNF) on behalf of the OPERA collaboration

XVI International Workshop on Neutrino Telescopes

Venezia, 3 March 2015

140 physicists, 11 countries, 28 institutions

The OPERA project

The v_{τ} detection technique

"long" decays: kink θ kink short" decays: I.P. Pb

Modular detector of "Emulsion Cloud Chambers" (or bricks) Reconciles the needs for:

- Large mass
 - $N_{\tau} \propto (\Delta m^2)^2 M_{target}$
- Extreme granularity
 - μm space resolution

The OPERA experiment

+ several ancillary facilities "off-site":

- Assembly/disassembly of bricks (LNGS)
- Brick Manipulator System (LNGS)
- Labelling and X ray marking (LNGS)
- Automatised development (LNGS)
- Scanning of CS doublets (LNGS+JP)
- Scanning bricks (Europe + JP)

CERN Neutrinos to Gran Sasso

< <i>E</i> _v >	17 GeV
L / < E _v >	43 km/GeV

The oscillation peak for L= 732 km at ~ 1.5 GeV (similar to NuMI) but the beam is designed to observe τ leptons \rightarrow unbalance at higher energies

Fluxes:

$(v_e + \overline{v_e}) / v_\mu$	0.9 %	
$\overline{\mathbf{v}}_{\mu}$ / \mathbf{v}_{μ}	2.1 %	
v_{τ} prompt (from D _s)	negligible	

Interaction rates (1.8 x 10²⁰ pot):

~ 20k ν_{μ} CC+NC 66.4 ν_{τ} CC (not efficiency corrected)

Threshold for τ at ~ 3.5 GeV.

Collected data samples

arget mass (kg)

The 5 year long CNGS run has ended in 2012.

1.8 x 10^{20} p.o.t. collected 80% of the design (2.25 x 10^{20})

1.25 kton initial target mass (150 k bricks)

19505 neutrino interactions in the emulsion targets.

Year	Days	p.o.t. (10 ¹⁹)	v interactions
2008	123	1.74	1698
2009	155	3.53	3693
2010	187	4.09	4248
2011	243	4.75	5131
2012	257	3.86	3923
tot	965	17.97	19505

Brick finding

OPERA is a hybrid apparatus.

Electronic detectors predictions to locate bricks with neutrino interactions.

Brick finding

Changeable Sheets: the "bridge" from the cm scale of electronics detectors to μm scale of emulsions.

Electronic detector predictions to be confirmed by scanning of CS doublet.

Up to 4 bricks ranked in probability are considered for τ research.

Vertex location and topology decay search in the brick

Tracks in the CS are followed upstream until a stopping point is found. Vertex reconstruction by apposite algorithms. Search of decay topologies (e.g. large impact parameters IP).

Full MC simulation of 0 μ and 1 μ samples. Data/MonteCarlo in reasonable agreement.

Validation with the CNGS charm events sample

Φ

 D, Λ

Charmed hadrons produced in v_{μ}^{cc} events (μ at the primary vertex) Charm and τ decays are topologically similar. Test for: reconstruction efficiencies, description of kinematic variables, charm background.

$\boldsymbol{v}_{_{\boldsymbol{\tau}}}$ candidate identification

The brick is a complete stand-alone detector:

• Neutrino interaction vertex and decay topology reconstruction

Measurement of charged particles' momenta by Multiple Coulomb Scattering (20-30% resolution)
e/γ separation and energy measurement

Kinematical cuts to increase S/B ratio:

For candidate events, Track Follow Down (TFD) procedure: All reconstructed event tracks followed from brick to brick,

- to enhance µ-identification (99%)
- improve μ /h discrimination (range measurement and nuclear interaction detection)

The 1st candidate ($\tau \rightarrow 1h$)

Phys. Lett. B691 (2010) 138

JHEP 11 (2013) 036

The 3rd candidate ($\tau \rightarrow \mu$)

Phys. Rev. D 89 (2014) 051102(R)

Negative charge of daughter muon measured by bending in the iron with RPC detectors

First measurement of lepton charge in appearance mode.

The 4th candidate ($\tau \rightarrow 1h$)

PTEP 2014 (2014) 10, 101C01

$\nu_{_{\mu}} \rightarrow \nu_{_{\tau}}$ background characterization

Monte Carlo simulation benchmarked on control samples.

CC with charm production (all μ⁻,e⁻ V_{µ,e} channels) IF the primary lepton is not identified and μ^+ the daughter charge is not e^+ h⁺ (or incorrectly) measured Hadronic interactions ν Background for $\tau \rightarrow h$ μ ν μ Large angle muon μ^{-} scattering ν μ Background for $\tau \rightarrow \mu$

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down", procedure and large angle scanning

FLUKA + pion test beam data Reduced by large angle scanning and nuclear fragment search

Measurements in the literature (Lead form factor), simulations and dedicated test-beams (in progress)

V

$v_{_{\tau}}$ analysis results

Status of the analysis: The presented results correspond to about 70% of the total sample 2008-2009: 1st and 2nd brick completed 2010-2012: 1st brick completed

Analysis in progress. Updates in summer conferences.

Decay channel	Expected signal $\Delta m_{23}^2 = 2.32 \text{ meV}^2$	Total background	Observed
τ→h	0.41 ± 0.08	0.033 ± 0.006	2
τ→3h	0.57 ± 0.11	0.155 ± 0.030	1
τ→μ	0.52 ± 0.10	0.018 ± 0.007	1
τ→e	0.62 ± 0.12	0.027 ± 0.005	0
Total	2.11 ± 0.42	0.233 ± 0.041	(4)

3 hadronic + 1 muonic candidates observed

Exclusion of null hypothesis: 4.2 σ

p-value = 1.03 x 10⁻⁵

- Fisher combination of single channel p-value
- Likelihood ratio

Cosmic rays: $R = N_{\mu^+}/N_{\mu^-}$

P (primary) air nucleus

- Highest-E region reached!
- opposite magnet polarities runs
 → lower systematics
- Strong reduction of the charge ratio for multiple muon events

1 μ Multi-μ **I.098 ± 0.023**

- Results compatible with a simple π-K model
- No significant contribution of the prompt component up to $E_{\mu} \cos \theta * \sim 10 \text{ TeV}$
- Validity of Feynman scaling in the fragmentation region up to $E_{\mu} \sim 20 \text{ TeV} (E_{N} \sim 200 \text{ TeV})$

$$\phi_{\mu^{\pm}} \propto \frac{a_{\pi} f_{\pi^{\pm}}}{1 + b_{\pi} \mathcal{E}_{\mu} \cos \theta / \epsilon_{\pi}} + R_{K\pi} \frac{a_{K} f_{K^{\pm}}}{1 + b_{K} \mathcal{E}_{\mu} \cos \theta / \epsilon_{K}}$$

Conclusions

- 1.8 x 10²⁰ pot by CNGS from 2008-12 (80% of design).
- 4 v_{τ} candidates so far with a 0.23 event background.
- No oscillation hypothesis excluded at 4.2 σ .
- Study on $v_{\mu} \rightarrow v_{e}$ sub-dominant oscillation channel.
- Sterile neutrino: limits on $|U_{\mu4}|^2 |U_{\tau4}|^2$ from v_{τ} appearance results.
- Cosmic ray physics: atmospheric $\mu^{+\!/}\mu^{-}$ in the highest energy region to date.

OPERA posters at XVI International Workshop on Neutrino Telescopes:

"Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector" - M. Tenti "Appearance of rare physics phenomena in the OPERA neutrino experiment" - M. Roda "The Muon-Tracking-System of the OPERA experiment" - B. Buttner "Energy measurement of electromagnetic showers for the detection of the τ ->e channel in the OPERA search for neutrino oscillations" - B. Hosseini