

Recent results from Super-Kamiokande

Kamioka observatory, ICRR, Kavli IPMU, Univ. of Tokyo for Super-K collaboration

Atmospheric Neutrinos

- Oscillation results
- Sterile neutrino search
- Indirect Dark matter search
 - Search for high energy neutrinos from the Sun

Solar Neutrinos

- Day/night difference
- Energy spectrum
- Oscillation results

R&D for future detector improvement

R&D status for GADZOOKS! project

- 1 Kamioka Observatory, ICRR, Univ. of Tokyo, Japan 2 RCCN, ICRResearch, Univ. of Tokyo, Japan 3 University Autonoma Madrid, Spain 4 University of British Columbia, Canada **5 Boston University, USA** 6 Brookhaven National Laboratory, USA 7 University of California, Irvine, USA 8 California State University, USA 9 Chonnam National University, Korea 10 Duke University, USA 11 Fukuoka Institute of Technology, Japan 12 Gifu University, Japan 13 GIST College, Korea
- 14 University of Hawaii, USA

15 KEK, Japan 16 Kobe University, Japan 17 Kyoto University, Japan 18 Miyagi University of Education, Japan 19 STE, Nagoya University, Japan 20 SUNY, Stony Brook, USA 21 Okayama University, Japan 22 Osaka University, Japan 23 University of Regina, Canada 24 Seoul National University, Korea 25 Shizuoka University of Welfare, Japan 26 Sungkyunkwan University, Korea 27 Tokai University, Japan 28 University of Tokyo, Japan

29 Kavli IPMU (WPI), University of Tokyo, Japan 30 Dep. of Phys., University of Toronto, Canada 31 TRIUMF, Canada

- 32 Tsinghua University, China
- 33 University of Washington, USA
- 34 National Centre For Nuclear Research, Poland

~120 collaborators 34 institutions 7 countries

Super-Kamiokande detector

- 50kton water
- 2m OD viewed by 8-inch PMTs
- 32kt ID viewed by **20-inch PMTs**
- **22.5kt fid. vol.** (2m from wall)
- SK-I: April 1996~
- SK-IV is running

>99%@4.0MeV_{kin} ~90%@3.5MeV_{kin}

Inner Detector (ID) PMT: ~11100 (SK-I,III,IV), ~5200 (SK-II) **Outer Detector (OD) PMT: 1885**

Atmospheric Neutrinos

Honda et al., Phys. Rev. D83, 123001 (2011).

Cosmic rays interact with air nuclei and the decay of pions and kaons produce neutrinos

$$P + A \rightarrow N + \pi^{\pm} + X$$

$$\downarrow \mu^{\pm} + (\overline{\nu}_{\mu})$$

$$\downarrow e^{\pm} + (\overline{\nu}_{e}) + (\underline{\nu}_{\mu})$$

- \succ vs travel 10 10,000 km before detection
- > Both v_{μ} and v_{e} (v_{μ}/v_{e} = 2 at low energy)
- Both neutrinos and anti-neutrinos
 - ~ 30% of final analysis samples are antineutrinos
- Flux spans many decades in energy ~100 MeV – 100TeV
- Excellent tool for broad studies of neutrino oscillations

Atmospheric v Analysis Samples

Evidence for v_t Appearance

Published at PRL 110,181802 (2013)

Zenith Distribution

- Search for events consistent with hadronic decay of τ lepton
 - Multi-ring e-like events with visible energy above 1.3GeV.
- Negligible primary v_{τ} flux so v_{τ} must be oscillation-induced: **upward-going**
- Event selection performed by Neural Network
 Total efficiency ~60%
- Fit 2D data on cos h and NN variable with "background" and signal

Data = $\alpha(\gamma) \times bkg + \beta(\gamma) \times signal$

 $\alpha, \beta: \mbox{ expectations of "background" and signal which depends on DIS normalization factor } \gamma \\ \mbox{ DIS: Deep Inelastic Scattering }$

Result	Background	DIS(γ)	Signal
SK-I+II+III	0.94 ± 0.02	1.10 ± 0.05	$\textbf{1.42}\pm\textbf{0.35}$

This corresponds to the observed number of **180.1** \pm 44.3 (stat) +17.8-15.2 (sys) events, **3.8** σ excess

Oscillation probability maps

<u>θ13 Fixed Analysis (NH+IH) SK Only</u>

\$\Theta_{13}\$ fixed to PDG average, but its uncertainty is included as a systematic error
 Offset in these curves shows the difference in the hierarchies

Normal hierarchy favored at: $\chi^2_{IH} - \chi^2_{NH} = 0.9$

UPER

Comparison with T2K and MINOS

They are consistent to each other.

SK's sensitivity in Mass Hierarchy and δ CP can be improved by incorporating constraints from these measurements.

<u>θ13 Fixed SK + T2K (external constraint)</u>

Normal hierarchy favored at: $\chi^2_{IH} - \chi^2_{NH} = 1.2$ (0.9 SK only) Some fraction of CP phase is excluded at 90% C.L.

CP Conservation (sin δ_{co} = 0) allowed at (at least) 90% C.L. for both hierarchies

<u>θ13 Fixed SK + T2K (external constraint)</u>

Normal hierarchy favored at: $\chi^2_{IH} - \chi^2_{NH} = 1.2$ (0.9 SK only) Some fraction of CP phase is excluded at 90% C.L.

CP Conservation (sin δ_{co} = 0) allowed at (at least) 90% C.L. for both hierarchies

Sterile Neutrino Oscillations in Atmospheric Neutrinos

■|U_{µ4}|²

Induces a decrease in event rate of μ -like data of all energies and zenith angles

U_{τ4}|²

Shape distortion of angular distribution of higher energy μ -like data

Limits on Sterile Neutrino Oscillations

Indirect WIMP search using the Sun

Fit SK data with atmospheric neutrino MC + WIMP neutrino MC, to search for neutrinos from WIMP annihilation in the sun. All SK I-IV data (all category, energy, flavors) are used.

Angular and reconstructed momentum distributions direction from the Sun) black dots: SK I-IV Data Blue lines: Atmospheric neutrino MC Dashed lines: WIMP neutrino signal for the 6-GeV bb channel(magenta) 200-GeV $\tau^+\tau^-$ channel (cyan) with arbitrary magnitude

Indirect WIMP search limits

⁸B solar neutrino measurement

- High statistics (~20events/day) measurement of ⁸B solar neutrinos
 Possible time variation of the flux
 - Energy spectrum distortion due to solar matter effect
 - Day-night flux asymmetry due to earth mattect

⁸B solar neutrino flux

⁸B solar neutrino flux yearly plot

 χ^2 =13.53 / 17 D.O.F. \rightarrow prob. = 70% No significant correlation with the solar activity is seen.

Day/Night asymmetry(A_{DN})

Recoil electron spectrum of each phase

SK I-IV combined Recoil electron spectrum

MSW is slightly disfavored by ~1.7 σ using the Solar+KamLAND best fit parameters, and ~1.0 σ using the Solar Global best fit parameters.

$\underline{\theta}_{12}$ and Δm^2_{21} from SK vs. KamLAND

θ_{12} and Δm^2_{21} from Solar Global vs. KamLAND

Data set for the solar global analysis

The most up-to-dated data are used

≻ <u>SK:</u>

- SK-I 1496 days, spectrum 4.5-19.5 MeV(kin.)+D/N:Ekin>4.5 MeV
- SK-II 791 days, spectrum 6.5-19.5 MeV(kin.)+D/N: Ekin>7.0 MeV
- SK-III 548 days, spectrum 4.0-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
- SK-IV 1669 days, spectrum 3.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV

≻ <u>SNO:</u>

Parameterized analysis (c₀, c₁, c₂, a₀, a₁) of all SNO phased. (PRC88, 025501 (2013)) (Note: the same method is applied to both SK and SNO with a₀ and a₁ to LMA expectation.)

Radiochemical: Cl, Ga

- Ga rate: 66.1±3.1 SNU (All Ga global) (PRC80, 015807 (2009))
- Cl rate: 2.56±0.23 SNU(Astrophys. J.496, 505 (1998))
- Borexino: Latest ⁷Be flux (PRL 107, 141302 (2011))
- KamLAND reactor : Latest (3-flavor) analysis (PRD88, 3, 033001 (2013))
- ⁸B spectrum: Winter 2006 (PRC73, 73, 025503 (2006)).
 ⁸B and hep flux free, if not mentioned.

GADZOOKS! project

Identify $\overline{v_e}p$ events by neutron tagging with Gadolinium.

Gadolinium has large neutron capture cross section and emit 8MeV gamma cascade.

UO

Captures

40% hin 50cm

Physics with GADZOOKS!

<u>EGADS</u>

Evaluating Gadolinium's Action on Detector Systems

Transparency measurement (UDEAL)

200 m³ test tank with 240 PMTs

15m³ tank to dissolve Gd

Gd water circulation system (purify water with Gd)

240 PMTs were mounted in the 200 m³ tank in 2013.

The detector fully mimic Super-K detector. Gd dissolving test has been performed since Oct.2014. (see next page) After good water transparency is demonstrated with 0.2% $Gd_2(SO_4)_3$ (0.1% Gd), the GADZOOOKS! proposal will be discussed in the SK collaboration.

Transparency of Gd-loaded water (after mounting PMTs)

even with 0.1% $Gd_2(SO_4)_3$. It will soon reach 0.2% $Gd_2(SO_4)_3$ (target value).

31

Summary

Atmospheric neutrinos

- > Tau neutrino appearance with 3.8 σ level.
- Normal hierarchy favored at: $\chi^2_{IH} \chi^2_{NH} = 0.9$ by SK only, and 1.2 by SK+T2K.

Indirect dark matter search

- SK places the most stringent constraint for SD below 200GeV.
- Set new limit for light WIMPs (<6GeV) for SI.

Solar neutrinos

- \succ No significant correlation with solar activity.
- > Day/night asymmetry observed with 3σ level.
- \succ In energy spectrum, MSW is slightly disfavored by 1~1.7 σ .
- > About 2σ tension in Δm_{21}^2 between SK(Solar Global) and KamLAND.

R&D for GADZOOKS! project (EGADS) is going well.