Anti-neutrinos from the Earth: status and perspectives

B. Ricci Dept. of Physics and Earth Science and INFN-Ferrara Neutrino Telescopes, Venice 2-6 March 2015

Summary:

- ✓ Antineutrinos from the Earth: what are they?
- ✓ How can we measure them ?
- KamLAND and Borexino results and geological implications
- ✓ Geoneutrinos prediction
- \checkmark What's next

Thanks to: F. Mantovani, G. Fiorentini, <u>M. Baldoncini</u>, V. Strati, G. Xhixa, I. Callegari

Geo-neutrinos born on board of the Santa Fe Chief train

In 1953 G. Gamow wrote to F. Reines: "It just occurred to me that your background may just be coming from high energy beta-decaying members of U and Th families in the crust of the Earth."

FROM MUNISERS IN WRITY BOOK ON THE PLANETS, BOUILIBRIUM HEAT LOSS

TROM BARTE'S SURFACE IS 50 ERGS/CM²SEC. IF ASSUME ALL DUE TO

NETA DECAY THEN HAVE ONLY ENOUGH ENERGY FOR ADOUT 10⁸, 15 Nov

MENTEN DE CN² AND SEC. THIS IS LOW BY LO⁵ OR 50. SHORT

HALF LIVES WOULD BE NADE BY COGNIC RAYS OR NEUTRONS IN EARTH.

IN VIEW OF BARITY OF COMMIC RAYS: I.E. ABOUT EQUAL TO EXCERGY

STARLIGHT AND OF HEUTRORE IN RARTH THIS SOURCE OF MEUTRONS)

SEINS EVEN LESS LIKELY AS A SOURCE OF OUR SIGNAL. write to me at : The Union what do you Univ. of Mich. Ann Arbor. Mich F. Reines answered to G. Gamow: Yours 600 "Heat loss from Earth's surface is 50 erg cm⁻² s⁻¹. If assume all due to beta decay than have only enough energy for about 10⁸ one-MeV neutrinos cm⁻² and s."

Dear Fred

mun

CIONS

just be comming

10:

MESSAGE:

Geo-neutrinos: anti-neutrinos from the Earth

U, Th and ⁴⁰K in the Earth release heat together with anti-neutrinos, in a well fixed ratio:

Decay	$T_{1/2}$	E_{\max}	Q	$arepsilon_{ar{ u}}$	$arepsilon_{H}$
	$[10^9 \mathrm{~yr}]$	[MeV]	[MeV]	$[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 \ ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
232 Th $\rightarrow ^{208}$ Pb + 6 4 He + 4 e + 4 $\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \to {}^{40}\text{Ca} + e + \bar{\nu} \ (89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

• Earth emits (mainly) antineutrinos $\Phi_{\bar{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$ (as Sun shines in neutrinos).

• A fraction of geo-neutrinos from U and Th (not from ⁴⁰K) are above threshold for inverse β on protons: $\overline{v} + p \rightarrow e^+ + n - 1.8 \text{ MeV}$

•Geoneutrinos originating from U and Th can be distinguished through their energy spectra : e. g. anti-v with highest energy are from Uranium (E_{max}=3.3 MeV)

Detection of antineutrinos from Earth

Detection of antineutrinos from Earth

 $\overline{v_{e}} + p \rightarrow n + e^{+} - 1.8 \text{ MeV}$

KamLAND (Japan) 1 kTon LS $- t_0 = 2002$

Borexino (Italy) 0.3 kTon LS $- t_0 = 2007$

SNO+ (Canada) 1 kTon LS $- t_0 = 2015$?

JUNO (China) 20 kTon LS – $t_0 = 2020$?

REACTOR ANTI NEUTRINOS ARE THE MOST IMPORTANT SOURCE OF BACKGROUND IN GEONU DETECTION

Antineutrinos from reactors

- Reactor antinu and geonu spectra are partially overlapped
- R signal in the HER is crucial for modeling the reactor contribution in the LER, and therefore for extracting information on geoneutrinos.
- Reactor antinu signal calculation requires several ingredients (production, propagation and detection)

- R signal changes according to the different reactor operational conditions (IAEA-PRIS)
- •A worldwide map* of reactor antinu signal using updated data
- Total uncertainty is ~ 3% (main from sen² θ_{12})

0

A group shot...

reactor and geo N events

1.8

LER HER

~70% ~30% 3.3

8

reactor only

ہReactor ۷

Geo Ve

E [MeV]

Reactor anti-v and geo-v at different sites

 R_{FFR} = total reactor anti-v_e signal

 R_{LER} = reactor anti- v_e signal in the geo-v energy window (LER)

G = geo-v signal

Baldoncini et al. poster

SITE	EXPERIMENT	R [TNU]	R _{LER} [TNU]	G [TNU] ^[7]	R _{LER} /G
LNGS	BOREXINO	83.3 ^{+2.0}	22.2 ^{+0.6} -0.6	40.3 ^{+7.3} -5.8	0.6
ΚΑΜΙΟΚΑ	KAMLAND	65.3 ^{+1.7} -1.6	18.3 ^{+0.6} -1.0	Э1 Г +4.9	0.6
		625.9 ^{+14.5} a	168.5 ^{+5.7} 6.3 ^a	31.5	5.3
SUDBURY	SNO+	190.9 ^{+4.6} -4.2	47.8 ^{+1.7} -1.4	45.4 ^{+7.5} -6.3	1.1
DONGKENG	JUNO	95.3 ^{+2.6} -2.4	26.0 ^{+2.2} -2.3	20 7+6 5	0.7
		1566 ⁺¹¹¹ -100 ^b	354.5 ^{+44.5} -40.6	39.7 ^{-0.5} -5.2	8.9
GUEMSEONG	RENO-50	1128 ⁺⁷⁵ -67	178.4 ^{+20.8}	38.3 ^{+6.1} -4.9	4.7
HAWAII	HANOHANO	3.4 ^{+0.1} _{-0.1}	0.9 +0.02 -0.02	12.0+0.7	0.1
PYHÄSALMI	LENA	66.1 ^{+1.6}	17.0 ^{+0.5} -0.4	45.5 ^{+6.9} -5.9	0.4
HOMESTAKE	/	30.4 ^{+0.7} -0.7	8.0 ^{+0.2} -0.2	48.7+8.3	0.2
^a 2006 reactor operational data					

^b 2013 reactor operational data plus Yangjiang (17.4 GW) and Taishan (18.4 GW) nuclear power stations operating with a 80% average annual load factor.

Borexino and KamLAND results

16_C Events / 246 p.e. / 613 ton x year Geoneutrino energy window Geoneutrinos 180 14⊢ 160 Events / 0.2MeV 12 140Background 10 120 100 8 80 6 Reactor 60 40 antineutrinos 20 2500 2000 500 1000 1500 3000 3500 1.2 1.61.81.42 Light yield of prompt event [p.e.] E_p (MeV) **KamLAND** Borexino • Period: • Period: 2007 - 20122002 - 2012• Geo-v events: • Geo-v events: $1^{4^{+4}}$ 116+28-27 • Signal: Signal: 39 ± 12 TNU 30 ± 7 TNU

* arXiv:1303.2571v2 Borexino collaboration - Physics Letters B 722 (2013)

** arXiv:1303.4667v2 KamLAND collaboration - Phys. Rev. D 88 (2013)

2.2 2.4

2.6

Geoneutrino signal: an historical perspective

- Models assuming <u>uniform</u> U distribution in the <u>Earth</u>:
- Eder (Nucl. Phys. 1966)
- Marx (Cz. J. Phys 1969)
- Kobayashi (GRL 1991)
- Model with an uniform distribution of U in the <u>continental crust</u>:
- Krauss et al. (Nature 1984)
- BSE model with different U distribution between crust and mantle:
- Rothschild et al. (1998)
- ▲ Raghavan et al. (1998)

2° x 2° crustal model with BSE constraint (papers after 2004)

ETTER KamLAND and Borexino measurements

Open questions about natural radioactivity in the Earth

- 1 What is the radiogenic contribution to terrestrial heat production?
- 2 How muchU and Th inthe crust?
- 3 How much U and Th in the mantle?

- 4 What is hidden in the Earth's core? (geo-reactor, ⁴⁰K, ...)
 - 5 Is the standard geochemical model (BSE) consistent
 - with geo-neutrino data?

Geo-neutrinos: a new probe of Earth's interior 11

Terra Incognita

- Deepest hole is about 12 km
- Samples from the crust (and the upper portion of mantle) are available for geochemical analysis.
- Seismology reconstructs density profile (not composition) throughout all Earth.

Recent novelties*:

- a refined geophysical structure of Continental Crust and new compilations of geochemical data
- a new approach for evaluating the composition of Middle Crust and Lower Cr.
- the contributions from Lithospheric Mantle and from 3 classes of BSE compositional models (cosmochemical, geochemical and geodynamical)

KL and BX results and radiogenic heat

In the plane (S,H), a region containing all models consistent with geochemical and geophysical data can be defined:

- ✓ the "slope" is universal
- \checkmark the intercept depends on the site
- ✓ the width depends on the site (crust effect)

Cosmochemical BSE models: $m_{PRIM}(U) = 0.5 \pm 0.1 \ 10^{17} \text{ kg}$ Th/U = 3.5

Geochemical BSE models: $m_{PRIM}(U) = 0.8 \pm 0.2 \ 10^{17} \text{ kg}$ Th/U = 4

Geodynamical BSE models: $m_{PRIM}(U) = 1.4 \pm 0.2 \ 10^{17} \text{ kg}$ Th/U = 4

Implications of KL and BX on terrestrial radiogenic heat

* Bellini et al 2013 - Prog Part Nucl Phys - arXiv:1310.3732

How to look into the deep Earth?

Multi-site "view" of the mantle

$S_{LOCal} + S_{Far Field Crust} = S_{Crust}$						
	LOC [TNU] ¹	FFC [TNU] ²	Crust total [TNU]			
KamLAND	17.7 ± 1.4	7.3 ± 1.4	25.0 ± 2.0			
Borexino	9.7 ± 1.3	13.7 ± 2.5	23.4 ± 2.8			

	1	2	1	1
N.		-	Y	/
		An		
		U	Z	

$$S_{Measured} - S_{Crust} = S_{Mantle}$$
2013 data [TNU] Crust [TNU] Mantle [TNU]
$$31.1 + 7.2$$

$$25.0 + 2.0$$

$$6.1 + 7.6$$

KamLAND	31.1 ± 7.3	25.0 ± 2.0	6.1 ± 7.6
Borexino	38.8 ± 12.0	23.4 ± 2.8	15.4 ± 12.3 ³

The best fit value for the mantle signal common for both sites is $_{16}$ S_{Mantle} = (14.1 ± 8.1) TNU ³ ¹Fiorentini et al. 2012; ²Huang et al. 2013; ³Borexino coll PLB2013

Geoneutrino signal around the world*

* Huang, Y., et al. - Geochem Geophy Geosy – 2013 - arXiv:1301.0365v2

KamLAND: theory vs experiment

For each element (U, Th) the expected geo-neutrino signal S in one site on the Earth's surface is the sum of three contributions: C

Including a refined local model, in Enomoto et al. (2007) the expected signal in KamLAND is 35.2 TNU.

[1] Fiorentini et al. - 2012

[2] Huang, Y., et al. - 2013 - arXiv:1301.0365v2

[3] KamLAND collaboration – PRD 88 - 2013

- The local UC is divided into 7 dominant lithologic units
- 3146 samples used for estimating U and Th abundance in UC
- Local 3D geophysical model based on ~400 seismic control

points	LOC ^[1]	FFC ^[2]	CLM ^[2]	Mantle ^[2]	Total Expected	Experiment
S(U+Th) [TNU]	15.6 ± 4.3	15.1 ± 2.6	2.1 ± 2.1	8.7	41.5 ± 5.4	(2015?)

Geoneutrinos signal in JUNO

V. Strati et al. arXiv:1412.3324.

Reactors antineutrinos and geoneutrinos in JUNO

In the R_{OFF} scenario, JUNO is an excellent experiment for geoneutrino measurements

Strati et al.– arXiv:1412.3324 Baldoncini et al – arXiv:1411.6475

Conclusions
 Geoneutrinos represent an unique probe for studying the Earth interior

Two independent experiments, far ~10⁴ km each other, measure a geo-nu signal in agreement with the expectations

A big effort in geoneutrino signal calulation

 Future experiments are needed to better determine the radioactive content of the deep Earth

Geoneutrinos = fruitful connection between geology and physics (Neutrino Geoscience 2015, Paris 15-17 June)