NOvA Experiment

Gregory Pawloski

University of Minnesota

Neutrino Telescopes 2015

NuMI Off-Axis V_e Appearance Experiment

Long-baseline neutrino oscillation experiment $E \approx 2 \text{ GeV}$ L = 810 km

Oscillations at atmospheric regime

NuMI beam produced at Fermilab v_{μ} and \overline{v}_{μ} beam modes $(\overline{v}_{\mu}) \rightarrow (\overline{v}_{x})$ oscillations

Two detector experiment Near Detector (Fermilab, IL) Measure beam before oscillations Far Detector (Ash River, MN) Measure oscillated beam

Comparison reduces systematics

3 Categories of Physics Topics

Accelerator v Oscillation Physics Uses Near and Far Detectors

Accelerator v Near Detector Physics Cross-sections

Non-accelerator Physics Supernova v Monopoles

3 Categories of Physics Topics

Accelerator v Oscillation Physics Uses Near and Far Detectors

Accelerator v Near Detector Physics Cross-sections

Non-accelerator Physics Supernova v Monopoles

Oscillation Measurements:

 ν_{e} Appearance $\theta_{13},\,\delta_{CP}^{},\,mass$ hierarchy

 v_{μ} Disappeanace sin²(2θ₂₃), | Δm^{2}_{32} |

Combined Appearance and Disappearance Octant of $\theta^{}_{_{23}}$

NOvA

NOvA Detectors

NOvA

Gregory Pawloski – University of Minnesota

NOvA

Gregory Pawloski – University of Minnesota

 v_E Event Selectors

NOvA

v Event Selectors

L

Sensitivities: Mass Hierarchy

1σ and 2σ contours for 2 example measurements

Hierarchy resolution as a function of true value of δ_{CP}

NOvA

Gregory Pawloski – University of Minnesota

Sensitivities: CP Violation

1σ and 2σ contours for 2 example measurements

Ruling out no CP violation as function of true value of δ_{CP}

NOvA

Gregory Pawloski – University of Minnesota

Sensitivities: Disappearance

Can resolve non-maximal mixing for values of θ_{23} that are currently allowed at 90% CL

NOvA

Gregory Pawloski – University of Minnesota

Sensitivities: θ_{23} Octant

Significance of determining octant as function of true value of $\underline{\delta}_{_{CP}}$

NOvA

Gregory Pawloski – University of Minnesota

Total Number of Protons Delivered to NOvA

NOvA

Gregory Pawloski – University of Minnesota

Good agreement between cosmic rays simulation and data

Verified neutrino beam window with limited hand-scanning to maintain blindness

NOvA

Gregory Pawloski – University of Minnesota

Hand-scanned events

NOvA

Gregory Pawloski – University of Minnesota

ND Beam Events

NOvA

Gregory Pawloski – University of Minnesota

Mass Hierarchy Up to 3σ determination for best $\delta_{_{\rm CP}}$ case

Octant Resolution Up to 3σ determination for best δ_{CP} case and sin²($2\theta_{23}$)=0.95

Precision Measurement of θ_{23} and Δm^2_{32}

Taking data with Near and Far Detectors

Expect 1st oscillation results this year!