


  

 2Gregory Pawloski – University of MinnesotaGregory Pawloski – University of Minnesota SlideSlideNOvANOvA

(      )

NNuMI uMI OOff-Axis ff-Axis ννee  AAppearance Experimentppearance Experiment
Long-baseline neutrino oscillation experiment

E ≈ 2 GeV
 L = 810 km    

 
 

 Oscillations at atmospheric regime 
 

 NuMI beam produced at Fermilab
          ν

μ
 and ν

μ
 beam modes

ν
μ
 → ν

x
 oscillations

Two detector experiment
 Near Detector (Fermilab, IL)

 Measure beam before oscillations
 Far Detector (Ash River, MN)
 Measure oscillated beam

 Comparison reduces systematics
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NONOννAA



  

 3Gregory Pawloski – University of MinnesotaGregory Pawloski – University of Minnesota SlideSlideNOvANOvA

3 Categories of Physics Topics3 Categories of Physics Topics

 Accelerator ν Oscillation Physics
 Uses Near and Far Detectors

 Accelerator ν Near Detector Physics
 Cross-sections

 Non-accelerator Physics
 Supernova ν
 Monopoles

Physics Goals   Physics Goals     
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Physics Goals   Physics Goals     

Oscillation Measurements: Oscillation Measurements: 

 ν
e
 Appearance

θ
13

, δ
CP

, mass hierarchy

 ν
μ
 Disappeanace

sin2(2θ
23

), |Δm2
32

|

 

 Combined Appearance and Disappearance
 Octant of θ

23
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Far Detector

14 kton

896 planes

Near Detector

0.3 kton

206 planes

340, 000 channels
77% active by mass

18, 000 channels

NONOννA DetectorsA Detectors
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X
0
 = 38 cm (6 planes longitudally, 10 cells transversely)

Event Topologies   Event Topologies     
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2:1 Signal to Background

Two ν
e
 CC selectors

Multivariate techniques
to find EM shower 

νν
ee
  Event SelectorsEvent Selectors

Includes cosmic background
40 million to 1 cosmic rejection
20 million to 1 cosmic rejection
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 ν
μ
 CC selectors

ID muon using dE/dX, scattering, etc 

15:1 Signal to Background

Inclusive Interactions
~6% energy resolution

QE Interactions
~4% energy resolution 

ννμμ  Event SelectorsEvent Selectors

Includes cosmic background
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1σ and 2σ contours for
2 example measurements

Inverted
Hierarchy

Normal
Hierarchy

Hierarchy resolution as a
function of true value of δ

CP

Sensitivities: Mass Hierarchy   Sensitivities: Mass Hierarchy     
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1σ and 2σ contours for
2 example measurements

Inverted
Hierarchy

Normal
Hierarchy

Ruling out no CP violation
as function of true value of δ

CP
 

Sensitivities: CP Violation   Sensitivities: CP Violation     



  

 12Gregory Pawloski – University of MinnesotaGregory Pawloski – University of Minnesota SlideSlideNOvANOvA

Can resolve non-maximal mixing for values
of θ

23
 that are currently allowed at 90% CL

Sensitivities: Disappearance   Sensitivities: Disappearance     
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Significance of determining octant
as function of true value of δ

CP
 

Significance weakens as θ
23

 approaches 45o 

Sensitivities: Sensitivities: θθ
2323

 Octant     Octant      
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Total Number of Protons Delivered to NOvA

Collecting data with
full Far Detector readout

Collecting Data
with Near Detector

Collecting Data
 Building Far Detector

Beam Exposure   Beam Exposure     
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Good agreement between cosmic rays simulation and data

FD Cosmic Rays   FD Cosmic Rays     
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Verified neutrino beam window with
limited hand-scanning to maintain blindness

FD Beam Events   FD Beam Events     
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Hand-scanned events

ν
μ
-like Event ν

e
-like Event

FD Beam Events   FD Beam Events     
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ND Beam Events   ND Beam Events     
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Mass Hierarchy
Up to 3σ determination for best δ

CP
 case

Octant Resolution
Up to 3σ determination for best δ

CP
 case and sin2(2θ

23
)=0.95

Precision Measurement of θ
23

 and Δm2
32

 

Taking data with Near and Far Detectors

Expect 1st oscillation results this year! 

Summary   Summary     
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