XVI NEUTRINO TELESCOPES WORKSHOP

Palazzo Franchetti – Venice, 2-6 March 2015

Poster Session- Submission of abstract

Submitter: Valentina Ceriale^{3,4}, University of Genova, INFN-Sezione di Genova

Authors: B. Alpert¹, M. Balata², D. Bennett¹, M. Biasotti^{3,4}, C. Boragno^{3,4},C. Brofferio^{5,6}, V. Ceriale^{3,4}, D. Corsini ^{3,4} M. De Gerone^{3,4}, R. Dressler⁷, M. Faverzani^{5,6},E. Ferri^{5,6}, J. Fowler¹, F. Gatti^{3,4}, A. Giachero^{5,6}, S. Heinitz⁷, G Hilton⁷, U. K[°]oster⁹, M. Lusignoli⁸, M. Maino^{5,6}, J. Mates¹, S. Nisi², R. Nizzolo^{5,6},A. Nucciotti ^{5,6}, G. Pessina⁶, G. Pizzigoni^{3,4}, A. Puiu^{5,6}, S. Ragazzi^{5,6}, C. Reintsema¹, M. Ribeiro-Gomes¹⁰, D. Schmidt¹, D.Schumann⁷, M. Sisti^{5,6}, D. Swetz¹, F. Terranova^{5,6}, J. Ullom¹

¹National Institute of Standards and Technology (NIST), Boulder, Colorado, USA

²Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi (AQ), Italy

³Dipartimento di Fisica, Universit`a di Genova, Italy

⁴Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Italy

⁵Dipartimento di Fisica, Universit`a di Milano-Bicocca, Italy

⁶Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Italy

⁷Paul Scherrer Institut (PSI), Villigen, Switzerland

⁸Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma 1, Italy

⁹Institut Laue-Langevin (ILL), Grenoble, France

¹⁰Centre for Nuclear Physics, University of Lisbon, Lisbon, Portugal

Title of the poster: TES detector and array production for the HOLMES experiment.

ABSTRACT

The European Research Council has funded HOLMES, a new experiment to directly measure the neutrino mass. This project will perform a calorimetric measurement of the energy released in the decay of ¹⁶³Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. HOLMES will deploy a large array of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. We outline here the project with its technical challenges and perspectives. The HOLMES experiment is aimed at directly measuring the electron neutrino mass using the EC decay of ¹⁶³Ho and an array of low temperature microcalorimeters. HOLMES optimal experimental

configuration has been defined through extensive Monte Carlo statistical analysis and it is based on the present knowledge of the¹⁶³Ho decay parameters [1]. In its baseline configuration HOLMES will collect about 3×10^{A13} decays with an instrumental energy resolution ΔE of about 1 eV FWHM and a time resolution τ_R of about 1 µs. For 3 years of measuring time t_M , this requires a total Ho activity of about 3×10^5 decay/s. With an array of 1000 detectors, each pixel must contain a^{163} Ho activity of about 300 decays/s which gives a f_{pp} of about 3×10^{-4} . The total activity is given by about 6.5×10^{16} ¹⁶³Ho nuclei, or 18 µg, and each detector must therefore contain 6.5×10^{13} ¹⁶³Ho nuclei.

TES DETECTORS AND ARRAY

The detectors used for the HOLMES experiment will be Mo/Cu TES on SiNx membrane with bismuth absorbers (Fig. 1). The TES microcalorimeters will be fabricated in a two step process. The first steps will be carried out at the National Institute for Standard and Technology (NIST, Boulder, Co, USA) [5] where the devices will be fabricated up to the deposition of the bottom half of the absorber, i.e a 1.5 µm bismuth layer (Fig. 2). The devices will be further processed in the Genova INFN laboratory (Fig. 2). Here, the first step will be the deposition by means the ion implanter of a thin (few 100° A) layer of Au: ¹⁶³Ho, then the bismuth absorber will be completed with a deposition of a second 1.5 μ m bismuth layer to fully encapsulate the ¹⁶³Ho source. GEANT4 simulations show that this bismuth thickness is enough for fully containing 99.99997% of the highest energy electrons (~ 2 keV) emitted in the ¹⁶³Ho decay. The second step will be a Deep Reactive Ion Etching (DRIE) of the back of the silicon wafer to release the membranes with the TES microcalorimeters. The relatively high concentration of holmium (J = 7/2) could indeed cause an excess heat capacity due to hyperfine level splitting in the metallic absorber [3]. Low temperature measurements have been already carried out in the framework of the MARE project to assess the gold absorber heat capacity (< 150 mK), both with holmium and erbium implanted ions. Those tests did not show any excess heat capacity, but further more sensitive investigations will be carried out [4]. If necessary, dilution of the implanted ¹⁶³Ho concentration will be achieved by co-evaporation of gold during the implantation. The TES array is presently being designed with the aim of achieving an energy resolution Δ EFWHM of about 1 eV at the spectrum endpoint and a time resolution τR as close as possible to 1 μs . This requires an optimal thermal design of all detector components. To minimize the stray electrical inductance L which limits the pulse rise time, the TES will be arranged in 2 × 32 sub-arrays. This arrangement allows also to maximize the geometrical filling factor and therefore the¹⁶³Ho implantation efficiency.

REFERENCES

- 1. M. Lusignoli et al., Phys. Lett. B 697, (2011) 11-14.
- 2. C. Enss (Ed.), Cryogenic Particle Detection, Springer, Berlin, Heidelberg, 2005
- 3. Ch. Enss, S. Hunklinger, "Low temperature physics", Springer, Berlin, 2005
- 4. K. Prasai et al., J. Low Temp. Phys. 176, (2014) 979.
- 5. K.D. Irwin, G.C. Hilton, "Transition-edge sensors" in [2], pp. 63–149.

Figura 1:the two step TES fabrication process

Figura 2: One TES with bismith absorber fabricated by NIST.