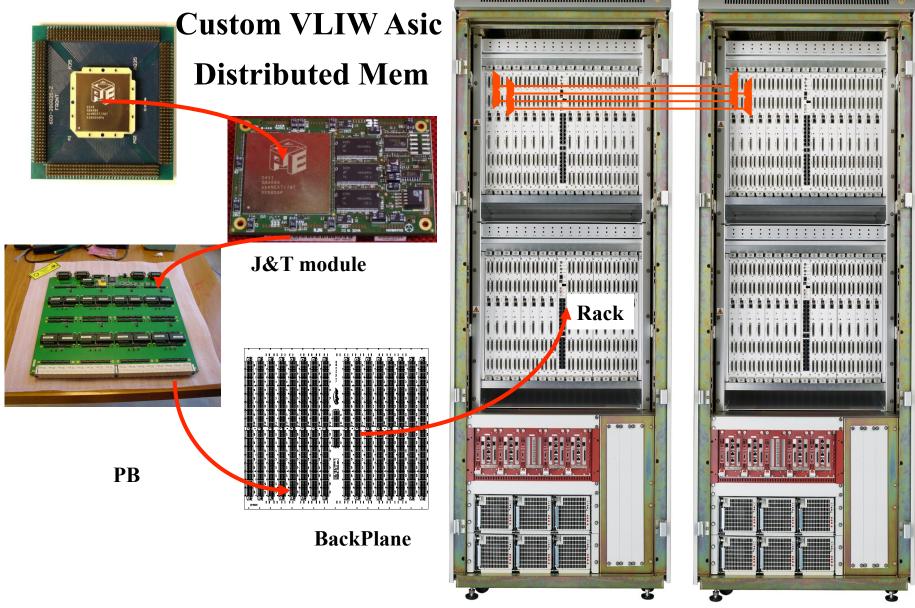
FET European Projects Coordination Experience: SHAPES (2006-2009) and EURETILE (2010-2014).

... a few hints about project preparation and initial phases.

Pier Stanislao PAOLUCCI researcher – INFN Roma coordinator – EURETILE and SHAPES FET projects


Personal background

 Research area: co-design of parallel/distributed hardware, system software and algorithms for numerical simulations/numerical signal processing

□ (since 1984) with the "masters" of APE: Nicola Cabibbo, Giorgio Parisi

- 1984-1997 INFN researcher @ APE lab: massively parallel hardware and software for numerical simulations: APE, APE100, APEmille
 - Several technology transfer actions / industrial applications
- **1997-2009**:
 - 4 years detachment for technology transfer, then part-time INFN researcher)
 - founder of IPITEC then Chief Technical Officer of ATMEL Roma (silicon design center embedded digital signal proc.)
- European projects:
 - MAGIC-FIPU FP5 ESPRIT project architecture responsible (1997-2001) (6M€ funding)
 - □ DIAM EUREKA project coordinator (2001-2005) (4M€ cost)
 - □ **SHAPES** FP6 FET project coordinator (2006-2009) (10M€ cost)
 - □ **EURETILE** FP7 FET proj. coord. (2010-2014) (5M€ funding, 1.6M€ INFN)
- 2010-2014 back to INFN as full-time researcher, EURETILE coordination

(2006) HW Background INFN Numerical Massive Parallel Systems

Istituto Nazionale Fisica Nucleare – APE Numerical Massive Marallel Systems – Custom VLIW processor, Distributed Memory

HW Background - Atmel Diopsis = RISC + mAgicV VLIW GigaFlops Numerical Processor MPSOC

- Multi-Processor tile
- Specific Processors for
 - Control (RISC)
 - Data
 - Processing (mAgicV VLIW floatingpoint)
- SHAPES tile obtained adding the Distributed Network Processor

SHAPES

First example, coordination of 2006-2009 SHAPES FET-ACA project MULTI-TILE Architecture – 10 M€ cost

- Scalable SW HW Architecture Platform for Embedded Systems
- Multi-Tile distributed memory HW architecture
- **Each Elementary Tile** composed of **3 processors**:
 - Distributed Network Processor for inter-tile communications
 - RISC processor for control part/user interface
 - mAgicV Floating-point VLIW processor for DSP/numerical computation
- Holistic compilation-chain for DSP/numerical/data streaming applications
 - Application described by "network of processes"
 - Automatic mapping/binding on available resources
 - Automatic generation of Distributed OS
 - Simulation/execution provides quantitative feedback for automation of mapping/binding/OS generation
- 8 tile SHAPES simulator available
- HW RISC+VLIW computational tile available on silicon
 - □ ATMEL Diopsis 940HF development board on the market

Pier Stanislao PAOLUCCI - Experience of FET projects coordination - Sept 2014

EXPECTIVE (2010-2014) Project Objectives and Expected Final Results

Objectives:

- investigate brain-inspired, foundational innovations to the software and hardware architecture of fault-tolerant and dynamic many-tile systems...
- ... to be applied to those High Performance Computers and Embedded Systems and requiring numerical computations and Digital Signal Processing: e.g. Brain Simulation / Simulation of Large Scale Neural Networks, multi-media data-streaming applications

Expected Final Results: the project will deliver

- European Reference Experimental Platforms for the study of many-tile systems in the scenarios of Embedded Systems and HPC
- A many-tile programming/optimization/simulation environment, to be applied to dynamic, fault-tolerant, many-process numerical/DSP applications, with foundational innovations
- A set of application benchmarks, representative of both HPC and Embedded Systems domains, coded using the new programming environment, including a simulator of neural activity and synaptic plasticity and dynamic multi-media data streaming applications

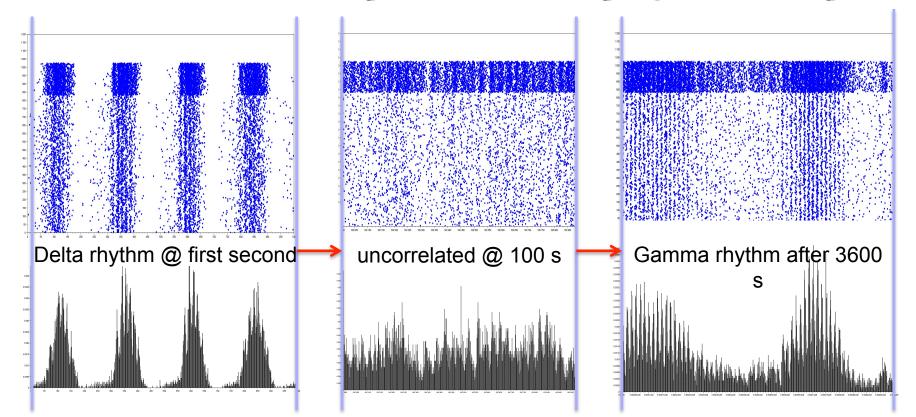
EURETILE The Consortium: Roles of Beneficiaries

- INFN coordinatin partner (P.S. Paolucci project coordinator, M. Giovagnoli, administrative coordinator, P. Vicini, INFN key-person) / TARGET Compiler Tech
 - DPSNN: distributed simulator of neural activity and synaptic plasticity
 - □ Many-tile HPC HW Platform Prototype
 - DNP (Distributed Network Processor) HW IP
 - Cogeneration of ASIPs (Applic. Specific. Instr-set Proc) HW IP /SW Tools

ETH Zurich

- DAL/DOL Many-Process Dynamic/Hierarchical Programming/ Optimization/Mapping Environment
- Multimedia/DSP/Embedded Systems Benchmarks

UJF-TIMA Grenoble

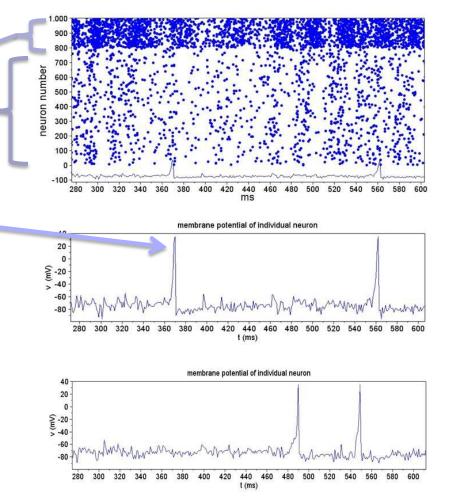

 Automatic Synthesis of Platform Dependent System SW/ Communication

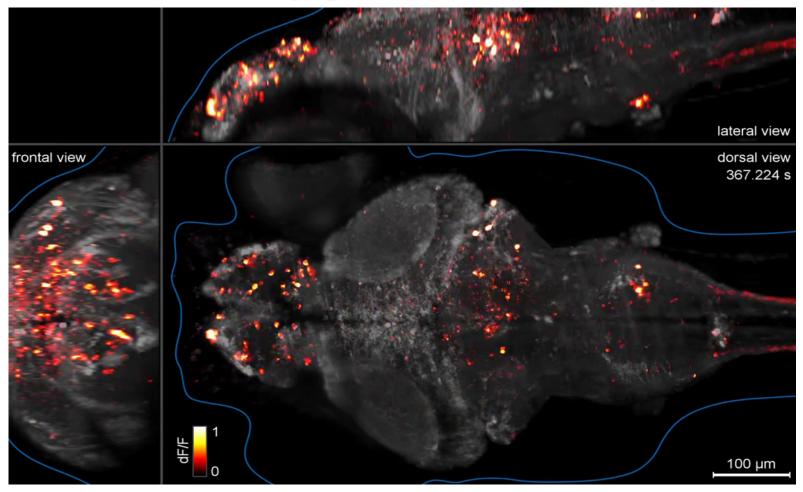
RWTH-Aachen

□ Scalable Embedded System Simulation/Debugging Platform

Pier Stanislao PAOLUCCI - Experience of FET projects coordination - Sept 2014

EURETILE Spontaneous Evolution of Rythmic Activity due to Polychronism and Synaptic Plasticity


As synaptic weights evolve according to STDP (synaptic spike-timing dependent plasticity, initial **delta** frequency oscillations (2-4 Hz @ first second activity) dissolves for a while into **uncorrelated** Poissonian activity (activity @ 100 seconds) and then **gamma** frequency activity emerges (30-100 HZ @ 3600 seconds)


DPSNN-STDP simulates Spiking Activity and Synaptic Plasticity (already proved from 100 K up to 6.6 Giga synapses, from 1 to 128 software processes)

- The picture represents the evolution of a neural network computed by the DPSNN-STDP code
- This picture:
 - 200 inhibitory neurons
 - 800 excitatory neurons
 - total 100 000 synapses
 - Time resolution: 1ms (horizontal axis)
 - Each dot in the raster gram represents an individual spike
 - The evolution of the membrane potential of each neuron is simulated
 - The evolution of individual synaptic strength is computed (not shown in the picture)
 - Polychronism: individual synaptic delays are taken into account
 - Individual connections and neural types can be programmed

Collective Spiking Rastergram and activity of individual neurons

Spiking activity of individual neurons observed in real-time (e.g. in a Zebra Fish Larva)

Misha B Ahrens, Philipp J Keller, «Whole-brain functional imaging at cellular resolution using light-sheet microscopy», Nature Methods, 18 March 2013, DOI:10.1038/NMETH.2434 Howard Hughes Medical Institute, 3D recording of temporal spiking activity of ~100 000 neurons. Note: the effective time resolution is still only ~1 s.

Neuro-synaptic activity and Plasticity

- Key areas of present INFN activity on large scale neural modeling
 - Coding of scalable Parallel/Distributed simulator
 - INFN developed the DPSNN-STDP simulator in the EURETILE FET Project. Proven simulation up to 6.6 G synapses, 128 cores.
 - See arXiv:1310.8478 (Apr 2014)
 - Comparison with experimental neuro-biological data and calibration of the INFN simulator
 - Will be performed in the CORTICONIC FET project (starting from Oct 2014, end Dec 2015) (cooperation with ISS, TUM, IDIBAPS)
 - □ Interface with experimental systems /
 - Will be investigated by the INFN "COSA" (iniziativa di gruppo 5), start Jan 2015
 - Co-design of simulation code and execution platform, inclusion of the simulator into robotic platforms
 - The plan is to start from "COSA" and "CORTICONIC" to prepare the participation to a future European project on this topic

Proposal: Coordinator goals vs project goals

The goal of the future project must overlap to a large degree with the kernel interests of the coordinator

□ Personal goals of the coordinating person

- □ Goals of the coordinating company / research institution
- The coordinator must clearly state in written form its original goal before starting the consortium composition and proposal definition
- Detailed goals can change, even a lot, during the proposal preparation, due to contribution of the partners. Anyhow a substantial overlap with the kernel interests of the coordinator must persists.

Consortium: Team-work Attitude of Key-Persons

- Integrated research projects are a problematic arena for "excessively-introvert" individual contributors.
- Integrated research projects are a good playground for excellent key-persons with team-work attitude
- Key-persons requisites for Integrated Projects:
 - Excellent Listening skills
 - Team Management skills
 - Problem Solving attitude
 - Excellent Technical skills
 - NO sympathy for Problem Creation
 - Confident in the capacity of a team composed of excellent key-persons to find (usually) better solutions then excellent individuals
- Otherwise, an integrated project can easily turn into a night-mare...

Consortium Composition: Complementary Partners

- The coordinator must select with great care a kernel of complementary key partners / key persons:
 - Personal trust between key persons
 - Reciprocal technical appreciation between key persons
 - □ Ideally no overlap/conflict of interest between partners
- An ideal consortium starts from a set of complementary key-persons with reciprocal personal trust and technical appreciation
- You are entering a four-five year collaboration. A wrong set of partners can turn your next years into a nightmare

Starting the consortium definition

- Start with one/very few key person you respect / trust
- Check their real interest on the project goal, mutual cooperation and willingness to commit
- Identify additional partners to be invited as a consequence of technical areas not yet covered
- Ask advice to confirmed partners before starting the invitation trial of a new partner
 - □ to avoid conflicts of institutional interest
 - □ to avoid personal conflicts
- Add one partner at a time to the original kernel, otherwise you could remain blocked by cross vetoes

For each new partner...

- The key person of the new partner considered for participation must state, in separate one to one colloquium, his/her:
 - Personal trust with key persons already on board
 - Technical appreciation of other key persons already on board
 - The working area/responsibility/technical goal which will be covered by himself/herself
 - □ Identification of potential areas of overlap with existing partners
 - If an overlap/potential conflict of interest exists check immediately the capacity of the new key person to reach a written (e.g. e-mail) agreement with the pre-existing partner.
 - □ If no agreement reached immediately, discard the new partner
- Look for body language and any hint of distress if any doubt discard the invitation
- Actual complementarity is a key point to avoid future problems

Consortium Agreement

- you followed the "complementarity" rules described by previous slides...
- ...then, the definition of a quarter page per partner, the essential contribution to the definition of a consortium agreement should be an "easy" task
 - Existing individual background
 - Expected individual foreground
 - □ Basic rules enabling:
 - Future cooperation
 - Independent continuation of work

Project Plan - At least one deliverable/(partner and reporting period)

- My (non-standard?!) advice:
 - Each partner should be responsible for at least one main workpackage during the central phase of the project
 - $\square \rightarrow$
 - □ No "passenger" partners
 - Define the individual responsibility area/specific goals/interface of each partners before starting the project proposal writing
 - A single statement can always resume the individual responsibility
 - □ Clear definition of a minimum set of interfaces between partners
 - Each partner should be officially responsible for at least one deliverable for each reporting period during the main course of the project ->
 - Better and simple reporting
 - Simplify the task of the officers and reviewers

Project Plan – Interaction between partners

- Before starting the project proposal detailed writing:
 - Define the key deliverable/technical area/final goal of each partner
 - Check the complementarity/non overlap with other partners
 - Define a work-package name and number associated to each partner
 - □ Design a graph of interaction between workpackages
 - Ideally each work-package in the central phase of the project should be interfaced with only two other work-packages
 - If more work-packages need to interact obtain a written agreement about the responsible partner/key-person before starting the proposal writing

Starting the project -At least three plenary meeting during the first trimester

- With several partners, my opinion is that at least three plenary meetings during the first trimester are needed to set-up a real cooperation
- Leverage on the honeymoon effect
 - Obtain results during the first 100 days
- Each plenary meeting should have
 - Plenary sessions
 - project goals, available background, definition of working groups, identification of critical issues
 - Separate sessions dedicated to working groups
 - Wrap-up plenary sessions
 - Results obtained by working groups
 - Objective of work to be done before next plenary meeting

Day to day management A lot of bilateral/trilateral meeting...

- Each partner should be responsible for at least a workpackage and must organize frequent (phone) meetings with work-packages at its interfaces
- The coordinator should be kept immediately informed of emerging issues...
- The coordinator must continuosly poll to check no blocking is happening
- Minutes of meetings MUST be distributed to all partners, also outside the work-package

One plenary 2.5 days technical workshop/year

- A typical Integrated Project involves at least 40 technical people working -> at least 15 technical working groups (one or more per partner)
- Each technical group should present
 - □ Theory
 - Available background
 - Practical results to the other group
- Each technical workshop creates:
 - Informal channels between technical people
 - Reciprocal understanding between technical people
 - Cross partner non-filtered information flow between technical people and management people
- The technical workshop should also include a management board meeting

Use cooperative tools

- Massive use of wiki cooperative web site and document sharing facilities
 - Each participant can publish an updated status of its work
 - □ A forum can be created to discuss emerging problems
 - Storage of meeting minutes and next meeting agendas
 - Administrative documents readily available
 - Sharing of SW tools and other deliverables/source codes/executables...

Person-months vs deliverable, vs work-package, vs period, vs partner.

- A well designed, shared spreadsheet is sufficient
- Share since the project proposal phase, and then during the project life with the partners a cooperative excel spreadsheet where:
 - □ There is one foil per partner....
 - ...plus foils with automatic sums at project level
 - ... where during the periodic reporting phase, each partner can insert his own forecasts for the period and the amount of personmonths actually spent on each deliverable and each period
 - □ the foil must contain all data from previous periods
 - the automatic computation of individual data must allow an immediate control, at project level, of periodic forecasts and periodic consolidations, at the granularity of deliverable, workpackage and full-project.

Drawbacks

. . .

- In my case, in retrospective, the job of European project promotion / coordination and the strictly related active technology transfer actions produced a favorable balance of plus-points, versus a few serious drawbacks
- ... let us discuss, if you like
- How to reduce the drawbacks? ...a few suggestions.

Summary

- Overlap between the goals of the project and the goals of the coordinator
- Select excellent key-persons with team-work attitude
- Complementarity between key-persons and partners
- Assign individual responsibility to each partner from the beginning
- A lot of interaction monitoring problem solving
- Keep continuos control of forecast and consolidation of person-months and budget
- In the past, not so much bureaucracy needed
- ENJOY integrated project create good opportunities