
Peter Messmer

NVIDIA Co-Design Lab @ ETH Zurich

PHYSICS AT EXTREME SCALE

2 2

NVIDIA CO-DESIGN LAB AT ETH ZURICH

Foster collaboration between scientific user community and NVIDIA

Get input from real-world hybrid applications

Support community in design decisions

Opened on November 1, 2013

Located on ETH Zurich campus (Science City & Center)

www.nvidiacodesignlab.ethz.ch

Similar labs at Julich, Cambridge, ..

http://www.nvidiacodesignlab.ethz.ch/

3

FOCUS AREAS OF COE AT EXTREME SCALES

Theory

Analytics

Data Acquisition

Particle Physics Cosmology

4

COE APPLICATION TYPES

Theory

Analytics

Data Acquisition

Particle Physics Cosmology

QCD

WLCG

LHC Triggers

SPH

SKA/SDP

SKA Xrelator

5

RANGE OF EXTREME SCALE PARALLELISM

Theory

Analytics

Data Acquisition

Particle Physics Cosmology

QCD

WLCG

LHC Triggers

SPH

SKA/SDP

SKA Xrelator

Data Parallel

Task Parallel

Pipeline Parallel

6

HARDWARE “COVERAGE” OF COE APP SPACE

Data Parallel

Theory

7

HARDWARE “COVERAGE” OF COE APP SPACE

Data Parallel

Phi

x86

Power

ARM
FPGA

Tegra

TK1

Theory

8

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING
10x Performance & 5x Energy Efficiency for HPC

9 9

LOW LATENCY OR HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other (warps of) threads

GPU Streaming Multiprocessor – High-throughput Processor

CPU core – Low-latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

10 10

GPU ARCHITECTURE:
TWO MAIN COMPONENTS

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 12 GB per GPU

Bandwidth currently up to ~288 GB/s (Tesla products)

ECC on/off (Quadro and Tesla products)

Streaming Multiprocessors (SMs)

Perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

D
R

A
M

 I
/F

G

ig
a
 T

h
re

a
d

H

O
S

T
 I

/F

D
R

A
M

 I
/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

11

Dual GK104 GPUs

3x Single Precision

Video, Signal, Life Sciences, Seismic

GK110 GPU

3x Double Precision

CFD, FEA, Finance, Physics, etc.

Tesla K10 Tesla K20, K20X, K40

KEPLER GENERATION OF GPUS

12

TEGRA K1
IMPOSSIBLY ADVANCED

NVIDIA Kepler Architecture

4-Plus-1 Quad-Core A15

192 NVIDIA CUDA Cores

Compute Capability 3.2

326 GFLOPS

5 Watts

13

Development Platform for Embedded

Computer Vision, Robotics, Medical

Tegra K1 SoC

CUDA Enabled

$192

JETSON TK1

THE WORLD’S 1st EMBEDDED SUPERCOMPUTER

14

JETSON TK1: UNLOCKING NEW

APPLICATIONS

Computer Vision

Robotics

Automotive

Medicine

Avionics

15

STRONG CUDA GPU ROADMAP

S
G

E
M

M
 /

 W
 N

o
rm

a
li
z
e
d

2012 2014 2008 2010 2016

Tesla
CUDA

Fermi
FP64

Kepler
Dynamic Parallelism

Maxwell
DX12

Pascal
Unified Memory

3D Memory

NVLink

20

16

12

8

6

2

0

4

10

14

18

16 16

INTRODUCING NVLINK AND STACKED MEMORY

NVLINK

GPU high speed interconnect

80-200 GB/s

Planned support for POWER CPUs

Stacked Memory
4x Higher Bandwidth (~1 TB/s)

3x Larger Capacity

4x More Energy Efficient per bit

17

NVLINK UNIFIES MEMORY SPACES

TESLA

GPU
CPU

DDR Memory Stacked Memory

NVLink

80 GB/s

DDR4

50-75 GB/s

HBM

1 Terabyte/s

18 18

UNIFIED MEMORY
DRAMATICALLY LOWER DEVELOPER EFFORT

Developer View Today Developer View With
Unified Memory

Unified Memory System
Memory

GPU Memory

19

UNIFIED MEMORY

void sortfile(FILE *in, FILE *out, int
N)
{
 char *data = (char *)malloc(N);
 fread(data, 1, N, in);

 sort(data, N);

 fwrite(data, 1, N, out);
 free(data);
}

void sortfile(FILE *in, FILE *out, int N)
{
 char *data = (char *)cudaMallocManaged(N);
 fread(data, 1, N, in);

 parallel_sort<<< ... >>>(data, N);

 fwrite(data, 1, N, out);
 cudaFree(gpu_data);
}

Call Sort on CPU Call Sort on Kepler

void sortfile(FILE *in, FILE *out, int
N)
{
 char *data = (char *)malloc (N);
 fread(data, 1, N, in);

 parallel_sort<<< ... >>>(data, N);

 fwrite(data, 1, N, out);
 free(gpu_data);
}

Call Sort on Pascal

No need for opt-in

allocator

Memory Management

Becomes Performance

Optimization

20

THE RIGHT TOOL FOR THE TASK

daiw.de

Domain-

Specific

Languages

21

CUDA PROGRAMMING MODEL FOR GPUS
Parallel, hierarchical, heterogeneous

Host Memory Device Memory

Host
(CPU)

Device (GPU)

Grid of Blocks

Block 0

Shared

Memory

Block 1

Shared

Memory

Block N

Shared

Memory

22

DYNAMIC PARALLELISM

CPU Fermi GPU CPU Kepler GPU

23

CUDA DEVELOPMENT PLATFORM

 Programming

 Approaches
Libraries

“Drop-in” acceleration

Programming

Languages

OpenACC

Directives

Maximum control Maximum portability

 Development

 Environment

Parallel Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger

NVIDIA Visual Profiler

 Open Compiler

 Tool Chain
Enables compiling new languages to CUDA platform, and

CUDA languages to other architectures

Productive tools and higher-level programming approaches

24

C++11 IN CUDA 6.5

Experimental release in CUDA 6.5

 nvcc -std=c++11 my_cpp11_code.cu

Support for all C++11 features offered by host compiler in host code

Currently no support for lambdas passed from host to device

25

THRUST: STL-LIKE CUDA TEMPLATE LIBRARY

GPU(device) and CPU(host) vector class

 thrust::host_vector<float> H(10, 1.f);

 thrust::device_vector<float> D = H;

Iterators

 thrust::fill(D.begin(), D.begin()+5, 42.f);

 float* raw_ptr = thrust::raw_pointer_cast(D);

 Algorithms

Sort, reduce, transformation, scan, ..

 thrust::transform(D1.begin(), D1.end(), D2.begin(), D2.end(),

 thrust::plus<float>()); // D2 = D1 + D2

C++ STL Features
for CUDA

http://code.google.com/p/thrust/downloads/list

26

GPU-ACCELERATED LIBRARIES
“Drop-in” acceleration

NVIDIA cuFFT NVIDIA cuSPARSE NVIDIA cuBLAS

NVIDIA cuRAND

NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on
GPU and Multicore

C++ Templated
Parallel Algorithms IMSL Library

GPU Accelerated
Linear Algebra

Building-block
Algorithms CenterSpace NMath

http://code.google.com/p/thrust/downloads/list

27

CUDNN

Deep Neural Network Library

Pre-packaged kernels for

convolution, pooling, softmax

activations

 ..

developer.nvidia.com/cuDNN

http://developer.nvidia.com/cuDNN
http://developer.nvidia.com/cuDNN

28

 OPENACC DIRECTIVES

Program myscience

 ... serial code ...

!$acc region

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end region

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Easy, Open, Powerful

• Simple Compiler hints

• Works on multicore CPUs & many core

GPUs

• Compiler Parallelizes code

OpenACC

Compiler

Hint http://www.openacc.org

http://www.openacc-standard.org/

29 29

OPENACC: OPEN, SIMPLE, PORTABLE

• Open Standard

• Easy, Compiler-Driven Approach

• Portable on GPUs and Xeon Phi
main() {

 …

 <serial code>

 …

 #pragma acc kernels

 {

 <compute intensive code>

 }

 …

}

Compiler
Hint CAM-SE Climate

6x Faster on GPU
Top Kernel: 50% of Runtime

30

STANDARDIZATION EFFORTS
A standard C++ parallel library

N3960 Technical Specification Working Draft:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf

Prototype:
https://github.com/n3554/n3554

std::vector<int> vec = ...

// previous standard sequential loop
std::for_each(vec.begin(), vec.end(), f);

// explicitly sequential loop
std::for_each(std::seq, vec.begin(), vec.end(), f);

// permitting parallel execution
std::for_each(std::par, vec.begin(), vec.end(), f);

Complete set of parallel primitives:
for_each, sort, reduce, scan, etc.

ISO C++ committee voted unanimously to
accept as official technical specification
working draft

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
https://github.com/n3554/n3554

OpenACC-stndard.org confidential 31

Linux GCC Compiler to Support GPU Accelerators

Open Source
GCC Efforts by Samsung & Mentor Graphics

Pervasive Impact
Free to all Linux users

Mainstream
Most Widely Used HPC Compiler

Oscar Hernandez

Oak Ridge National Laboratories

Incorporating OpenACC into GCC is an excellent example of open source and

open standards working together to make accelerated computing broadly

accessible to all Linux developers.

“

”

32

NUMBA PYTHON COMPILER

Free and open source compiler for array-oriented Python

NEW numba.cuda module integrates CUDA directly into Python

http://numba.pydata.org/

@cuda.jit(“void(float32[:], float32, float32[:], float32[:])”)
def saxpy(out, a, x, y):
 i = cuda.grid(1)
 out[i] = a * x[i] + y[i]

Launch saxpy kernel
saxpy[griddim, blockdim](out, a, x, y)

© 2014 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo,
GeForce, Quadro, Tegra, Tesla, CUDA, GameStream, GeForce Experience,
Iray, NVIDIA GRID, NVIDIA G-SYNC, NVIDIA Pascal, NVLink, OptiX, and SHIELD
are trademarks and/or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

34

Network

KEPLER ENABLES NVIDIA GPUDIRECT™ RDMA

Server 1

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

Server 2

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

http://docs.nvidia.com/cuda/gpudirect-rdma

http://docs.nvidia.com/cuda/gpudirect-rdma
http://docs.nvidia.com/cuda/gpudirect-rdma
http://docs.nvidia.com/cuda/gpudirect-rdma

35 35

IF YOUR APPLICATION LOOKS LIKE THIS..

36 36

.. YOU MIGHT BE INTERESTED IN OPTIX

• Ray-tracing framework

• Build your own RT application

• Generic Ray-Geometry interaction

• Rays with arbitrary payloads

• Multi-GPU support

37 37

DIFFERENT PROGRAMS GET INVOKED FOR
DIFFERENT RAYS

Ray Launcher

Closest hit

program

Any hit

program

 Miss

program

