
WP3 : Languages and Programming Models

WP3 working group:
Academic: Peter Boyle, Francesco di Renzo, Denis Barthou, and John Ashley
Codeplay: Paul Keir, Andrew Richards
Nvidia: John Ashley

• WP3 discussion report

• Data parallel programming

• Relation to work packages and communities

Machine landscape

• Understanding future progamming models and languages requires understanding future
hardware

• Next generation US machines will mix GPU/simd and CPU/simd architectures
e.g. OpenPower, ManyCore/Cray likely set the directions for large installations

Chip Insns Width single FP/clock/core

Xeon Westmere SSE2 128b 8
Ivybridge AVX 256b 16
Haswell AVX2 256b 32

Broadwell 2015 AVX2 256b 32
Skylake 2016 AVX3.2 512b 64

Many core Knights Corner AVX512 512b 32
Knights Landing AVX3.2 512b 64

GPU Many SIMD cores Warp scheduling

• SIMD issues same intruction to multiple operands in a register file

• SIMD loads accelerated by accessing consecutive memory addresses

• Underlying gain from spatial locality of memory reference and operations

• CPU SIMD vectorises “data” but NOT “thread state”
Single address and wide data load (spatial locality, all data on bus used)
Lower performance gather operations where reference locality is absent

• GPU SIMD vectorises “data” AND “thread state”
Many addresses generated
Default is gather-like operation, spatial locality detected and read coalescence gives speed up

• of course thread and task parallelism must also be addressed.

Spatial locality

• Generating memory reference and operation spatial locality underlies optimisation for all next
generation machines.

• Placing data upon which the same operations are performed in adjacent memory locations is
often only possible to generate with data layout transformations.

• Current languages make guarantees about the data layout of arrays which cannot be changed

• We must create layout opaque containers for arrays so that these contracts may be broken

• This was done implicitly in classic SIMD languages such CMfortran, APE/Tao (three cheers
for INFN!) etc..

• Much discussion in WP3 has centred on automating layout transformation, and providing
platform neutral interfaces to SIMD.

Assumptions

Two Skype telecon meetings discussing framework.
We have achieved some consensus on certain assumptions

1. We believe the future of HPC as a whole will be heterogeneous in terms of architectures and
performance of system components, although individual installations may be homogenous or
heterogenous.

2. We believe that parallelism at all levels of code and system will become more and more
critical for performance. This includes levels including machines, cores, and vector units.

3. We believe that given the scale of the problems the Center of Excellence is interested in,
codes must be able to be adapted to take maximum advantage of a particular installations
mix of hardware, storage, and networking capacity and capabilities.

4. We believe codes should be portable and adaptable to an installation with reasonable effort.

5. We believe that we cannot pick a winner nor should we seek to find a one size fits all answer
in terms of programming technologies such as CUDA, OpenCL, SYCL, OpenMP, OpenACC,
etc.

Recommended directions for programming models

1. The organization and management of data is fundamental to the ability to organize and
parallelize programs. Data structures should be fundamentally data parallel. In particular,
they should be fundamentally vectorization friendly.

2. Parallel data structures should be able to be customized (at least at compile time) to
underlying hardware without impacting the overall structure of the code.

3. Of the current languages used for high performance and high productivity programming, we
feel C++ has the best chance of providing scalable, cross platform, and high performance
code in a mature and still growing platform.

4. Fundamental implementations of algorithmic parallelism should be adaptable at compile time
to varying underlying hardware or software architectures of a given installation. Distribution
and balancing of workload between system components may be either done at compile time
or runtime.

Recommended areas for study

1. Evaluation of various data parallel structures such as Structure of Arrays, Array of Structures
of Vectors, and potentially others. Develop examples of the use of each for common
programming tasks and compare efficiency and ease of use.

2. Investigate use of ifdefs1 , macros, templates, expression templates, and other language
abstractions for abstracting algorithmic parallelism from written code while allowing
reasonable compilation of performant code.

3. Development of a style guide for using techniques to enable varied physical implementations
of abstracted parallelism allowing for the incorporation of hand coded routines using existing
compilers. The overall research program should strive to include examples for OpenMP,
OpenACC, CUDA, and OpenCL/SYCL at a minimum, but individual investigators may not
cover all these areas.

4. In conjunction with other work packages, examine weaknesses and strengths of existing
Extreme Scale codes and look for functions and design patterns that can be added to a
standard cookbook and/or library. Evaluate the benefits of embedded Domain Specific
Languages (DSLs) from a programmer productivity vs algorithmic flexibility vs executable
performance perspective. As an example, we could study QDP++ for lessons learned and
opportunities for expansion and performance improvement.

We do not have a consensus view on the inclusion of areas beyond lattice physics and perhaps
cosmology although there would be support for including CFD in the Lattice Boltzman formulation
as it is similar to LQCD. We recognize there may be some benefits to including SKA and LHC.

1D. Barthou does not endorse ifdef

C++ data parallel objects?

Recreate success of CMfortran, APE/Tao for cartesian array processing?

• Automating layout transformation is way forward

• Conformable array operations automatically map to independent threads and independent
SIMD lanes.

• Proof of concept in C++ container library

• Object oriented SIMD interface – perhaps in spirit of APE/Tao?

Connection virtual nodes ⇒ independent subvolumes in independent SIMD lanes

Automating layout transformations

Ordering Layout Vectorisation Data Reuse
Microprocessor Array-of-Structs (AoS) Hard Maximised

Vector Struct-of-Array (SoA) Easy Minimised
Bagel Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

• Developed general short vector classes, compile time determined width.

• Parameterise transformation, opaque containers hide layout from user

• Automatically transform layout of mathematical objects (scalar, vector, matrix, higher rank
tensors).

template<class vtype> class iScalar

{

vtype _internal;

};

template<class vtype,int N> class iVector

{

vtype _internal[N];

};

template<class vtype,int N> class iMatrix

{

vtype _internal[N][N];

};

Data parallel programming interface

• Define matrix, vector, scalar operations using usual C++ elegance

• Can nest iMatrix<iMatrix<vfcomplex> > etc... to form any tensor structure

• Can change the width of the internal type to short vectors or scalars

• CartArrayMatrix → CartArray<iMatrix> → vector<Matrix<vfcomplex> >
• Matrix −→ iMatrix<complex<float> >

• Pass grid information in constructur

• CartArrayColorMatrix MyArray(Grid)

• Conformable operations are data parallel on the same Grid layout

• HisArray = MyArray * YourArray;
•

DerivativeArray = 0.5*(Cshift(OtherArray,2,-1) - Cshift(OtherArray,2,+1));

• Bottom line: high-level data parallel code gets 65% of peak

• Single data parallelism model targets BOTH SIMD and threads efficiently.

• Plan: cover MPI + SIMD + Threads in single parallelism model for cartesian array processing

Implementation details

Define performant classes vfloat, vdouble, vfcomplex, vzcomplex.

#if defined (AVX1) || defined (AVX2)

typedef __m256 dvec;

#endif

#if defined (SSE2)

typedef __m128 dvec;

#endif

#if defined (AVX512)

typedef __m512 dvec;

#endif

#if defined (QPX)

typedef vector4double dvec;

#endif

class vdouble {

dvec v;

// Define arithmetic operators

friend inline vdouble operator + (vdouble a, vdouble b);

friend inline vdouble operator - (vdouble a, vdouble b);

friend inline vdouble operator * (vdouble a, vdouble b);

friend inline vdouble operator / (vdouble a, vdouble b);

static int Nsimd(void) { return sizeof(dvec)/sizeof(double);}

}

Implementation details

Define performant classes vfloat, vdouble, vfcomplex, vzcomplex.

friend inline vdouble operator + (vdouble a, vdouble b) {

vdouble ret;

#if defined (AVX1)|| defined (AVX2)

ret.v = _mm256_add_pd(a.v,b.v);

#endif

...

return ret;

};

friend inline vdouble operator * (vdouble a, vdouble b) {

vdouble ret;

#if defined (AVX1)|| defined (AVX2)

ret.v = _mm256_mul_pd(a.v,b.v);

#endif

...

return ret;

};

friend inline void fmac (vdouble &y,vdouble a, vdouble x){

#if defined (AVX1) || defined (SSE2)

y = a*x+y;

#endif

#ifdef AVX2 // AVX 2 introduced FMA support. FMA4 eliminates a copy, but AVX only has FMA3

// accelerates multiply accumulate, but not general multiply add

y.v = _mm256_fmadd_pd(a.v,x.v,y.v);

#endif

}

Code examples & performance analysis

Matrix multiply is simply coded. Syntactic sugar connects to arithmetic operators.

template<class rrtype,class ltype,class rtype,int N>

inline void mult(iMatrix<rrtype,N> * __restrict__ ret,iMatrix<ltype,N> * __restrict__ lhs,iMatrix<rtype,N> * __restrict__ rhs){

for(int c2=0;c2<N;c2++){

for(int c1=0;c1<N;c1++){

mult(&ret->_internal[c1][c2],&lhs->_internal[c1][0],&rhs->_internal[0][c2]);

for(int c3=1;c3<N;c3++){

mac(&ret->_internal[c1][c2],&lhs->_internal[c1][c3],&rhs->_internal[c3][c2]);

}

}}

return;

}

• Template parameter matrix size; known at compile time

• Generates very efficient AVX/AVX2 code with clang

Clang++ Assembly output
Ltmp4:

.cfi_def_cfa_register %rbp

vmovaps (%rdx), %ymm0

vmovaps 32(%rdx), %ymm1

vmovaps 64(%rdx), %ymm2

vmovaps 96(%rdx), %ymm3

vmovaps 128(%rdx), %ymm4

vmovaps 160(%rdx), %ymm5

vmovaps 192(%rdx), %ymm6

vmovaps 224(%rdx), %ymm7

xorl %eax, %eax

.align 4, 0x90

LBB0_1: ## %.preheader

=>This Inner Loop Header: Depth=1

vmulps (%rsi,%rax,8), %ymm0, %ymm8

vaddps (%rdi,%rax), %ymm8, %ymm8

vmulps 32(%rsi,%rax,8), %ymm1, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 64(%rsi,%rax,8), %ymm2, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 96(%rsi,%rax,8), %ymm3, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 128(%rsi,%rax,8), %ymm4, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 160(%rsi,%rax,8), %ymm5, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 192(%rsi,%rax,8), %ymm6, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmulps 224(%rsi,%rax,8), %ymm7, %ymm9

vaddps %ymm9, %ymm8, %ymm8

vmovaps %ymm8, (%rdi,%rax)

addq $32, %rax

cmpq $256, %rax ## imm = 0x100

jne LBB0_1

• Template parameter matrix size (8) ; known at compile time
• Generates very efficient AVX/AVX2 code with clang

Performance analysis on Ivybridge

• FP pipeline
• dual issue 8 wide single precision 2.3GHz.
• Peak 16x2.3 = 36.8 Gflop/s per core single
• Peak 8x2.3 = 18.4 Gflop/s per core double

• Memory system
• Streams bandwidth benchmark reports 13GB/s.
• Peak memory bandwidth 25.6GB/s.

• L1 resident results (should saturate FP pipe)
• matmul with N=12 : 32Gflop/s

std:vector<int> grid = { 8,8,8,8 };

std:vector<int> simd = { 1,1,2,2 };

CartesianGrid Grid(grid,simd);

CartArrayColorMatrix A(Grid);

CartArrayColorMatrix B(Grid);

CartArrayColorMatrix C(Grid);

A = B * C;

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	
 10	
 100	
 1000	
 10000	
 100000	
 1000000	

Gigaflop/s	

Single	

core	

2.3GHZ	
 	

Ivybridge	

Footprint	
 (KB)	

Performance	
 (GF)	

Peak	

Streams	
 limit	

Performance on KNC

Added OpenMP threading to Lattice operations:

template<class left,class right>
inline auto operator - (Lattice<left> &lhs, right &rhs)

-> Lattice<decltype(lhs._odata[0]*rhs)>
{

Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
#pragma omp parallel for

for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=lhs._odata[ss]-rhs;

}
return ret;

}

• Simple data parallel interface → SIMD ⊗ Threads ⊗ MPI

• Data parallel array operations and cshift

• Built on abstract vFloat, vComplex classes targetting SIMD intrinsics.
SSE, SSE2, AVX, AVX2, AVX512, AVX3.2

Performance on KNC

'
'
'
'
'
'
'
''
'
'

Grid.cc'on'Xeon'Phi'
'
'Xeon'phi'coprosessor'has'61'in'order'intel''MIC,'each'core'has'a'vector'unit''
which'contains'32'512?bit'SIMD'.'
L1'cache'size':'32K'
L2'cashe'size:'512K'
'
'Compile'flag,'
''
'' icpc'Grid_v2.cc'?std=c++11'?O3'?fopenmp'?DAVX512'–mmic'
'Execution'
' Native'
Prefech'instruction'
''''''''''''_mm_prefetch(ptr+i+L2_DEPTH_MM_HINT_T1);'
''''''''''''_mm_prefetch(ptr+i+L1_DEPTH,_MM_HINT_T0);'

' '

OpenAcc thoughts

Probably quite easy with ifdefs.
Follow connection machine rule:

• scalar variables live on the host,

• vector variables live on the accelerator,

• use pcopyin to cache transparently.

John Ashley has verified that simple loop implementation of vFloat class does indeed vectorise on
GPU through PGI compiler.
Alan Gray (EPCC) is playing a similar game with Lattice Boltzmann code

template<class left,class right>
inline auto operator - (Lattice<left> &lhs, right &rhs)

-> Lattice<decltype(lhs._odata[0]*rhs)>
{

Lattice<decltype(lhs._odata[0]*rhs)> ret(lhs._grid);
#ifdef GRID_OFFLOAD
#pragma acc pcopyin(lhs,rhs,ret)
#else
#pragma omp parallel for
#endif

for(int ss=0;ss<rhs._grid->oSites(); ss++){
ret._odata[ss]=lhs._odata[ss]-rhs;

}
return ret;

}

Performance analysis

Conclusion:

• Industry has a programming problem with proliferation of multiple forms of
parallelism

• SIMD ⊗ Threads ⊗ MPI
• Current “solutions” such as co-arrays describe only a subset of these

• High performance data parallel interface is achievable through compiler

• Accelerates regular cartesian array processing

• Simple data parallel interface → SIMD ⊗ Threads ⊗ MPI

• Obtain highest fractions of peak from high level code
10x faster than QDP++ and 10x smaller than QDP++ and more general than
QDP++ !

Suggestion how WP3 might be structured?

• Multi-layered interface to SIMD

1. Portfolio of best practice examplars for a number of homogenous and heterogenous
compilation targets OpenCL, SyCL, C++AMP, OpenAcc, OpenMP

• Feeds into and informs application packages

2. Cross-platform portable vector float/double/fcomplex/dcomplex type system

• Scalar,SSE,SSE2,AVX,AVX2,AVX512,AVX3.2,QPX,GPU ready

3. Generic performant mathematical types based on these: Scalar,Vector,Matrix;
automating layout tranformation

• Foundation for higher levels
• Possibly useful to constructing some data parallel operations in codes that do not fit neatly into

global regular structure (e.g. n-body simulation)

4. Data-parallel Cartesian grid array processing library
• Design target is QCD; possibly applicable to many COSMOS 3d grid algorithms such as

WALLS, also UKMHD Lare3d code.

Relation between WP3 and other packages

• Initially PB supported a US SciDAC style model with complete code reengineering.

• Level of resource is insufficient to support reengineering of so many communities
Evolving current packages leverages prior investments and WP3 should assist that

Serving the domains:

• WP3 appears presently most focussed on giving high performance to the easily parallelised
QCD codes

• Degree to which it helps other communities is perhaps less clear

1. Provides examples of best practice programming techniques to the applications WP’s

2. Document best practice use of SyCL, OpenACC, vector intrinsics

3. Layers may provide multiple points of entry usable code

• PPE: Ensemble chisq min with vector types
• Astro: Develop unstructured mesh interface using gather instructions?
• SKA?
• PPT: best practice performance programming examples,

data parallel library may be used in packages
PAB has ongoing “QPS” collaboration with BNL & Columbia;
Successful application to NERSC/Cori early adoption programme (NESAP)

Discussion

