
CaSToRC

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Working Group 1: status and consultation
outcomes

G. Koutsou

Computation-based Science and Technology Research Center (CaSToRC), The Cyprus Institute

CoE f2f, Sept. 23rd 2014, Ferrara



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

■ Working Group (LFT)
− GK
− Stefan Krieg
− Nazario Tantalo
− Carsten Urbach

■ Outline
− Short intro
− Lattice 2014 meeting
− Suggestions for description of work
− Connections with other WPs
− Discussion items



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discretization

4D space - time lattice

− 4-dimensional regular grid
− In parallel implementations, domain decomposed

over MPI processes
− Need to exchange boundaries in every application

■ Typical data - type sizes
− Links Uµ: 3 × 3 complex matrix per four directions

⇒ 36 complex per grid-point
− Propagators M−1b: 3 × 4 complex vector

⇒ 12 complex per grid-point
− 1 spinor and gauge links read and 1 spinor write per

iteration: 960 bytes I/O per site (DP)
− ∼ 1320 floating point operations per site
− ∼ 1.4 flop/byte ratio (DP) / 2.7 flop/byte (SP) /

5.5 flop/byte (HP)



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics

■ LQCD applications involve inversions of a large sparse matrix
− Bulk of calculation is in inverting a large sparse matrix implemented as a

stencil operation on a vector
■ The communication paths are known and deterministic
− They are nearest neighbour and of constant packet size and determinsitic
− Communication time is either susceptible to latency or bandwidth depending

on surface to volume ratio
■ Simple counting of operations
− The application of the matrix on a vector requires additions and

multiplications only
− These are known and fixed on every application. Therefore the number of

floating point operations is known and the efficiency can be immediately
computed



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LQCD code development

■ Code development in LQCD community
− Relatively simple kernels have allowed for optimizing with moderate effort

and predictable performance
− Many groups implement and maintain their own packages
− However, the emergence of more complex algorithms combined with diverse

architectures create the need for dedicated coding efforts
− Examples include: multiple grid sizes in the same run, different types of

boundary conditions for sub-lattices, different layers of preconditioners, etc.
■ WP1 consultation session at Lattice 2014 conference
− Aim

▶ to consult the lattice community on the code development services expected by the CoE
− Attended

▶ Most European sites were represented [Bielefeld, Bonn, Cambridge (DAMTP), Cyprus,
DESY (ETMC, CLS), Edinburgh (UKQCD, QCDSF), Graz, INFN, Juelich, MAINZ
(CLS), NVIDIA, Regensburg (RQCD, CLS), Southampton, Swansea, Wuppertal]



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lattice 2014 meeting

■ Some discussion outcomes
− Was acknowledged that there is a need for more unified, efficient European

lattice code.
− Was acknowledged that many efforts are duplicated (optimisations for

different machines)
− Was acknowledged that there is European competence in LQCD code

development and that most of the community would adopt a CoE developed
community code

■ General strategy
− WP1: implements library with common LQCD operations (determines and

develops API,documentation, etc)
− WP3: implements optimized, lower-level kernels (code generators, etc)
− See document: https:

//www.dropbox.com/s/nqh6vuq9gyw4bq3/CoE_lat2014_report.pdf

https://www.dropbox.com/s/nqh6vuq9gyw4bq3/CoE_lat2014_report.pdf
https://www.dropbox.com/s/nqh6vuq9gyw4bq3/CoE_lat2014_report.pdf


CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

WP interactions for code development

WP2
Algorithms

Re
qu

ire
m

en
ts

O
pe

ra
tio

ns Usage

WP1
Community codes

WP3
Programming 

models

■ WP2
− Suggests requirements from algorithm

development
− E.g. multiple grids, arbitrary boundary

conditions, dense matrix operations
(eigvals(), etc.)

■ WP3
− Develops required low-level kernels for WP1
− Consults with WP1 on interfaces, layouts,

etc.
■ WP1
− Determines and implements API
− Documentation
− Proof of usability by interfacing in existing

codes



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Community code development

Optimised, low-level kernels (WP3)

Higher level API (WP1)

Message passing, threading (WP3?)

Existing community codes (WP1) CoE driver interface? (WP1)

■ Proof of usability
− Use existing community codes as higher level interfaces (e.g. tmLQCD,

OpenQCD, BQCD)
− Build own CoE driver/interface to expose full functionality (interesting

examples: Qlua, pyQCD)
■ Architecture-dependent development in lowest two levels
− Variable vector width x86
− GPUs



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Suggestions for tasks/deliverables

■ Tasks
− Collect requirements from WP2 and suggest kernels to be developed in WP3
− Define and develop higher-level API

▶ Naming conventions, operations, data layouts

− Determine existing community codes to be interfaced with
− Specify and develop CoE driver/interface

■ Deliverables
− Requirements from algorithms WP2
− Definition of higher-level API (w/ WP3)
− Library release
− Interfaces with community codes
− CoE driver/interface release



CaSToRC
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Feedback from SKA

■ WP1 related items by SKA
− Real-time analysis of data at the rate of 5-7.5 TBytes/sec

▶ “data management” component of WP1, in combination with innovative hardware
solutions

− Pseudo-real time eigenosolve of a 1Mi×1Mi dense matrix every ∼5 mins
▶ Co-design opportunities as this problem can leverage innovations such as 3D RAM or

Cache
▶ Can benefit from algorithmic improvements (WP2)


