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Overview

Subject of the talk
Intra-layer and inter-layer exciton condensates in two holographic models
of a double monolayer semimetal

Based on: G. G., N. Kim, A.Marini and G. W. Semenoff
arXiv:1410.4911 [hep-th], JHEP 1412 (2014) 091

arXiv:1410.3093 [hep-th]
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Graphene

Graphene two-dimensional material formed by carbon atoms
arranged in a honeycomb lattice
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Graphene

Band structure of graphene

Linearize spectrum near degeneracy points relativistic dispersion
relation

E = ±~vF |k| vF '
c

300
Emergent relativistic Dirac equation for 4 species of massless fermion
in 2+1-dim

Semenoff, Phys. Rev. Lett. 53, 2449 (1984)
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Holographic graphene

Graphene semimetal formed by relativistic massless fermions in
2+1-dim interacting through electromagnetic forces

Interactions in graphene:

αgraphene = e2

4π~c
c

vF
' 300

137 = 2.2

Graphene is a strongly interacting system AdS/CFT
correspondence

Two top-down holographic models
I D3/probe D5
I D3/probe D7
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Exciton condensation in double monolayer graphene

Double monolayer graphene two monolayers of graphene brought
into close proximity but still separated by an insulator

I no direct transfer of electric charge carriers between the layers

Exciton bound state of an electron and a hole
I intra-layer condensate 〈ψ̄1ψ1〉
I inter-layer condensate 〈ψ̄1ψ2〉

Holographic models D3/probe D5-D5 and D3/probe D7-D7
systems

I we use a brane-anti-brane pair so they can partially annihilate
inter-layer condensate
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D3/probe D5

D3/probe D5 system is one of the most studied holographic models

D3

D5

2 + 1-dim defect

Dual theory N = 4 SYM at large ’t Hooft coupling λ coupled to
fundamental hypermultiplets along a 2+1-dim defect

DeWolfe, Freedman, Ooguri [hep-th/0111135]
Karch, Randall [hep-th/0105132]

Erdmenger et al. [hep-th/0203020]
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D3/probe D5-D5

We study the D3/probe D5-D5 system (at zero temperature)

L

D3

D5 D5

2 + 1-dim defects

Introduce an external magnetic field and a charge density on the
D5-branes

Kristjansen, Semenoff [arXiv:1212.5609]

Zero charge case has been studied by Evans and Kim
Evans, Kim [arXiv:1311.0149]
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D3 background

Stack of N D3-branes AdS5 × S5 background

ds2 =r2
(
−dt2 + dx2 + dy2 + dz2

)
+ 1
r2

(
dr2 + r2dψ2 + r2 sin2 ψdΩ2

2 + r2 cos2 ψdΩ̃2
2

)
where dΩ2

2 = dθ2 + sin2 θdφ2 and dΩ̃2
2 = dθ̃2 + sin2 θ̃dφ̃2

It is useful to introduce other coordinates

ρ = r sinψ , l = r cosψ

ds2 =(ρ2 + l2)
(
−dt2 + dx2 + dy2 + dz2

)
+ 1
ρ2 + l2

(
dρ2 + ρ2dΩ2

2 + dl2 + l2dΩ̃2
2

)

Poincaré horizon at r = 0 ρ = l = 0
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D5-D5 embedding

Embed N5 D5 and D5 probes in this background (N5 � N)

DBI + WZ actions

S = T5N5

[
−
∫
d6σ

√
−det(g + 2πα′F ) + 2πα′

∫
C(4) ∧ F

]
Worldvolume coordinates and ansatz for the embedding of the D5/D5

t x y z ρ l θ φ θ̃ φ̃
D3 × × × × − − − − − −

D5/D5 × × × z(ρ) × l(ρ) × × − −

l asymptotically gives the distance between the D3 and the
D5-brane the bare fermion mass
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D5-D5 geometry

Worldvolume geometry of D5/D5 is for the most part determined by
symmetry

Poincaré invariance in 2+1-d branes wrap t, x, y

SO(3) symmetry branes wrap S2 (θ, φ)

Choose ρ as the last worldvolume coordinate

None of the remaining variables depend on t, x, y, θ, φ

z(ρ) and l(ρ) are the dynamical embedding functions

The point l = 0
(
ψ = π

2

)
additional SO(3) symm.
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Symmetry breaking

The geometry of the D5-D5 can break two symmetries

1 l(ρ) 6= 0 SO(3) × SO(3) → SO(3)
I intra-layer condensate

2 z(ρ) 6= const U(N5) × U(N5) → U(N5)
I partial annihilation of D5 and D5
I inter-layer condensate

D5 D5
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D5-D5 embedding

Induced metric on the D-branes worldvolume

ds2 =(ρ2 + l2)
(
−dt2 + dx2 + dy2

)
+ ρ2

ρ2 + l2
d2Ω2

+ dρ2

ρ2 + l2

(
1 + ((ρ2 + l2)z′)2 + l′2

)

I For z(ρ) =const and l(ρ) =const D5/D5 wv is AdS4 × S2

Charge density and external magnetic field D5 worldvolume gauge
fields (in the aρ = 0 gauge)

2π√
λ
F = a′0(ρ)dρ ∧ dt+ bdx ∧ dy

b = 2π√
λ
B a0 = 2π√

λ
A0
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DBI action

DBI action for N5 D5 (D5)

S = N5

∫
dρ

ρ2

ρ2 + l2

√
(ρ2 + l2)2 + b2

√
1 + l′2 + ((ρ2 + l2)z′)2 − a′0

2

where N5 =
√
λNN5
2π3 V2+1

a0(ρ) and z(ρ) are cyclic variables their canonical momenta are
constants

Q = −δL
δa′0
≡ 2πN5√

λ
q q = ρ2a′0

√
(ρ2 + l2)2 + b2

(ρ2 + l2)
√

1 + l′2 + ((ρ2 + l2)z′)2 − (a′0)2

Πz = δL

δz′
≡ N5f f = (ρ2 + l2)ρ2z′

√
(ρ2 + l2)2 + b2√

1 + l′2 + ((ρ2 + l2)z′)2 − a′0
2

I q = charge density on the D5 (D5)
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Equations of motion

Solving for a′0(ρ) and z′(ρ) in terms of q and f we get

a′0 = q(ρ2 + l2)
√

1 + l′2√
ρ4 (b2 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

z′ = f
√

1 + l′2

(ρ2 + l2)
√
ρ4 (b2 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

EoM for l(ρ)

−
(
l2 + ρ2) l′′ (−f2 + l2

(
l2 + 2ρ2) (ρ4 + q2)+ ρ4 (ρ4 + q2 + b2))

−2
(
l′2 + 1

) (
ρ
(
f2 + ρ2l2

(
3ρ2l2 + l4 + 3ρ4 + b2)+ ρ8) l′ + (ρ4 − f2) l) = 0
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Asymptotic behaviour

Asymptotic behaviour at ρ→∞ for the embedding functions l(ρ), z(ρ)
and the gauge field a0(ρ)

l(ρ) '
ρ→∞

m+ c

ρ
+ . . .

I m ∝ mass term for the fermions we consider solution with m = 0
I c ∝ expectation value for the intra-layer condensate

z(ρ) '
ρ→∞

±L2 ∓
f

5ρ5 + . . . (for D5/D5)

I L = separation between the D5 and the D5
I f ∝ expectation value for the inter-layer condensate

a0(ρ) '
ρ→∞

µ− q

ρ
+ . . .

I µ = chemical potential
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Rescalings

The magnetic field b can be rescaled to 1 performing the following
rescalings

ρ→
√
b ρ l→

√
b l z → z√

b
a0 →

√
b a0

f → b2f q → b q m→
√
bm c→ b c

L→ L√
b

µ→
√
bµ S → b3/2S

b disappears from all the equations. For instance, the action becomes

S = N5

∫
dρ

ρ2

ρ2 + l2

√
(ρ2 + l2)2 + 1

√
1 + l′2 + ((ρ2 + l2)z′)2 − a′0

2
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Unconnected solutions

Eq. for z(ρ) z′ = f
√

1 + l′2

(ρ2 + l2)
√
ρ4 (1 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

If f = 0 the solution is trivial z = ±L/2 (for D5/D5)

Unconnected solution

D5 D5
r =∞

r = 0

L

“Black hole” embedding

D5 D5
r =∞

r = 0

L

Minkowski embedding

r = 0 l = ρ = 0
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Connected solutions

If f 6= 0 the solution for z(ρ) is

z(ρ) = f

∫ ρ

ρ0
dρ̃

√
1 + l′2

(ρ2 + l2)
√
ρ4 (1 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

ρ0 such that ρ4
0

(
1 + (ρ2

0 + l2(ρ0))2
)

+ q2(ρ2
0 + l(ρ0)2)− f2 = 0

z′(ρ0) =∞

D-brane worldvolume interrupts at ρ = ρ0 > 0
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Connected solutions

In order to have a sensible solution we have to glue smoothly the
D5/D5 solutions at ρ = ρ0 connected solution

D5 D5
r =∞

r = 0

L

fD5 = fD5 and qD5 = −qD5 D5-D5 system is neutral
Inter-layer condensate exists only when the Fermi surfaces in the two
layers are perfectly nested
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Minkowski vs. BH embeddings

(f = 0, c 6= 0)-solutions can in principle be either BH or Mink.
embeddings

In practice if q 6= 0 only BH embeddings are allowed

Mink. embeddings D-brane pinches off at ρ = 0 l(0) 6= 0

If q 6= 0 there must be charge sources F-strings suspended
between the D5 and the Poincaré horizon (r = 0)
TF1 > TD5 strings pull the
D5 to r = 0 BH embed.

Kobayashi et al. [hep-th/0611099]

For unconnected solutions
(f = 0) Mink. embeddings are
allowed only if q = 0

D5 D5
r =∞

r = 0

L
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Classification of the solutions
Scheme of the possible types of solutions

f = 0 f 6= 0

c = 0

Type 1 Type 2
unconnected connected

l = 0 l = 0
BH embedding
chiral symm. inter

c 6= 0

Type 3 Type 4
unconnected connected

l(ρ) not constant l(ρ) not constant
BH (q 6= 0)/Mink (q = 0)

intra intra + inter
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D-brane separation and chemical potential

Separation between the D5 and the D5 for the connected solution
(f 6= 0)

L = 2
∫ ∞

ρ0

dρ z′(ρ) =
∫ ∞

ρ0

dρ
2f
√

1 + l′2

(ρ2 + l2)
√
ρ4 (1 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

Chemical potential

µ =
∫ ∞

ρ0

a′
0(ρ) dρ =

∫ ∞

ρ0

dρ
q(ρ2 + l2)

√
1 + l′2√

ρ4 (1 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

where, for f 6= 0, ρ0 is the solution of

ρ4
0

(
1 + (ρ2

0 + l2(ρ0))2
)

+ q2(ρ2
0 + l(ρ0)2)− f2 = 0

if f = 0 ρ0 = l(ρ0) = 0 for q 6= 0 and ρ0 = 0 for q = 0
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Solutions

We must look for non-trivial (i.e. non-constant) solutions for l(ρ)

EoM for l is a non-linear ODE

Numerical method to find solutions imposing the suitable asymptotic
condition

l(ρ) '
ρ→∞

c

ρ
+ . . . massless fermions!

We used a shooting technique

Four types of solutions are allowed
1 f = 0, c = 0 (z = ±L/2, l = 0) chiral symm.
2 f 6= 0, c = 0 inter
3 f = 0, c 6= 0 intra
4 f 6= 0, c 6= 0 intra and inter
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Plot of solutions

Example of plots of non-trivial solutions with L ' 1.5 and µ ' 0.77
I f 6= 0, c = 0 inter
I f = 0, c 6= 0 intra
I f 6= 0, c 6= 0 inter and intra
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Solutions with zero charge density

We are interested in solutions at fixed L and µ

Eq. for a0 is a′0 = q(ρ2 + l2)
√

1 + l′2√
ρ4 (1 + (ρ2 + l2)2) + q2(ρ2 + l2)2 − f2

It has a trivial solution a0 = const when q = 0

Other solutions with q = 0 and a0 = µ

Among these the only
relevant one
Minkowski embedding
with f = 0 and c 6= 0

Evans,Kim [arXiv:1311.0149]

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
l

ρ
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Free energy

Which configuration is favored?

Compare the free energies of the different solutions at the same L
and µ

The right quantity to define the free energy is the action evaluated on
solutions F1[L, µ] ∼ S[l, z, a0]

δF1 ∼
∫ ∞

0
dρ

(
δl
∂L
∂l′

+ δa0
∂L
∂a′0

+ δz
∂L
∂z′

)′
= −qδµ+ fδL

F1[L, µ] =
∫ ∞
ρ0

dρ

ρ4
(
1 +

(
l2 + ρ2)2)√ 1+l′2

−f2+q2(l2+ρ2)2+ρ4(1+(l2+ρ2)2)
l2 + ρ2

F1 implicit function of L and µ
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Regularized free energy

The free energy of each solution is UV divergent
the integrand in F1 goes like ρ2 for ρ→∞

Regularization subtracting to the free energy of each solution that
of the trivial chirally symmetric solution (with the same µ)

∆F1[L, µ] ≡ F1[L, µ]−F1(l = 0; f = 0)[µ]

We use the regularized free energy to study the dominant
configuration at fixed values of L and µ

We construct the phase diagram working on a series of constant L
slices
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Free energy as a function of the separation: no charge

0.5 1.0 1.5 2.0 2.5

-0.8

-0.6

-0.4

-0.2

F1
L

Evans,Kim [arXiv:1311.0149]

Minkowski embedding un-
connected, only intra-layer con-
densate

connected ρ-independent,
only inter-layer condensate

connected ρ-dependent,
both inter- and intra-layer con-
densate
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Free energy as a function of the chemical potential
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Black-hole embedding unconnected, only intra-layer condensate
connected ρ-independent, only inter-layer condensate
connected ρ-dependent, both inter- and intra-layer condensate
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(µ, L)–phase diagram for D3/D5-D5
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2n
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Free energy as a function of q and L

Compare different configurations at fixed charge density q and
separation L

Different definition for the free energy Legendre transform of F1

F2[L, q] = F1 + q µ =

∫ ∞
ρ0

dρ

q2 (l2 + ρ2)2 + ρ4
(

1 +
(
l2 + ρ2)2

)√
1+l′2

−f2+q2(l2+ρ2)2+ρ4(1+(l2+ρ2)2)
l2 + ρ2

F2 is divergent regularization

∆F2[L, q] ≡ F2[L, q]−F2(l = 0; f = 0)[q]

Gianluca Grignani Holographic graphene bilayers April 15, 2015 34



(q, L)–phase diagram for D3/D5-D5
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D3/probe D7-D7
D3/probe D7 system as an holographic model for graphene

S.Y. Rey [arXiv:0911.5295]

Dual theory N = 4 SYM at large ’t Hooft coupling λ coupled to
massless fermions along a 2+1-dim defect
We study the D3/probe D7-D7 system

L
D3

D7 D7

2 + 1-d defects

D7-branes with the appropriate boundary conditions are unstable in
AdS5 × S5 background
Embed the D7 in the extremal black D3-brane geometry

Davis, Kraus, Shah [arXiv:0809.1876]
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D3 background

Extremal black D3 brane geometry

ds2 = 1√
1 + R4

r4

(
−dt2 + dx2 + dy2 + dz2)+

√
1 + R4

r4

(
dr2 + r2dΩ2

5
)

where dΩ2
5 = dψ2 + sin2 ψdΩ2

4 and R4 = λα′2

R−1 = UV cutoff
We then introduce the coordinates ρ = r sinψ , l = r cosψ

ds2 =
(

1 + R4

(ρ2 + l2)2

)−1/2 (
−dt2 + dx2 + dy2 + dz2

)

+
(

1 + R4

(ρ2 + l2)2

)1/2 (
dρ2 + dl2 + ρ2dΩ2

4

)
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D3/probe D7-D7 embedding

Embed N7 D7 and D7 probes in this background (N7 � N)

DBI + WZ actions

S = T7N7

[
−
∫
d8σ

√
−det(g + 2πα′F ) + 2πα′

∫
C(4) ∧ F ∧ F

]
Ansatz for D7 (D7) embedding

t x y z ρ l θ1 θ2 θ3 θ4
D3 × × × × − − − − − −

D7/D7 × × × z(ρ) × l(ρ) × × × ×
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D7-D7 embedding

Worldvolume geometry of D7/D7 is for the most part determined by
symmetry

Poincaré invariance in 2+1-d branes wrap t, x, y

SO(5) symmetry branes wrap S4 ⊂ S5

Choose ρ as the last worldvolume coordinate

None of the remaining variables depend on t, x, y, θ1, θ2, θ3, θ4

z(ρ) and l(ρ) are the dynamical embedding functions

l = 0
(
ψ = π

2

)
is a point of higher symmetry parity in the dual

defect theory
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Symmetry breaking

The geometry of the D7-D7 can break two symmetries

1 l(ρ) 6= 0 parity breaking
I intra-layer condensate S4 S4

2 z(ρ) 6= const U(N7) × U(N7) → U(N7)
I partial annihilation of D7 and D7
I inter-layer condensate

D7 D7
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(q, L)–phase diagram for D3/D7-D7
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Conclusions

Two holographic models of a duoble monolayer graphene
I D3/probe D5-D5
I D3/probe D7-D7

Holographic mechanism for exciton condensation two channels
I intra-layer condensate
I inter-layer condensate

Inter-layer condensate possible overall neutral system Fermi
surfaces perfectly nested

When q 6= 0 phase with both inter- and intra-layer condensates

Study of the phase diagrams

Perfect fine-tuning of Fermi surfaces is not absolutely necessary for
inter-layer condensation if we have more the one fermion species

Outlook: Turn on the temperature in the models
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Graphene
Graphene two-dimensional material formed by carbon atoms
arranged in a honeycomb lattice

Carbon atom has four valence electrons
I Three form strong covalent σ-bonds with neighboring atoms
I The fourth in the π orbital is unpaired
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Graphene

Hexagonal lattice two triangular sub-lattices

Band structure of graphene
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Graphene

Linearize spectrum near degeneracy points

Relativistic dispersion relation

E = ±~vF |k| vF '
c

300
Emergent Dirac equation for 4 species of massless fermion in 2+1-dim

Semenoff, Phys. Rev. Lett. 53, 2449 (1984)
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D7-D7 embedding

Induced metric on th D-branes worldvolume

ds2 =
(

1 + R4

(ρ2 + l2)2

)−1/2 (
−dt2 + dx2 + dy2)

+
(

1 + R4

(ρ2 + l2)2

)1/2

dρ2

1 + l′(ρ)2 + z′(ρ)2

1 + R4

(ρ2 + l2)2

+ ρ2d2Ω4


Charge density D7 world-volume gauge fields (aρ = 0 gauge)

2πl2sF = a′0(ρ)dρ ∧ dt a0 = 2πl2sA0
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DBI action

DBI action for the D7 (D7)

S ∼
∫
dρρ4

√√√√(1 + R4

(l2 + ρ2)2

)
(1− a0′2 + l′2) + z′2

Perform the rescalings (ρ, l, z, a0)→ R(ρ, l, z, a0) R→ 1
a0(ρ) and z(ρ) are cyclic variables their canonical momenta are
constants

Q = − δS
δa′0
≡ 2πl2sq , q =

ρ4a0
′ (2ρ2l2 + l4 + ρ4 + 1

)
(l2 + ρ2)2

√
(2ρ2l2+l4+ρ4+1)(1−a0′2+l′2)

(l2+ρ2)2 + z′2

Πz = δS

δz′
≡ f , f = ρ4z′√

(2ρ2l2+l4+ρ4+1)(1−a0′2+l′2)
(l2+ρ2)2 + z′2

,

I q = charge density on the D7 (D7)
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Equations of motion

Solving for a′0(ρ) and z′(ρ) in terms of q and f we get

a′0 = −
q
(
l2 + ρ2)√1 + l′2√

l2 (l2 + 2ρ2) (ρ8 + q2 − f2) + q2ρ4 + (ρ8 − f2) (ρ4 + 1)

z′ =
f
(
l4 + 2l2ρ2 + ρ4 + 1

)√
1 + l′2

(l2 + ρ2)
√
l2 (l2 + 2ρ2) (ρ8 + q2 − f2) + q2ρ4 + (ρ8 − f2) (ρ4 + 1)

EoM for l(ρ)

2
(
1 + l′2

) {
ρ l′
[
2l2ρ6 (l4 + 3l2ρ2 + 3ρ4 + 1

)
+ 2ρ12 + ρ8 + f2]+ l

(
ρ8 − f2)}

+
(
l2 + ρ2) [l2 (l2 + 2ρ2) (ρ8 + q2 − f2)+ q2ρ4 +

(
ρ4 + 1

) (
ρ8 − f2)] l′′ = 0
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Asymptotic behaviour

Asymptotic behaviour at ρ→∞ for the embedding functions l(ρ), z(ρ)
and the gauge field a0(ρ)

l(ρ) '
ρ→∞

m+ c

ρ3 + . . .

I m ∝ mass term for the fermions we consider solution with m = 0
I c ∝ expectation value for the intra-layer condensate

z(ρ) '
ρ→∞

±L2 ∓
f

ρ4 + . . . (for D7/D7)

I L = separation between the D7 and the D7
I f ∝ expectation value for the inter-layer condensate

a0(ρ) '
ρ→∞

µ− q

ρ4 + . . .

I µ = chemical potential
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Classification of the solutions
Scheme of the possible types of solutions

f = 0 f 6= 0

c = 0

Type 1 Type 2
unconnected connected

l = 0 l = 0
BH embedding
chiral symm. inter

c 6= 0

Type 3 Type 4
unconnected connected

l(ρ) not constant l(ρ) not constant
BH (q 6= 0)/Mink (q = 0)

intra intra + inter
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Free energies

Free energy at fixed separation L and chemical potential µ
on-shell action

F1[L, µ] = S

Free energy at fixed separation L and charge density q Legendre
transform of F1

F2[L, q] = F1 + q µ

These free energy are divergent regularization

∆F1[L, µ] ≡ F1[L, µ]−F1(l = 0; f = 0)[µ]
∆F2[L, q] ≡ F2[L, q]−F2(l = 0; f = 0)[q]
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Balanced charge densities

When Q = Q̄ four possible configurations:

1 Two pairs of connected branes

charge evenly distributed

2 All disconnected branes

3 A connected pair and a disconnected pair with BH embeddings

4 A connected pair that absorb all the charge Q and a disconnected
pair with zero charge (Mink embedding)
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Balanced charge densities

1 All disconnected branes charge evenly distributed (same as before)

2 All connected branes q1 = Q− q2 = q3 , q4 = q2 charge
evenly distributed

0.02 0.04 0.06 0.08 0.10 0.12 0.14

2.564

2.566

2.568

2.570

2.572

2.574

2.576∆F2,r

q2

For Q = Q̄ the energetically favored solution is the one with two connected
pairs and all the charges are evenly distributed q1 = q2 = q3 = q4 = Q/2.
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Outline

1 Double monolayer with un-balanced charge densities
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Double monolayer with two species of fermions

Consider a double monolayer system with two species of massless
fermions with charges Q and −Q̄ on the two layers

Holographic dual two pairs of D5-D5 branes (or D7-D7) with
total charges Q and −Q̄

q1 q2 −q3 −q4

D5 D5

Q = q1 + q2 > 0 Q̄ = q3 + q4 > 0

We fix Q and Q̄ and let the qi vary

How do the charges Q and Q̄ distribute among the branes?

Which types of solutions give rise to the least free energy?
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Un-balnced charges - case 1

Consider the case of unpaired charges Q 6= Q̄

Suppose Q > Q̄

1 A D5 and a D5 are connected and the others are unconnected

q2 = q3 = Q̄− q4 , q1 = Q− q2 = Q− Q̄+ q4

r =∞

r = 0

1 2 3̄ 4̄

0 < q4 ≤ Q̄

1 2 3̄ 4̄

q4 = 0
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Un-balanced charges - case 1

Total free energy as a function of q4 for Q = 0.15, Q̄ = 0.1 and L = 1

0.02 0.04 0.06 0.08 0.10

2.88

2.90

2.92

2.94

2.96

2.98

3.00

∆F2,r

q4

Least free energy when q4 = 0 one D5 brane has a Minkowski
embedding
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Un-balanced charges - case 2

2 The D5 and the D5 are all unconnected

D5-branes
q1 = Q− q2

1 2 1 2 1 2

0.02 0.04 0.06 0.08 0.10 0.12 0.14

1.6515

1.6520

1.6525

1.6530

1.6535

1.6540
∆F2,r

q2

Q = 0.15

D5-branes
q3 = Q̄− q4

3̄ 4̄ 3̄ 4̄ 3̄ 4̄

0.02 0.04 0.06 0.08 0.10

1.6116

1.6118

1.6120

1.6122

1.6124

1.6126∆F2,r

q4

Q̄ = 0.1
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Unbalanced charges

Comparing the free energies Configuration 1 with q4 = 0 is the
most favored

Recap:
When there are more the one fermion species new possible
channel for inter-layer condensation when the charges are not
balanced (Q > Q̄)

Charge can redistribute itself among the species to spontaneously nest
one or more pairs of Fermi surfaces

Perfect fine-tuning of Fermi surfaces is not absolutely necessary for
inter-layer condensation
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