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General	
  comment:	
  ads/cmt	
  	
  

•  Try	
  to	
  get	
  scaling	
  exponents	
  àmean	
  field	
  
theory	
  value	
  (due	
  to	
  analy1city).	
  
	
  	
  

•  con1nuum	
  theory:	
  Details	
  inside	
  a	
  cell	
  are	
  
averaged	
  out.	
  à	
  Not	
  a	
  tool	
  for	
  seeking	
  micropic	
  
pairing	
  mechanism.	
  

•  In	
  gravity	
  limit,	
  	
  AdS/CFT	
  is	
  a	
  	
  mean	
  field	
  theory	
  



3	
  

A	
  Goal	
  OF	
  AdS/CMT	
  	
  

	
  quan1ta1ve	
  	
  understanding	
  	
  the	
  	
  phase	
  diagram	
  

Based	
  on	
  Royal	
  Society	
  publishing,	
  D.	
  Galanakis	
  et.al	
  	
  

NFL	
  

FL	
  



To	
  classify	
  phases	
  /	
  To	
  set	
  up	
  MFT	
  	
  	
  

•  we	
  need	
  order	
  parameter	
  although	
  here	
  
Order	
  is	
  by	
  interac1on	
  not	
  by	
  symmetry.	
  	
  

•  Finite	
  number	
  of	
  Phasesà	
  
	
  	
  	
  finite	
  number	
  of	
  order	
  parameters	
  (fields).	
  
•  For	
  Pseudo	
  Gap	
  region	
  :	
  Not	
  clear	
  what	
  kind	
  of	
  
order.	
  Scalar?	
  Vector?	
  or	
  something	
  else?	
  



Order	
  parameter.	
  

•  We	
  need	
  order	
  parameter	
  although	
  it	
  is	
  NOT	
  
completely	
  controlled	
  by	
  symmetry.	
  

•  What	
  is	
  the	
  hint	
  to	
  characterize	
  the	
  order	
  
parameter	
  of	
  theore1cally	
  unknown	
  region?	
  	
  

•  If	
  we	
  have	
  general	
  results	
  on	
  the	
  	
  
compe11on/collabora1on	
  of	
  order	
  
parameters	
  in	
  general,	
  it	
  can	
  give	
  a	
  guide.	
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Only	
  two	
  regions	
  clear	
  

	
  AFM:	
  real	
  scalar;	
  	
  	
  	
  	
  	
  	
  SC:	
  complex	
  scalar	
  

à	
  Spin	
  fluc.	
  	
  /	
  ß	
  Charge	
  fluc.	
  	
  

NFL	
  

FL	
  



Compe1ng	
  order	
  in	
  holography	
  
•  Conjecture	
  (Basu	
  et.al	
  1007.3480)	
  
	
  	
  	
  	
  Repulsive/agrac1ve	
  int.à	
  orders	
  coexist/repel	
  	
  
•  Ex1.	
  	
  

	
  

•  Ex2.	
  Holography	
  without	
  poten1al.	
  	
  
	
  	
  	
  SC	
  :	
  complex	
  scalar,	
  	
  	
  pick	
  some	
  order	
  :	
  Real	
  scalar	
  	
  	
  	
  
	
  	
  	
  If	
  they	
  agract	
  simply	
  by	
  gravity	
  	
  
à	
  Two	
  orders	
  repel	
  	
  each	
  other.	
  (corollary	
  of	
  conj.)	
  

	
  Holography	
  confirms!	
  

V (A,B) = ⌘A

2
B

2

i)⌘ > 0 ! attraction ! repel

ii)⌘ < 0 ! repulsion ! coexist



Q:	
  How	
  about	
  SC	
  v.s	
  vector	
  order?	
  	
  

•  1211.1798	
  by	
  Takaaki	
  Ishii	
  	
  and	
  	
  	
  SJS	
  

	
  



	
  	
   Complex	
  scalar+	
  extra	
  vector 	
  	
  
1211.1798	
  

while the other is massive and dual to impurities. More concretely, we assume that the

impurities have another type of charge carriers like a hole, for instance, where the hole

number is not necessarily conserved due to the capturing of conduction electrons. So we

assume that the latter is dual to the massive gauge field Bµ. We postulate a gauge invariant

coupling term to describe the interaction between the two species.

The model we consider was mentioned in [17], where the massive vector field could

be introduced as impurities, but it was integrated out assuming that the impurities were

infinitely heavy. If the mass is finite, the field at the asymptotic AdS boundary decays not

exponentially but by a power law. Therefore, we do not integrate out the massive field, and

solve the model explicitly in order to focus on the dynamics in the presence of the massive

vector field. Our result will show that the mass gap of the superconductor disappears due

to the interaction.

The rest of this paper is organized as follows. In section 2, we study the model. The

action and setups for numerical computations are provided in section 2.1. Numerical results

are shown in section 2.2. Some further possibilities of the model are discussed in section 2.3.

Comments on normal phase are given in section 3. In section 4, we reexamine the strategy

of [17], and discuss relations to ours. We conclude this paper with future perspectives in

section 5.

2 Impurity degrees of freedom by a massive vector field

We consider a holographic superconductor where an extra massive vector field is introduced

as impurities.

2.1 The model

We consider a model where a massive vector field is introduced into the minimal Abelian-

Higgs model of the s-wave holographic superconductor [12]. The action is2

S =

∫
d4x

√
−g

(
−

1

4
FµνF

µν − |∂µΦ− iAµΦ|2 −M2Φ2

−
1

4
GµνG

µν −
m2

2
BµB

µ −
c

2
FµνG

µν

)
, (2.1)

where F = dA and G = dB. The scalar field Φ is charged only under Aµ, and there is

no direct coupling between Φ and Bµ. Here m2 is the mass of Bµ. It might be possible

to consider to generate this mass by some Higgs mechanism, but here we would like to

start from the Proca action for simplicity. The scalar mass is chosen to be M2 = −2 for

convenience in analysis.

The action (2.1) has an interaction term between Fµν and Gµν . These vector fields are

dual to two currents with different dimensionality, and this interaction represents a coupling

of the two currents [17]. One current is conserved fermion number, and Aµ is identified

as the gauge field of the weakly-gauged U(1) electromagnetic symmetry in the context

2We set the gauge coupling of Aµ as e = 1.
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(in	
  v2)	
  or	
  spin	
  current	
  (in	
  v1)	
  of superconductors. The other, Bµ, represents impurities. If we allow the difference in

anomalous dimensions of the two current operators, the vector field dual to the impurities

can be massive and associated with the Proca field.

We work in a limit in which the matter fields do not give back-reactions on the back-

ground metric.3 This limit is called a probe limit. The gravity background we consider is

the AdS-Schwarzschild black hole,

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
, f(z) = 1− z3, (2.2)

where we use units in which the AdS radius is unity, and the location of the black hole

horizon is at z = 1. Such parameter fixings are possible thanks to the isometry of the AdS

space, and can be confirmed by examining the symmetry of the equations of motion.

The equations of motion of (2.1) are

∇λF
λµ + c∇λG

λµ − 2|Φ|2Aµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) = 0, (2.3)

∇λG
λµ + c∇λF

λµ −m2Bµ = 0, (2.4)

1√
−g

(∂µ − iAµ)
(√

−ggµν(∂ν − iAν)Φ
)
−M2Φ = 0. (2.5)

The kinetic terms of Aµ and Bµ can be separated. From (2.3) and (2.4), we obtain

(1− c2)∇λF
λµ − 2|Φ|2Aµ + cm2Bµ + i(Φ∗∂µΦ− ∂µΦ∗Φ) = 0, (2.6)

(1− c2)∇λG
λµ − m2Bµ + 2c|Φ|2Aµ − ic(Φ∗∂µΦ− ∂µΦ∗Φ) = 0. (2.7)

We can realize an superconductor phase where the scalar operator dual to Φ acquires

nonzero condensate ⟨O⟩. The ansatz is A = At(z)dt,B = Bt(z)dt, and Φ = φ(z). The

equations of motion become

A′′
t −

2φ2At

(1− c2)z2f
+

c m̃2Bt

z2f
= 0, (2.8)

B′′
t −

m̃2Bt

z2f
+

2cφ2At

(1− c2)z2f
= 0, (2.9)

φ′′ +

(
f ′

f
−

2

z

)
φ′ +

(
2

z2f
+

A2
t

f2

)
φ = 0. (2.10)

The prime denotes the derivative with respect to z: A′
t = ∂zAt. We find it convenient to

define an effective mass of Bµ,

m̃2 ≡
m2

1− c2
. (2.11)

The system is not well-defined if c = 1. If we consider a small deformation from a

system without the impurity coupling, then 0 ≤ c < 1 would be reasonable.4 For the

3If we recover the gauge coupling e and rescale each field by a factor of 1/e, then there is a factor 1/e2

appearing in front of the right hand side of (2.1). Backreactions on the metric are suppressed in the limit

e2 → ∞ with the fields fixed. The result takes the same form as (2.1), where e = 1.
4If c is negative, solutions of Bµ flips the sign.
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Title	
  
v1:	
  A	
  ferromagne1c	
  superconductor	
  in	
  holography	
  
v2:	
  Impurity	
  effect	
  in	
  a	
  holographic	
  superconductor	
  
	
  



Results	
  

•  In	
  the	
  presence	
  of	
  SC	
  condensa1on	
  of	
  CS,	
  	
  
vector	
  condensa1on	
  (Bt)	
  is	
  actually	
  induced	
  by	
  
ità	
  coexists.	
  	
  

•  The	
  sign	
  of	
  Bt	
  condensa1on	
  is	
  that	
  of	
  coupling	
  c	
  
G.F	
  

•  As	
  c	
  goes	
  up,	
  SC	
  gap	
  goes	
  like	
  power	
  rather	
  than	
  
exponen1al.	
  	
  

•  Without	
  SC,	
  no	
  vector	
  condensa1on	
  in	
  Bt.	
  	
  
	
  (sign	
  of	
  c	
  is	
  immaterial	
  for	
  the	
  existence	
  of	
  <Bt>)	
  	
  



Result:	
  ac	
  conduc1vity	
  

Figure 5. Comparisons of the real part of the conductivity for c = 0 (orange dotted lines) and
c = 0.2, 0.3, 0.4, 0.5 (blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1,
and the right panel is when ∆ = 2. Exponential and power-law behaviors are interpolated by
changing c.

It is expected that the effects of the coupling turn up gradually as the coupling is

increased from c = 0. To discuss this, we compare cases of different c. We compute the

conductivity for c = 0.2, 0.3, 0.4, 0.5, by fixing m̃2 for simplicity. We have to be careful

that this gives the results corresponding to different values of m2 in the action (2.1). For

instance, if m̃2 = 2 is fixed, the computations are for m2 = 1.92, 1.82, 1.68, 1.5 when

c = 0.2, 0.3, 0.4, 0.5, respectively.7 However, we see that comparing with fixed m̃2 can

give qualitatively reasonable understandings for the behaviors of the conductivity under

change of c. In particular, we can discuss the presence or absence of the mass gap.

Comparisons of the real part of the conductivity with respect to different c are given

in figure 5. The graphs are computed when T/TC = 0.20. We see that, as c is increased,

the conductivity gradually changes from exponential to power-law behaviors in the small

frequency region. It looks that the transition is continuous, and there would not be a clear

phase transition from gapped to ungapped phases under the increase of c.

In figure 6, we would like to present a schematic description of the phase diagram of

our model under the change of c. The strength of the coupling c might be interpreted as

the density of impurities. We expect that the regions of the gapped and ungapped phases

are smoothly connected under the change of the density. The boarder would not be given

by a clear phase transition. When c = 0, the gap starts to show up at about some Tg.

As c increases, the temperature for the appearance of the gap looks to be lowered. There

may be some critical c = c∗ above which there is no gapped phase even at T = 0, or c∗
may be located at c → 1. It will be interesting to look for such a quantum critical point.

However, to discuss the zero temperature limit, we will need to carry out precise analysis

by including back reactions on the gravity backgrounds [16].

We may consider to vary the mass m̃2. When this is heavier, we find that the effects

on the conductivity is smaller. Technically, this would be because α+ is larger and Bµ

decays faster at the boundary. Hence the effects on Ax from Bx would be smaller at the

boundary. If the mass is heavier, the massive vector field becomes more non-dynamical,

7If we fixed m2 = 1.5, the effective masses would be m̃2 = 1.56, 1.65, 1.79, 2 when c = 0.2, 0.3, 0.4, 0.5,

respectively. We would do computations by employing different asymptotic expansions with respect to

different values of m̃2.
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Result:	
  coexistence	
  of	
  sc	
  &	
  vec	
  

Figure 6. A schematic description of the phase diagram expected. Here ⟨B⟩ = 0 if c = 0, while
⟨B⟩ ̸= 0 once c ̸= 0 and T < TC . Gapped and ungapped phases would be interpolated smoothly.
There may be some critical c = c∗ above which there is no mass gap. Figure 5 corresponds to
looking at a horizontal slice of this diagram at T/TC = 0.20.

and thus the effects might be harder to appear.

Let us come back to the case that m̃2 = 2 and c = 0.5. The results of γ(ω) are

given in figures 7 and 8, corresponding to the real and imaginary parts, respectively. The

conductivity is zero at T = TC since Bx = 0 in the normal phase, although we do not plot

T = TC case in the figures. As the temperature is decreased from T = TC , the conductivity

starts to grow. There cannot be seen a gap in the small frequency region of the real part

as in the case of the electric conductivity. Hence, Re(γ) can be fitted with a power-law

function,

Re(γ)

Λi
−R0 ∝

(
ω

Λi

)2

, (2.42)

where Λ1 ≡ ⟨O1⟩ and Λ2 ≡
√
⟨O2⟩, and R0 ≡ limω→0Re(γ)/Λi is an intercept. In figure 7,

a peak can be found in Re(γ) at w1 ∼ 1.2 when ∆ = 1, and w2 ∼ 1 when ∆ = 2. The peak

becomes more apparent as the temperature is lowered, and it is expected that Re(γ)/Λi

converges to a finite height curve in the low temperature limit. The nonzero slope in the

large-ω region of Im(γ) is due to the direct contribution of the electric field.

Similar to the case of the electric conductivity, we compare the dependence of γ on c.

The results for the real part when T/TC = 0.20 are given in figure 9. Since Bµ is decoupled

from Aµ when c = 0, γ is not induced by the electric perturbations in this limit. From

this figure, it can be seen that the position of the peak slightly moves to larger ω as c is

increased. The magnitude of the peak looks to become larger as c is increased. However,

since Re(γ) is proportional to (1 − c2), the magnitude of γ would be suppressed if c is

sufficiently large. It is expected in the heavy mass limit of m̃2 that Bµ would be hard to

be excited, and this would mean suppression of γ in the c → 1 limit.
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  diagram	
  	
  



Result	
  (spin	
  suscep1bility	
  /	
  impurity	
  
conduc1vity)	
  	
  

Figure 7. The real part of γ as a function of ω normalized by the condensate. The left panel
is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to lower
temperatures.

Figure 8. The imaginary parts of γ as a function of ω normalized by the condensate. The left
panel is when ∆ = 1, and the right panel is when ∆ = 2. Larger magnitude lines correspond to
lower temperatures.

Figure 9. Comparisons of the real part of γ for c = 0 (orange dotted lines) and c = 0.2, 0.3, 0.4, 0.5
(blue real lines) computed when T/TC = 0.20. The left panel is when ∆ = 1, and the right panel
is when ∆ = 2. Lines with larger magnitude correspond to larger c.

2.3 The possibility of negative effective mass

In the previous section, we considered the case that 0 ≤ c < 1 and m̃2 = 2. However,

since the BF bound for the massive vector field is m2 = −1/4, it can be possible that the

effective mass of Bµ, m̃2 = m2/(1 − c2), is negative. One possibility is that the system is

in strong coupling: c > 1 with m2 > 0. The other possibility is that the mass squared is

negative m2 < 0 but 0 < c < 1. In the latter case, we obtain |m2| < |m̃2|. Therefore, m2

satisfies the BF and unitarity bounds, −1/4 < m2 < 3/4, if m̃2 does. We discuss these

– 12 –



Implica1on	
  to	
  PG	
  order	
  parameter.	
  	
  

•  If	
  the	
  PG	
  phase	
  is	
  a	
  phase	
  of	
  	
  incoherent	
  paired	
  
state(precursor	
  of	
  SC),	
  we	
  should	
  use	
  the	
  vector	
  
order	
  parameter	
  for	
  PS.	
  Not	
  a	
  scalar!	
  (Scalar	
  with	
  
nega1ve	
  poten1al	
  is	
  also	
  OK).	
  We	
  need	
  to	
  
introduce	
  two	
  scales:	
  One	
  for	
  SC	
  and	
  the	
  other	
  
for	
  PS	
  which	
  is	
  of	
  order	
  T*.	
  	
  	
  

•  If	
  	
  PG	
  itself	
  is	
  an	
  order	
  compe1ng	
  with	
  SC,	
  its	
  
order	
  parameter	
  can	
  be	
  	
  a	
  real	
  scalar.	
  Possibly	
  
with	
  agrac1ve	
  interac1on.	
  	
  

•  If	
  PG	
  is	
  a	
  spin	
  Liquid:èNot	
  in	
  this	
  talk.	
  (Top.O)	
  



magne1sm	
  with	
  axion	
  

•  Mo1va1on.	
  	
  
We	
  want	
  to	
  control	
  the	
  magne1sm	
  by	
  
changing	
  the	
  dopping	
  parameter.	
  	
  
Spin	
  is	
  not	
  totally	
  independent	
  of	
  charge.	
  	
  
So	
  we	
  use	
  the	
  Chern-­‐Simon	
  /	
  Axion	
  term.	
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Ac1on	
  

1 Introduction

We want to construct a system which has magnetic properties like as ferromagnetism, anti-

ferromagnetism or paramagnetism holographically. In this work, we construct a system with

impurities which carry finite magnetization.

To construct a system with magnetic impurities, we start from Einstein-Maxwell-axion

system. The axion which is linear in {x, y} direction breaks translational symmetry and

hence gives an e↵ect of impurity [cite: works on linear axion]. We add Chern-Simons

interaction between the axion and gauge field. Due to this interaction, the system has

non-trivial magnetic property as we will discuss later.

...

2 Background solution

We start from the Einstein-Maxwell-axion action with Chern-Simons interaction;

S =
1

16⇡G

Z

M
d

4
x

p
�g

⇢
R +

6

L

2
� 1

4
F

2 � 1

2
(@�

I

)2
�
+

q

�

16⇡G

Z

M
(@�

I

)2 F ^ F

� 1

16⇡G

Z

@M
d

3
x

p
��

✓
2K +

4

L

+R[�]� L

2
r�

I

·r�

I

◆
(1)

The scalar, Maxwell and Einstein equations of motion for the action are 1

r2
�

I

� 2q
�

r
M

✓
1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤rM

�

I

◆
= 0

r
M

F

MN � 4q
�

r
M

✓
(@�

I

)2
1p
�g

✏

MNPQ

F

PQ

◆
= 0

R

MN

� 1

2
g

MN

✓
R� 2⇤� 1

4
F

2 � 1

2
(@�

I

)2
◆
� 1

2
F

M⇤FN

⇤ � 1

2
@

M

�

I

@

N

�

I

+ q

�

@

M

�

I

@

N

�

I

1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤ = 0, (2)

where star denote contraction of indices and we choose ✏

0123 = ✏

txyr = 1.

To get a solution, we take dyonic ansatz with linear axion field as follows;

ds

2 = �U(r)dt2 +
dr

2

U(r)
+ r

2(dx2 + dy

2)

A = a(r)dt+
1

2
B (xdy � ydx)

�

I

= ��

Ii

x

i

. (3)

1
x

M = (xµ
, r) = (⌧, xi

, r) = (⌧, x, y, r)

1

1 Introduction

We want to construct a system which has magnetic properties like as ferromagnetism, anti-

ferromagnetism or paramagnetism holographically. In this work, we construct a system with

impurities which carry finite magnetization.

To construct a system with magnetic impurities, we start from Einstein-Maxwell-axion

system. The axion which is linear in {x, y} direction breaks translational symmetry and

hence gives an e↵ect of impurity [cite: works on linear axion]. We add Chern-Simons

interaction between the axion and gauge field. Due to this interaction, the system has

non-trivial magnetic property as we will discuss later.

...

2 Background solution

We start from the Einstein-Maxwell-axion action with Chern-Simons interaction;

S =
1

16⇡G

Z

M
d

4
x

p
�g

⇢
R +

6

L

2
� 1

4
F

2 � 1

2
(@�

I

)2
�
+

q

�

16⇡G

Z

M
(@�

I

)2 F ^ F

� 1

16⇡G

Z

@M
d

3
x

p
��

✓
2K +

4

L

+R[�]� L

2
r�

I

·r�

I

◆
(1)

The scalar, Maxwell and Einstein equations of motion for the action are 1

r2
�

I

� 2q
�

r
M

✓
1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤rM

�

I

◆
= 0

r
M

F

MN � 4q
�

r
M

✓
(@�

I

)2
1p
�g

✏

MNPQ

F

PQ

◆
= 0

R

MN

� 1

2
g

MN

✓
R� 2⇤� 1

4
F

2 � 1

2
(@�

I

)2
◆
� 1

2
F

M⇤FN

⇤ � 1

2
@

M

�

I

@

N

�

I

+ q

�

@

M

�

I

@

N

�

I

1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤ = 0, (2)

where star denote contraction of indices and we choose ✏

0123 = ✏

txyr = 1.

To get a solution, we take dyonic ansatz with linear axion field as follows;

ds

2 = �U(r)dt2 +
dr

2

U(r)
+ r

2(dx2 + dy

2)

A = a(r)dt+
1

2
B (xdy � ydx)

�

I

= ��

Ii

x

i

. (3)

1
x

M = (xµ
, r) = (⌧, xi

, r) = (⌧, x, y, r)

1

1 Introduction

We want to construct a system which has magnetic properties like as ferromagnetism, anti-

ferromagnetism or paramagnetism holographically. In this work, we construct a system with

impurities which carry finite magnetization.

To construct a system with magnetic impurities, we start from Einstein-Maxwell-axion

system. The axion which is linear in {x, y} direction breaks translational symmetry and

hence gives an e↵ect of impurity [cite: works on linear axion]. We add Chern-Simons

interaction between the axion and gauge field. Due to this interaction, the system has

non-trivial magnetic property as we will discuss later.

...

2 Background solution

We start from the Einstein-Maxwell-axion action with Chern-Simons interaction;

S =
1

16⇡G

Z

M
d

4
x

p
�g

⇢
R +

6

L

2
� 1

4
F

2 � 1

2
(@�

I

)2
�
+

q

�

16⇡G

Z

M
(@�

I

)2 F ^ F

� 1

16⇡G

Z

@M
d

3
x

p
��

✓
2K +

4

L

+R[�]� L

2
r�

I

·r�

I

◆
(1)

The scalar, Maxwell and Einstein equations of motion for the action are 1

r2
�

I

� 2q
�

r
M

✓
1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤rM

�

I

◆
= 0

r
M

F

MN � 4q
�

r
M

✓
(@�

I

)2
1p
�g

✏

MNPQ

F

PQ

◆
= 0

R

MN

� 1

2
g

MN

✓
R� 2⇤� 1

4
F

2 � 1

2
(@�

I

)2
◆
� 1

2
F

M⇤FN

⇤ � 1

2
@

M

�

I

@

N

�

I

+ q

�

@

M

�

I

@

N

�

I

1p
�g

✏

⇤⇤⇤⇤
F⇤⇤F⇤⇤ = 0, (2)

where star denote contraction of indices and we choose ✏

0123 = ✏

txyr = 1.

To get a solution, we take dyonic ansatz with linear axion field as follows;

ds

2 = �U(r)dt2 +
dr

2

U(r)
+ r

2(dx2 + dy

2)

A = a(r)dt+
1

2
B (xdy � ydx)

�

I

= ��

Ii

x

i

. (3)

1
x

M = (xµ
, r) = (⌧, xi

, r) = (⌧, x, y, r)

1



Solu1on	
  
By plug in the ansatz (3) into (1), we find the solution which satisfy all the equations
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One can easily check that (4) becomes dyonic black hole solution with momentum relaxation

when q

�

! 0. q is interpreted as number density as usual AdS/CFT correspondence.

2.1 Thermodynamics

To obtain a thermodynamic potential for this black hole solution we compute the on-shell

Euclidean action(SE) by analytically continuing to Euclidean time(⌧) of which period is the

inverse temperature
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where we choose the energy density " as

" = 2m0. (11)

Together with the energy density and parameters (5), the thermodynamic relation is satisfied

as the second line in (10).

One can directly check that dT/dr0 > 0 for positive r0, therefore, temperature is mono-

tonically increasing function of r0. It implies that the entropy is monotonically increasing

function of temperature.
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where one integral constant is chosen by requiring vanishing a1(r) at the black hole horizon.
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This value is determined by the vanishing u1(r) at the black hole horizon and it can be

understood as energy fluctuation by AdS/CFT dictionary. Now we are interested in the

system with fixed energy then the fluctuation of number density is fixed by (16);
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In the case of q
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! 0, the magnetization becomes
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which is consistent with the calculation in usual dyonic black hole. In this case, magneti-

zation is proportional to the external magnetic field and hence it vanishes in the absence of

the external B.
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Now, the magnetization with B = 0 becomes

M

���
B=0

⌘ M0 = � 108µq
�

�

2

⇣
2⇡T +

q
4⇡2

T

2 + 3
4(µ

2 + 2�2)
⌘2 . (23)

For given chemical potential, � and q

�

, magnetization M0 has maximum value at zero

temperature

M0(T = 0) = � 64µq
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and decreases as 1/T 2 for large value of temperature. When µ � �, (24) becomes[Our

conductivity paper]
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⌧

imp

, (25)

where ⌧

imp

is mean free time with impurity in field theory calculation. Inverse of the mean

free time is proportional to the impurity density and we speculate that the system has

impurities which has finite value of magnetization. The value of q
�

controls the strength of

the magnetization of each impurity. Is it reasonable?

3.2 B 6= 0

Now, let’s discuss magnetization for the case of B 6= 0. Together with (5), the magnetization

(19) can be written in terms of µ, �, q
�

, temperature T and the external magnetic field B.

The horizon radius r0 also depends on other parameters. We have to solve (7) to get the

dependence of other parameters. It is 8th order algebraic equation and there is no analytic

solution. But it can be solved numerically. The external magnetic field dependences of the

magnetization with di↵erent temperature are drawn in Figure 1.

At zero temperature, the magnetization has non-linear behavior of the external magnetic

field. See Figure 1 (a). In the absence of the external magnetic field, there is finite magne-

tization which indicates that the boundary system is described by ferromagnetic state and

the numerical value is consistent with (24). As temperature increases, the magnetic field

dependence of the magnetization becomes linear, see Figure 1 (b), (c) and (d). The value

of magnetization at zero external magnetic field also decrease following (23).

For large temperature, r0 linearly increasing function of the temperature from (7) and

it behaves
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(a) T = 0 (b) T = 0.1

(c) T = 0.5 (d) T = 1

Figure 1: B dependence of the magnetization for di↵erent temperature with µ = 2, � = 0.1
and q

�

= 1. Red dashed line is M = 3B
4⇡T .

Then, the magnetization becomes

M ⇠ � 3

4⇡
· B
T

, (27)

which is red dashed line in Figure 1 (c) and (d). As temperature increase, magnetization

line quickly approach to (27) and the system behaves like paramagnetism.

• Large � behavior:

When � increases, there is first oder phase transition.
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Q:	
  What	
  about	
  the	
  an1ferromagne1c	
  
spin	
  fluctua1on?	
  

•  Introduce	
  a	
  scalar	
  field	
  as	
  a	
  spin	
  wave	
  order	
  
parameter.	
  	
  

•  With	
  the	
  same	
  philosophy	
  as	
  before,	
  	
  
introduce	
  CS	
  coupling	
  :	
  	
  	
  

1 Ferromagnetism

1.1 A model for Ferromagnetism
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We choose ✏0123 = ✏txyr = 1. The center term is for � = 2 case.
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*	
  scalar	
  represent	
  angular	
  fluctua1on	
  in	
  non-­‐linear	
  sigma	
  model.	
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Figure 1: Left:Condensation, Right: Magnetization ,,,,,
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Figure 2: Left:Condensation, Right: Magnetization with fixed chemical potential ,,,,,
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Interpreta1on	
  

•  Condensa1on	
  of	
  real	
  scalar:	
  	
  new	
  order	
  is	
  set	
  
by	
  coupling	
  it	
  to	
  F^F	
  term.	
  	
  

•  This	
  is	
  not	
  by	
  a	
  symmetry	
  breaking.	
  	
  
The	
  gap	
  was	
  induced	
  by	
  dynamics.	
  	
  

•  This	
  may	
  be	
  a	
  new	
  order.	
  	
  
	
  	
  May	
  be	
  Relevant	
  to	
  	
  



Story2	
  +Story3	
  

•  Chi	
  is	
  the	
  master	
  field	
  of	
  Magne1za1on	
  
•  	
  x,y	
  dependent	
  part	
  is	
  the	
  non-­‐normalizable	
  
source	
  term.	
  	
  

•  x,y	
  independent	
  part	
  is	
  the	
  
	
  	
  	
  	
  magne1c	
  charge/B-­‐field	
  term	
  and	
  is	
  described	
  	
  	
  	
  
by	
  phi	
  term	
  is	
  its	
  fluctua1on.	
  	
  



Conclusion	
  

•  Interac1on	
  between	
  the	
  order	
  parameters	
  are	
  
very	
  useful	
  guidelines	
  to	
  set	
  up	
  a	
  model.	
  

•  In	
  the	
  presence	
  of	
  coupling	
  to	
  F^F	
  
Momentum	
  dissipa1ng	
  impurity	
  induces	
  a	
  
permanent	
  magne1za1on.	
  

•  In	
  the	
  presence	
  of	
  coupling	
  to	
  F^F,	
  	
  
real	
  scalar	
  	
  

•  Neither	
  are	
  not	
  related	
  to	
  symmetry	
  breaking.	
  	
  


