Holographic Kondo Defects and

Universality in Holographic Superconductors with Broken Translation Symmetry

Johanna Erdmenger

Max-Planck-Institut für Physik, München

Outline

1. Kondo models from holography

- Model
 J.E., Hoyos, O'Bannon, Wu 1310.3271
- Quantum quenches J.E., Flory, Newrzella, Strydom, Wu in progress
- Entanglement entropy
 J.E., Flory, Newrzella 1410.7811

 J.E., Flory, Hoyos, Newrzella, O'Bannon, Wu in progress
- Two-point functions J.E., Hoyos, O'Bannon, Papadimitriou, Probst, Wu in progress

Outline

1. Kondo models from holography

- Model
 J.E., Hoyos, O'Bannon, Wu 1310.3271
- Quantum quenches
 J.E., Flory, Newrzella, Strydom, Wu in progress
- Entanglement entropy

J.E., Flory, Newrzella 1410.7811

J.E., Flory, Hoyos, Newrzella, O'Bannon, Wu in progress

• Two-point functions J.E., Hoyos, O'Bannon, Papadimitriou, Probst, Wu in progress

2. S-Wave Superconductivity in Anisotropic Holographic Insulators

J.E., Herwerth, Klug, Meyer, Schalm 1501.07615

- Scalar condenses in helical Bianchi VII background
- Homes' Law

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

1. Kondo model: Simple model for a RG flow with dynamical scale generation

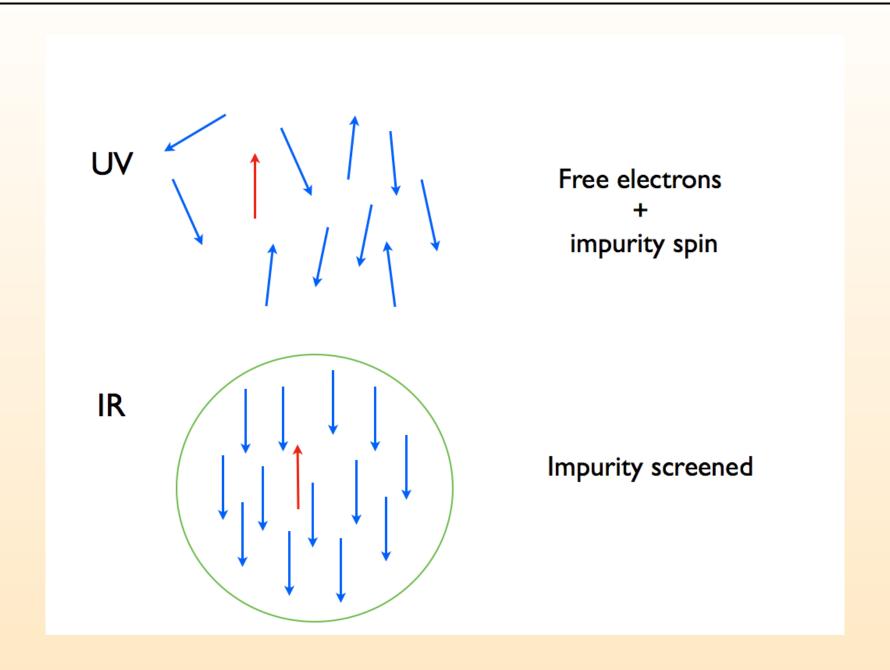
Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

- 1. Kondo model: Simple model for a RG flow with dynamical scale generation
- 2. New applications of gauge/gravity duality to condensed matter physics:
 - Magnetic impurity coupled to strongly correlated electron system
 - Entanglement entropy
 - Quantum quench
 - Kondo lattice

Kondo effect



Original Kondo model (Kondo 1964): Magnetic impurity interacting with free electron gas

Original Kondo model (Kondo 1964): Magnetic impurity interacting with free electron gas

Impurity screened at low temperatures:

Logarithmic rise of resistivity at low temperatures

Original Kondo model (Kondo 1964): Magnetic impurity interacting with free electron gas

Impurity screened at low temperatures:

Logarithmic rise of resistivity at low temperatures

Due to symmetries: Model effectively (1+1)-dimensional

Hamiltonian:

$$H = \frac{v_F}{2\pi} \psi^{\dagger} i \partial_x \psi + \lambda_K v_F \delta(x) \vec{S} \cdot \vec{J}, \quad \vec{J} = \psi^{\dagger} \frac{1}{2} \vec{T} \psi$$

Decisive in development of renormalization group IR fixed point, CFT approach Affleck, Ludwig '90's

Gauge/gravity requires large N: Spin group SU(N)

Gauge/gravity requires large N: Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

$$S^a = \chi^{\dagger} T^a \chi$$

Totally antisymmetric representation: Young tableau with Q boxes

Constraint: $\chi^{\dagger}\chi=q$, q=Q/N

Gauge/gravity requires large N: Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

$$S^a = \chi^{\dagger} T^a \chi$$

Totally antisymmetric representation: Young tableau with *Q* boxes

Constraint: $\chi^{\dagger}\chi=q$, q=Q/N

Interaction: $J^aS^a=(\psi^\dagger T^a\psi)(\chi^\dagger T^a\chi)=\mathcal{O}\mathcal{O}^\dagger$, where $\mathcal{O}=\psi^\dagger\chi$

Gauge/gravity requires large N: Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

$$S^a = \chi^{\dagger} T^a \chi$$

Totally antisymmetric representation: Young tableau with Q boxes

Constraint: $\chi^{\dagger}\chi=q$, q=Q/N

Interaction: $J^aS^a=(\psi^{\dagger}T^a\psi)(\chi^{\dagger}T^a\chi)=\mathcal{O}\mathcal{O}^{\dagger}$, where $\mathcal{O}=\psi^{\dagger}\chi$

Screened phase has condensate $\langle \mathcal{O} \rangle$

Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192 Senthil, Sachdev, Vojta cond-mat/0209144

J.E., Hoyos, O'Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid

J.E., Hoyos, O'Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid

Results:

- Top-down realization in terms of probe branes
- RG flow from perturbation by 'double-trace' operator
- Dynamical scale generation
- Holographic superconductor: Condensate forms in AdS_2
- Screening

J.E., Hoyos, O'Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

J.E., Hoyos, O'Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Top-down brane realization

	0	1	2	3	4	5	6	7	8	9
N D3	X	X	X	X						
N_7 D7	X	X			X	X	X	X	X	X
N_5 D5	X				X	X	X	X	X	

- 3-7 strings: Chiral fermions ψ in 1+1 dimensions
- 3-5 strings: Slave fermions χ in 0+1 dimensions
- 5-7 strings: Scalar (tachyon)

Near-horizon limit and field-operator map

D3: $AdS_5 \times S^5$

D7: $AdS_3 \times S^5 \to \text{Chern-Simons } A_{\mu} \text{ dual to } J^{\mu} = \psi^{\dagger} \sigma^{\mu} \psi$

D5:
$$AdS_2 \times S^4 \rightarrow \left\{ \begin{array}{l} \mathsf{YM} \ a_t \ \mathsf{dual} \ \mathsf{to} \ \chi^\dagger \chi = q \\ \mathsf{Scalar} \ \mathsf{dual} \ \mathsf{to} \ \psi^\dagger \chi \end{array} \right.$$

Operator		Gravity field			
Electron current J		Chern-Simons gauge field A in AdS_3			
Charge $q = \chi^{\dagger} \chi$ \Leftrightarrow		2d gauge field a in AdS_2			
Operator $\mathcal{O} = \psi^{\dagger} \chi \Leftrightarrow $		2d complex scalar Φ			

Bottom-up gravity dual for Kondo model

Action:

$$S = S_{CS} + S_{AdS_2},$$

$$S_{CS} = -\frac{N}{4\pi} \int_{AdS_3} \text{Tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right),$$

$$S_{AdS_2} = -N \int d^3x \, \delta(x) \sqrt{-g} \left[\frac{1}{4} \text{Tr} f^{mn} f_{mn} + g^{mn} \left(D_m \Phi\right)^{\dagger} D_n \Phi + V(\Phi^{\dagger} \Phi)\right]$$

Metric:

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{1}{z^{2}} \left(\frac{dz^{2}}{h(z)} - h(z) dt^{2} + dx^{2} \right),$$

$$h(z) = 1 - z^{2}/z_{H}^{2}, \qquad T = 1/(2\pi z_{H})$$

'Double-trace' deformation by $\mathcal{O}\mathcal{O}^{\dagger}$

Boundary expansion

$$\Phi = z^{1/2}(\alpha \ln z + \beta)$$
$$\alpha = \kappa \beta$$

 κ dual to double-trace deformation

Witten hep-th/0112258

Boundary expansion

$$\Phi = z^{1/2}(\alpha \ln z + \beta)$$
$$\alpha = \kappa \beta$$

 κ dual to double-trace deformation

Witten hep-th/0112258

 Φ invariant under renormalization \Rightarrow Running coupling

$$\kappa_T = \frac{\kappa_0}{1 + \kappa_0 \ln\left(\frac{\Lambda}{2\pi T}\right)}$$

Boundary expansion

$$\Phi = z^{1/2}(\alpha \ln z + \beta)$$
$$\alpha = \kappa \beta$$

 κ dual to double-trace deformation

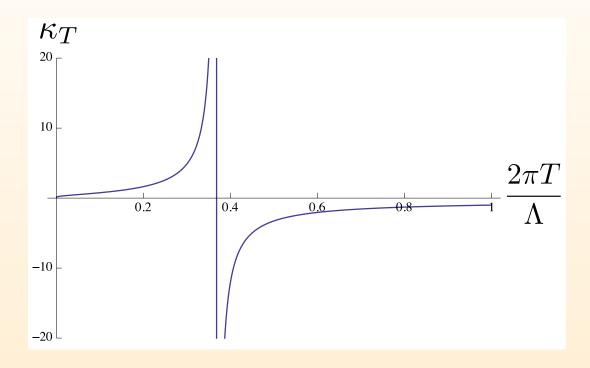
Witten hep-th/0112258

 Φ invariant under renormalization \Rightarrow Running coupling

$$\kappa_T = \frac{\kappa_0}{1 + \kappa_0 \ln\left(\frac{\Lambda}{2\pi T}\right)}$$

Dynamical scale generation

Scale generation

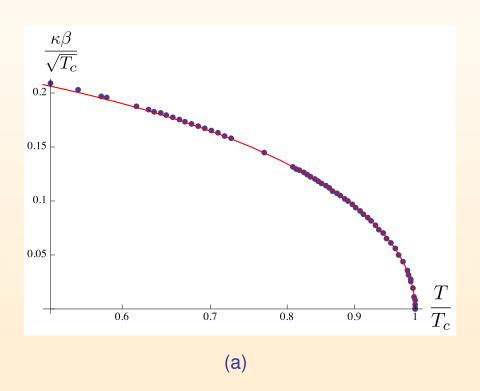


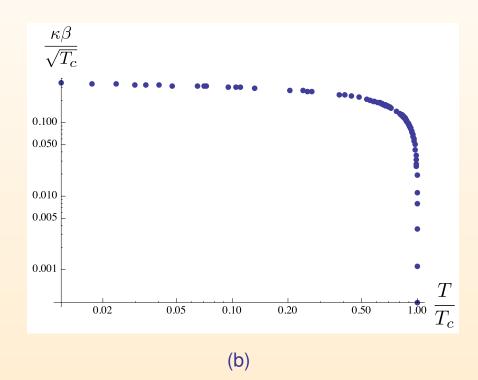
Divergence of Kondo coupling determines Kondo temperature T_K

Transition temperature to phase with condensed scalar: T_c

$$T_c < T_K$$

Normalized condensate $\langle \mathcal{O} \rangle \equiv \kappa \beta$ as function of the temperature

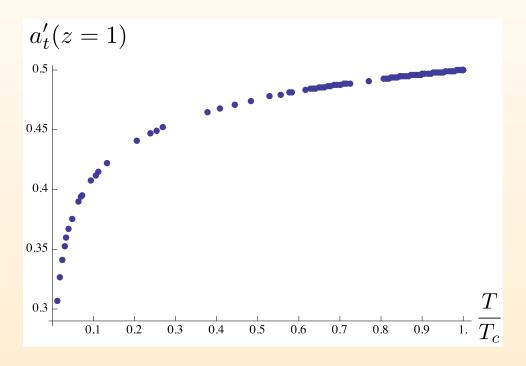




Mean field transition

 $\langle \mathcal{O} \rangle$ approaches constant for $T \to 0$

Electric flux at horizon



$$\sqrt{-g}f^{tr}\Big|_{\partial AdS_2} = q = \chi^{\dagger}\chi$$

Impurity is screened

Time dependence

Allow for time dependence of the Kondo coupling and study response of the condensate

Examples for time dependence of the Kondo coupling:

- Gaussian pulse in IR
- Quench from condensed to normal phase (IR to UV)
- Quench from normal to condensed phase (UV to IR)

Time dependence

Allow for time dependence of the Kondo coupling and study response of the condensate

Examples for time dependence of the Kondo coupling:

- Gaussian pulse in IR
- Quench from condensed to normal phase (IR to UV)
- Quench from normal to condensed phase (UV to IR)

Observations:

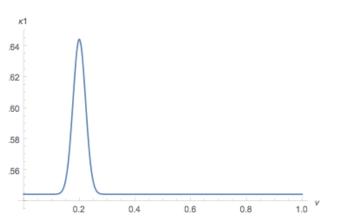
Different timescales depending on whether the condensate is asymptotically small or large

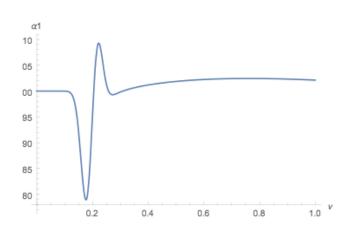
Anderson orthogonality catastrophe? $\tau \sim 1/\langle \text{initial}|\text{final}\rangle$

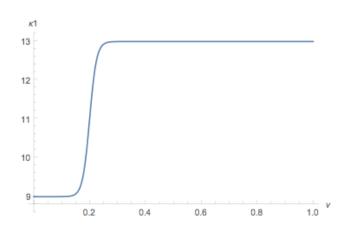
Time dependence

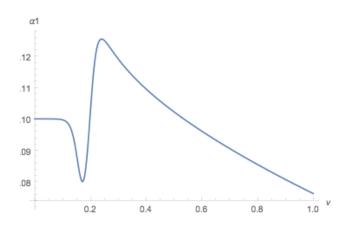
Kondo coupling

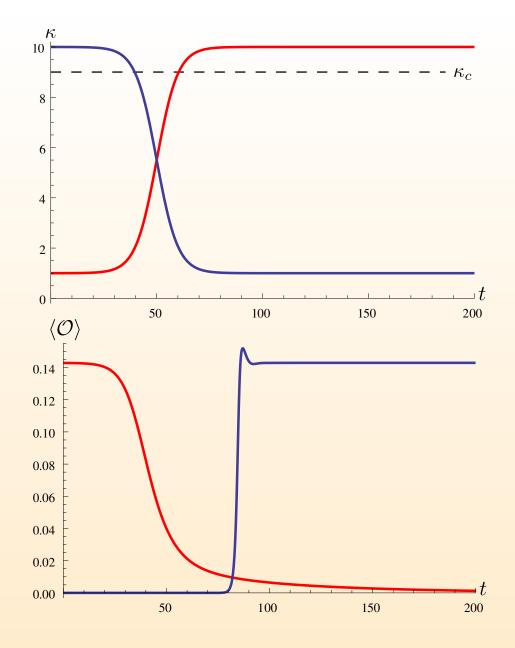
Condensate











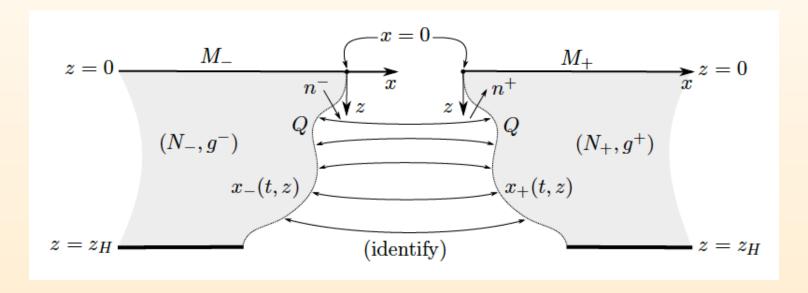
Quantum quenches in holographic Kondo model To and from condensed phase

J.E., Flory, Newrzella, Strydom, Wu

Entanglement entropy for magnetic impurity

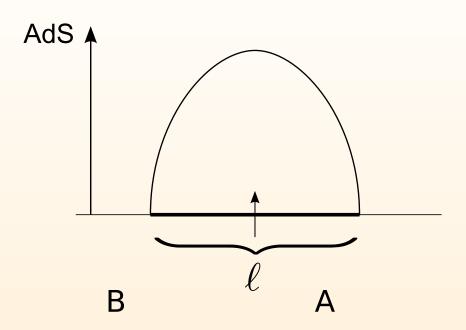
(see talk by Mario Flory on Wednesday)

Including the backreaction using a thin brane and Israel junction conditions



J.E., Flory, Newrzella 1410.7811

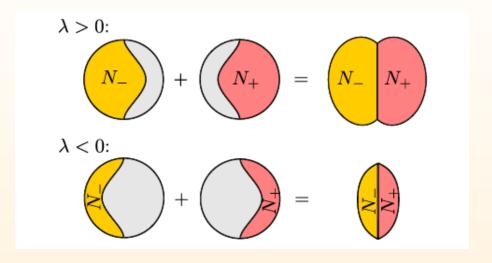
Entanglement entropy for magnetic impurity

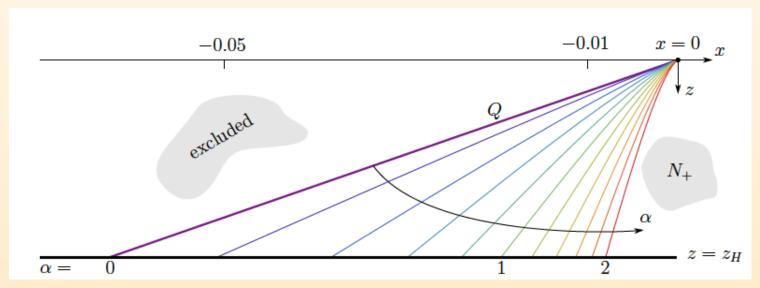


Impurity entropy:

$$S_{\text{imp}} = S_{\text{condensed phase}} - S_{\text{normal phase}}$$

Subtraction also guarantees UV regularity

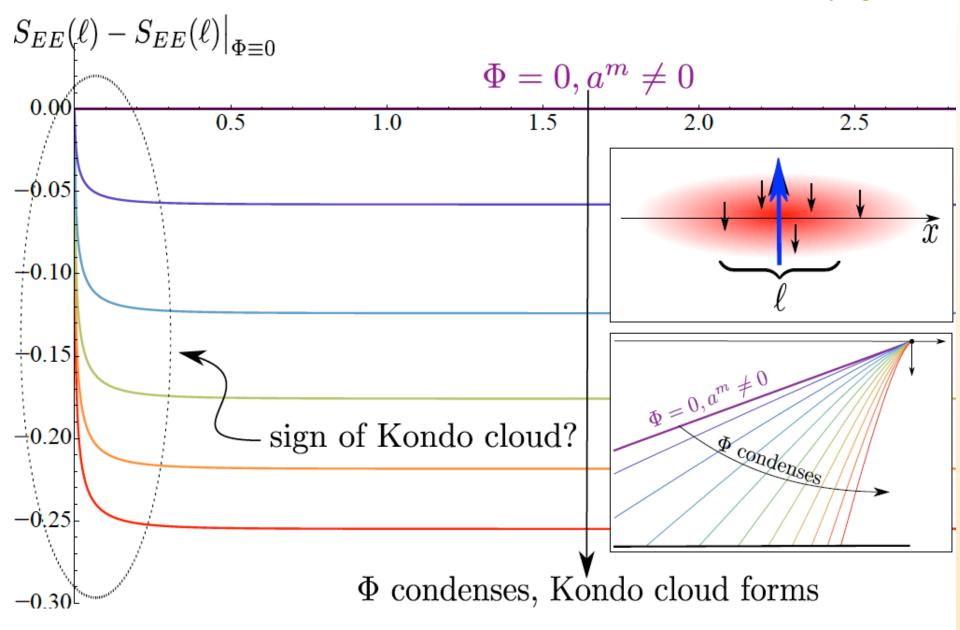




The larger the condensate, the shorter the geodesic

Entanglement entropy

J.E., Flory, Hoyos, Newrzella, O'Bannon, Wu in progress



Universality: IR fixed point determines physical properties

Macroscopic properties do not depend on microscopic degrees of freedom

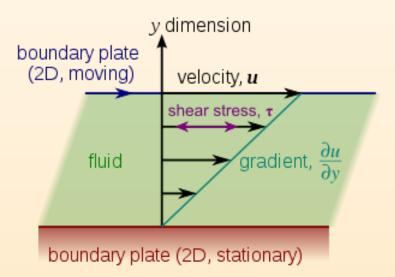
Universality: IR fixed point determines physical properties

Macroscopic properties do not depend on microscopic degrees of freedom

Example: Universal result from gauge/gravity duality:

Shear viscosity over entropy density:

$$\frac{\eta}{s} = \frac{1}{4\pi} \frac{\hbar}{k_B}$$



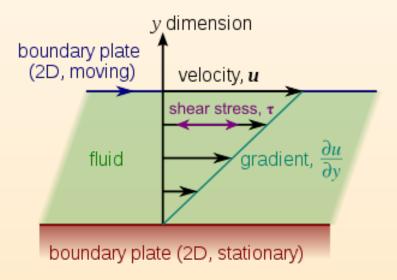
Universality: IR fixed point determines physical properties

Macroscopic properties do not depend on microscopic degrees of freedom

Example: Universal result from gauge/gravity duality:

Shear viscosity over entropy density:

$$\frac{\eta}{s} = \frac{1}{4\pi} \frac{\hbar}{k_B}$$



Planckian dissipator: relaxation time $au = \frac{\hbar}{k_B T}$

Damle, Sachdev 1997

Is there a similiar universal result for applications of the duality within condensed matter physics?

Candidate: Homes' relation

$$\rho_s(T=0) = C \,\sigma_{\rm DC}(T_c) \,T_c$$

Homes' relation $\rho_s(T=0) = C \, \sigma_{\rm DC} \, T_c$

general form may be deduced from Planckian dissipation Zaanen 2004

Homes' relation $\rho_s(T=0) = C \, \sigma_{\rm DC} \, T_c$

general form may be deduced from Planckian dissipation Zaanen 2004

J.E., Herwerth, Klug, Meyer, Schalm arXiv:1501.07615:

Talk by René Meyer on Tuesday

Investigation of C in a family of gauge/gravity duality models

In particular region of parameter space:

$$C \approx 6.2$$

BCS superconductor in 'dirty limit': C = 8.1,

High- T_c superconductors: C = 4.4

Condition for identifying ρ_s : Translation symmetry broken

Condition for identifying ρ_s : Translation symmetry broken

All normal state degrees of freedom have to condense at T=0

Condition for identifying ρ_s : Translation symmetry broken

All normal state degrees of freedom have to condense at T=0

Holography: J.E., Kerner Müller 2012

Condition for identifying ρ_s : Translation symmetry broken

All normal state degrees of freedom have to condense at T=0

Holography: J.E., Kerner Müller 2012

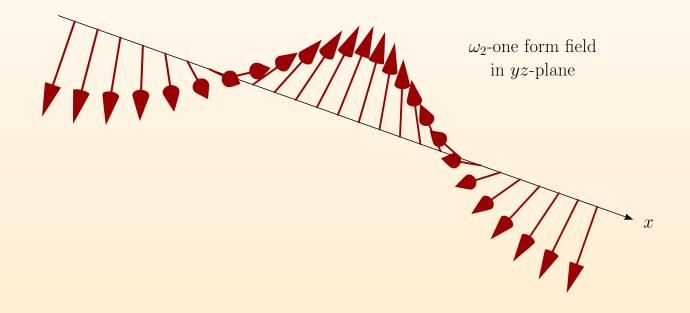
Weak momentum relaxation is not enough Horowitz, Santos 2013

Universal properties of superconductors

Background: Helical Bianchi VII symmetry

Donos, Gauntlett; Donos, Hartnoll

Model with broken translation symmetry:



Gauge/gravity duality with helical symmetry

Background: (Hartnoll, Donos)

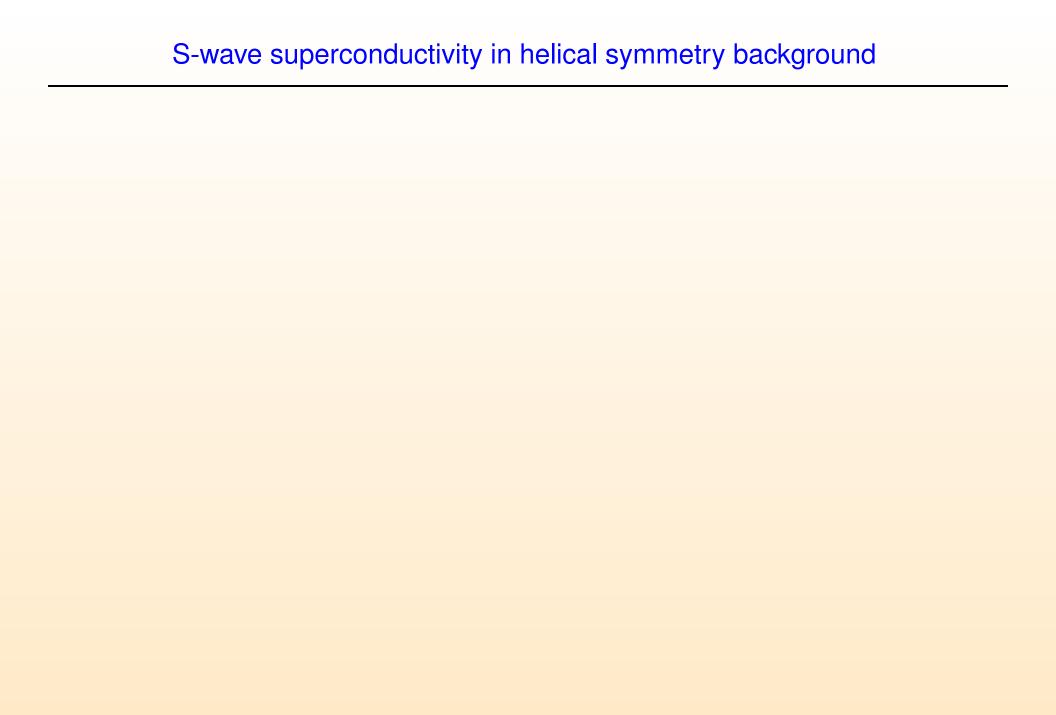
$$\begin{split} S_{\text{helix}} &= \int \mathrm{d}^{4+1} x \, \sqrt{-g} \bigg[R + 12 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} W^{\mu\nu} W_{\mu\nu} - m^2 B_{\mu} B^{\mu} \bigg] \\ &- \frac{\kappa}{2} \int B \wedge F \wedge W. \end{split}$$

$$B = w(r)\omega_2, \qquad w(\infty) = \lambda$$

$$\omega_1 = dx,$$

$$\omega_2 = \cos(px) dy - \sin(px) dz$$

$$\omega_3 = \sin(px) dy + \cos(px) dz$$



S-wave superconductivity in helical symmetry background

Add charged scalar:

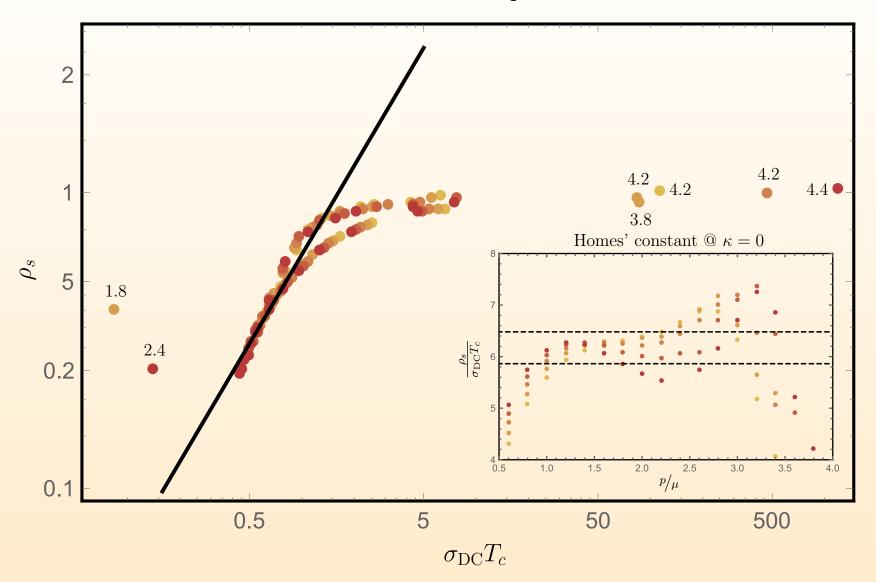
$$S_{\text{total}} = S_{\text{helix}} + \int d^{4+1}x \sqrt{-g} \left[-|\partial \rho - iqA\rho|^2 - m_{\rho}^2 |\rho|^2 \right]$$

S-wave superconductivity in helical symmetry background

Add charged scalar:

$$S_{\text{total}} = S_{\text{helix}} + \int d^{4+1}x \sqrt{-g} \left[-|\partial \rho - iqA\rho|^2 - m_{\rho}^2 |\rho|^2 \right]$$

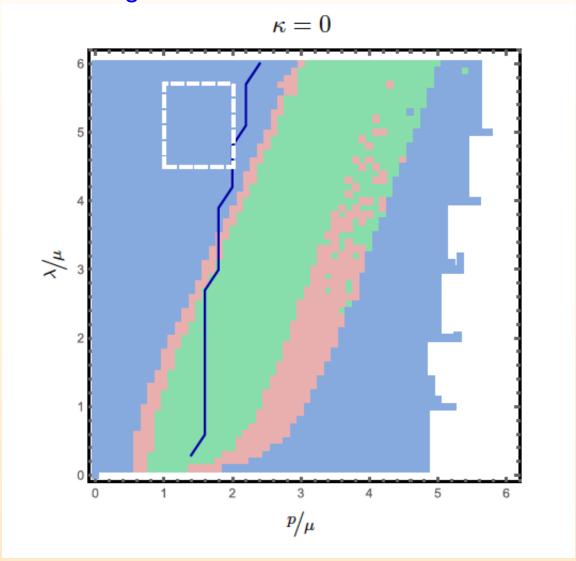
All charged degrees of freedom condense at T=0



J.E., Herwerth, Klug, Meyer, Schalm 1501.07615

Universal properties of superconductors

Phase diagram



Conclusions and outlook

- Kondo model:
- Magnetic impurity coupled to strongly coupled system
- Quantum quench
- Entanglement entropy
- S-wave superconductor in Bianchi VII background:
- Homes' Law

Advertising our book

