nuclear shadowing in a holographic framework

based on L. Agozzino, P. Castorina, PC: PRL 112 (2014) 141601 EPJ C 74 (2014) 2428

> Pietro Colangelo INFN – Bari – Italy

Gauge/Gravity Duality, GGI, 13 April 2015

a comparison of the holographic approach to data

the analysis provides an insight into some experimental results

nuclear versus nucleon structure functions

Kulagin and Petti, NPA 765 (2006) 126

nuclear vs nucleon structure functions

Kulagin and Petti, NPA 765 (2006) 126

 $\frac{F_2(Ca)}{F_2(D)} < 1$

nuclear vs nucleon structure functions

Kulagin and Petti, NPA 765 (2006) 126

nuclear vs nucleon structure functions

Kulagin and Petti, NPA 765 (2006) 126

small-x domain of interest here

SUMMARY

- DIS IN QCD AND IN A STRONGLY COUPLED THEORY
- SMALL X
- ANALYSIS OF NUCLEAR DATA
- CONCLUSIONS

PROLOGUE

$$\frac{d^2\sigma}{dE'd\Omega} = \frac{e^4}{16\pi^2 Q^4} \left(\frac{E'}{ME}\right) \ell_{\mu\nu} W^{\mu\nu}(p,q)$$

$$W_{\mu\nu} = F_1(x,q^2) \left(\eta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}\right) + \frac{2x}{q^2} F_2(x,q^2) \left(P_\mu + \frac{q_\mu}{2x}\right) \left(P_\nu + \frac{q_\nu}{2x}\right)$$

$$Q^2 = -q^2$$

$$Q^2 = -q^2$$

$$Bjorken x$$

 $F_{1,2}$ encode information on the structure of the target

PROLOGUE

DIS amplitudes from the imaginary part of the forward Compton scattering

$$\begin{aligned} T_{\mu\nu} &= i \int d^4 y \; e^{iq \cdot y} \; \left\langle P \tilde{Q} \middle| T \Big[J_{\mu}(y) J_{\nu}(0) \Big] \middle| P \tilde{Q} \right\rangle \\ T_{\mu\nu} &= \tilde{F}_1(x, \frac{q^2}{\Lambda^2}) \Big(\eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \Big) + \frac{2x}{q^2} \tilde{F}_2(x, q^2) \Big(P_{\mu} + \frac{q_{\mu}}{2x} \Big) \Big(P_{\nu} + \frac{q_{\nu}}{2x} \Big) \\ \text{large Q}^2, \; x >> 1 \; : \; \text{OPE for } \mathsf{T}_{\mu\nu} \qquad \text{in terms of operators } \mathsf{O}_{n,j} \; (n=\text{spin}) \\ & \Delta_{n,j} = \delta_{n,j} + \gamma_{n,j} \quad \text{total scaling dimension} \\ & \tau_{n,j} = \Delta_{n,j} - n \quad \text{twist} \end{aligned}$$

large Q² : dominance of the operators with smallest twist

contour argument relates large x behaviour to the moments of the DIS structure functions

DIS and gauge/string duality Polchinski Strassler JHEP 035 (2003) 012

Large 't Hooft coupling: gauge theories with dual description

conformal theories -> AdS₅ x W $ds^2 = \frac{r^2}{R^2} \eta_{\mu\nu} dy^{\mu} dy^{\nu} + \frac{R^2}{r^2} dr^2 + R^2 d\hat{s}_W^2$ confining theories -> geometry modified at $r \approx r_0 = \Lambda R^2$

Im
$$T_{\mu\nu} = \pi \sum_{P_X, X} \langle P, Q | J_{\nu}(0) | P_X, X \rangle \langle P_X, X | \tilde{J}_{\mu}(q) | P, Q \rangle$$

DIS and gauge/string duality Polchinski Strassler JHEP 035 (2003) 012

Large 't Hooft coupling: gauge theories with dual description

conformal theories -> AdS₅ x W $ds^2 = \frac{r^2}{R^2} \eta_{\mu\nu} dy^{\mu} dy^{\nu} + \frac{R^2}{r^2} dr^2 + R^2 d\hat{s}_W^2$ confining theories -> geometry modified at $r \approx r_0 = \Lambda R^2$

Im $T_{\mu\nu} = \pi \sum_{P_X, X} \langle P, Q | J_{\nu}(0) | P_X, X \rangle \langle P_X, X | \tilde{J}_{\mu}(q) | P, Q \rangle$

DIS and gauge/string duality Polchinski Strassler JHEP 035 (2003) 012

$$F_1 = 0$$
 $F_2 = \pi A_0 \tilde{Q}^2 \left(\frac{\Lambda^2}{Q^2}\right)^{\Delta - 1} x^{\Delta + 1} (1 - x)^{\Delta - 2}$

scalar hadrons Δ dimension of the local operator creating the initial/final state from the vacuum

$$F_{2} = 2F_{1} = \pi A_{0} \tilde{Q}^{2} \left(\frac{\Lambda^{2}}{Q^{2}}\right)^{\tau-1} x^{\tau+1} (1-x)^{\tau-2}$$

spin 1/2 $\left(\tau = \Delta - \frac{1}{2}\right)$

emergence of 5D AdS

$$\gamma^*(Q^2) \longrightarrow \\ \vec{b} \uparrow$$

kinematical parameters:

2d Longitudinal $p_0 \pm p_3 \cong \exp\left[\pm \log(s/\Lambda_{QCD})\right]$ 2d Transverse $\vec{b} = \vec{x}_{perp} - \vec{x}'_{perp}$ 1 Resolutionz = 1/Q

Pomeron contribution

$$s \gg \Lambda_{QCD}^2$$
 $|t| \approx \Lambda_{QCD}^2$
 $x \approx \frac{Q^2}{s}$

Regge diffusion impact parameter

$$A(s,t) \approx s^{\alpha(t)} = s^{\alpha't+j_0} \rightarrow a(s,b_{perp}) \approx s^{j_0} \exp\left[-b_{perp}^2 / 4\alpha' \log(s)\right]$$

diffusion in transverse b (impact) space "time"=rapidity

$$A(s,t = -q_{perp}^{2}) = \int \frac{d^{2}b_{perp}}{4\pi^{2}} e^{-iq_{perp} \cdot b_{perp}} a(s,b_{perp})$$

bare Pomeron leading 1/N term exchange with cylinder topology

weak: two gluons

strong: AdS graviton

Low, PRD12 (1975) 163 Nussinov, PRL 34 (1975) 1286 Witten Adv.Theor.Math.Phys 2 (1998) 253

BFKL Pomeron Balitsky Fadin Kuraev Lipatov

first order in λ and all orders in $(g^2 \ N_c \ log \ s)^n$

"hard" Pomeron

DIS at small-x and gauge/string duality Brower Djuric Sarcevic Tan JHEP 11 (2010) 051

A,B -> C,D 1,2 -> 3,4

$$A(s,t) = P_{13} * K_P * P_{24}$$

scattering in 3-d transverse Euclidean AdS_3

$$1 - 3$$

$$K_{P}(s,b,z,z')$$

$$2 - 4$$

$$A(s,t) = 2is \int d^2 b \ e^{iq \cdot b} \int dz \ \int dz' P_{13}(z) P_{24}(z') \Big\{ 1 - e^{i\chi(s,b,z,z')} \Big\}$$

$$P_{ij}(z) = \sqrt{g} \left(\frac{z}{R}\right)^2 \phi_i^p(z) \phi_j^p(z)$$
 ϕ_i external normalizable wf

$$\chi(s,b,z,z')$$
 eikonal
related to the BPST Pomeron kernel
 $\chi(s,b,z,z') = \frac{g_0^2}{2s} \left(\frac{R^2}{zz'}\right)^2 K(s,b,z,z')$

BPST= Brower Polchinski Strassler Tan JHEP 12 (2007) 005

small-x DIS structure functions from the off-shell γ^*p total cross section

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \left(\sigma_T + \sigma_L\right)$$

$$F_{2}(x,Q^{2}) = \frac{Q^{2}}{2\pi} \int d^{2}b \int dz \int dz' P_{13}(z,Q^{2}) P_{24}(z') \operatorname{Re}\left\{1 - e^{i\chi(s,b,z,z')}\right\}$$
$$P_{13}(z) = \frac{1}{z} (Qz)^{2} (K_{0}^{2}(Qz) + K_{1}^{2}(Qz))$$

$$2xF_{1}(x,Q^{2}) = \frac{Q^{2}}{2\pi} \int d^{2}b \int dz \int dz' P_{13}(z,Q^{2})P_{24}(z')\operatorname{Re}\left\{1 - e^{i\chi(s,b,z,z')}\right\}$$
$$P_{13}(z) = \frac{1}{z}(Qz)^{2}K_{1}^{2}(Qz)$$

small-x DIS structure functions from the off-shell $\gamma^{\star}p$ total cross section

kernel K_P splitted in two contributions

$$F_2(x,Q^2) = F_{2,cr}(x,Q^2) + F_{2,ct}(x,Q^2)$$

DIS at small-x and gauge/string duality Brower Djuric Sarcevic Tan JHEP 11 (2010) 051

conformal term

$$F_{2,cr}^{p}(x,Q^{2}) = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}} \int dz \int dz' \frac{zz'Q^{2}}{\tau^{1/2}} P_{13}(z,Q^{2}) P_{24}(z') e^{(1-\rho)\tau} e^{\Phi(z,z',\tau)}$$

$$\Phi(z,z',\tau) = -\frac{\left(\log z - \log z'\right)^2}{\rho\tau}$$

$$\tau = \log(\rho z z' s/2)$$
$$x \approx \frac{Q^2}{s}$$

parameters $g_0 \rho$

DIS at small-x and gauge/string duality Brower Djuric Sarcevic Tan JHEP 11 (2010) 051

confinement term

$$F_{2,ct}^{p}(x,Q^{2}) = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}}\int dz \int dz' \frac{zz'Q^{2}}{\tau^{1/2}}P_{13}(z,Q^{2})P_{24}(z')e^{(1-\rho)\tau}e^{-\frac{\ln^{2}(zz'/z_{0}^{2})}{\rho\tau}}G(z,z',\tau)$$

$$G(z,z',\tau) = 1 - 2\sqrt{\pi\rho\tau}e^{\eta^2} erfc(z)$$

$$\eta = \frac{-\log(zz'/z_0^2) + \rho\tau}{\sqrt{\rho\tau}}$$

z₀ IR cutoff (hard wall)

conformal term

$$F_{2,cr}^{p}(x,Q^{2}) = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}}\int dz \int dz' \frac{zz'Q^{2}}{\tau^{1/2}}P_{13}(z,Q^{2})P_{24}(z')e^{(1-\rho)\tau}e^{\Phi(z,z',\tau)}$$

confinement term

$$F_{2,ct}^{p}(x,Q^{2}) = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}}\int dz \int dz' \frac{zz'Q^{2}}{\tau^{1/2}}P_{13}(z,Q^{2})P_{24}(z')e^{(1-\rho)\tau}e^{-\frac{\ln^{2}(zz'/z_{0}^{2})}{\rho\tau}}G(z,z',\tau)$$

local approximation
$$P_{13}(z) = \frac{1}{z} (Qz)^2 (K_0^2(Qz) + K_1^2(Qz)) \rightarrow C\delta \left(z - \frac{1}{Q}\right)$$
$$P_{24}(z') \cong \delta \left(z' - \frac{1}{Q'}\right)$$

 $Q_0 = 1/z_0$

$$F_{2,ct}^{p}(x,Q^{2},Q',Q_{0}^{2}) = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}} \frac{(Q/Q')}{\tau^{1/2}} e^{(1-\rho)\tau} e^{-\frac{\ln^{2}(Q_{0}^{2}/(QQ'))}{\rho\tau}} G\left(\frac{1}{Q},\frac{1}{Q'},\tau\right)$$

$$F_2^{\,p} = F_{2cr}^{\,p} + F_{2ct}^{\,p}$$

H1-ZEUS small-x measurements

good description of the data in the small-x region

inclusion of eikonal not necessary – the saturation regime is not reached

isospin violation can be included in the formula for F_2

$$F_{2}^{n} = F_{2cr}^{p} \left(x, Q^{2}, Q_{n}^{'} \right) + F_{2ct}^{p} \left(x, Q^{2}, Q_{n}^{'}, Q_{0n}^{2} \right)$$

similar proton and neutron confinement scale $Q_{0n} \cong Q_0$

experimental information from DIS on deuterium

nuclear structure function F₂ in the holographic framework

conformal term

$$Q'_A = \lambda_A Q' \Longrightarrow Q^2 \longrightarrow Q^2 / \lambda_A^2$$

$$F_{2cr}^{p}(x,Q^{2},Q') = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}} \frac{Q}{Q'} \frac{1}{\tau^{1/2}} e^{(1-\rho)\tau} e^{-\left[\log^{2}(Q/Q')/\rho\tau\right]}$$

$$F_{2}^{A}(x,Q^{2}) = F_{2cr}^{N}\left(x,\frac{Q^{2}}{\lambda_{A}^{2}},Q'\right)$$

peak of the wave function of the bound nucleon

confinement term

$$F_{2ct}^{p}(x,Q^{2},Q') = \frac{g_{0}^{2}\rho^{3/2}}{32\pi^{5/2}} \frac{Q}{Q'} \frac{1}{\tau^{1/2}} e^{(1-\rho)\tau} e^{-\left[\log^{2}(Q_{0}^{2}/QQ')/\rho\tau\right]} G\left(\frac{1}{Q},\frac{1}{Q'},\tau\right)$$

$$Q'_A = \lambda_A Q' \Longrightarrow Q_0^2 \longrightarrow Q_0^2 / \lambda_A^2$$

Q² rescaling rule:

$$F_2^A(x,Q^2) = F_{2cr}^N\left(x,\frac{Q^2}{\lambda_A^2},Q'\right) + F_{2ct}^N\left(x,\frac{Q^2}{\lambda_A^2},Q',\frac{Q_0^2}{\lambda_A^2}\right)$$

deuterium structure function

$$F_{2}^{D} = \frac{1}{2} \Big[F_{2}^{pD} + F_{2}^{nD} \Big]$$

nuclear structure function F₂

nucleus	data set
He Li Be C Al Ca Fe Pb	9 9 6 15 6 9 6
He Li Be C Al Ca Fe Pb	9 9 6 15 6 9 6

nucleus	n. points	$\chi^2_{d.o.f}$	n. points	$\chi^2_{d.o.f}$	range of $\left< Q^2 \right>$
He	9	1.09	9	0.24	[0.77 - 6.3]
Li	9	0.93	9	0.79	[0.03 - 1.4]
Be	6	0.21	6	0.30	[3.4 - 11.4]
С	9	1.61	15	0.89	[0.03 - 6.4]
Al	6	0.23	6	0.21	[3.4 - 11.6]
Ca	9	8.0	9	3.87	[0.6 - 6.8]
Fe	6	0.41	6	0.42	[3.4 - 11.8]
Pb	6	1.11	6	0.93	[3.4 – 11.6]

Table 1 Experimental data sets [21] and $\chi^2_{d.o.f}$ of the fit of the structure function F_2^A for each nucleus. The third column reports the $\chi^2_{d.o.f}$ of fits without isospin breaking, the fourth and fifth columns correspond to fits with the isospin breaking effect included. In the last column, the experimental average Q^2 ranges (in GeV²) for the various cases are indicated, from the first to the last bin of the Bjorken *x*.

Isospin effect included

$$F_{2}^{A}(x,Q^{2}) = \frac{Z}{A} F_{2ct}^{p} \left(x, \frac{Q^{2}}{\lambda_{A}^{2}}, Q', \frac{Q_{0}^{2}}{\lambda_{A}^{2}} \right) + (1 - \frac{Z}{A}) F_{2ct}^{n} \left(x, \frac{Q^{2}}{\lambda_{A}^{2}}, Q'_{n}, \frac{Q_{0}^{2}}{\lambda_{A}^{2}} \right)$$

conventional approach: QCD dipole model

 γ^{\star} produces a qq pair which interacts with the target

 τ_A saturation scale

$\left(AR_N^2\right)^{1/2\delta}$						
$\mathcal{X}_A = \left(\frac{1}{R_A^2}\right)$						
$\pi R_N^2 = 1.55 \text{ fm}^2$						
$\delta = 0.79$						
$R_A = \left(1.12A^{1/3} - 0.86A^{-1/3}\right)$) fm					

 $\frac{\sigma^{\gamma^*A}(\tau^A)}{\pi R_A^2} = \frac{\sigma^{\gamma^*N}(\tau^N)}{\pi R_N^2}$

nucleus	λ_A (holography)	$\lambda_{A,dip}[24]$
Li	1.843	1.130
Be	1.764	1.140
С	1.775	1.160
Al	1.972	1.264
Ca	2.006	1.338
Fe	2.090	1.413
Pb	2.286	1.780

Table 2 Rescaling parameter λ_A obtained using the holographic expression for F_2^A and taking into account the isospin breaking. The values in the last column are obtained within the QCD dipole model [24].

J.L.Albacete et al EPJ C 43 (2005) 353 PRD 71 (2005) 014003

Q² rescaling versus x rescaling

longitudinal structure function

nuclear modification of the longitudinal structure functions

37

structure functions from cross section measurements

reduced cross section

$$\sigma_r = F_2 \left[1 - f(y) \frac{F_L}{F_2} \right]$$

maximum uncertainty on F₂

$$\Delta F_2 = 1 - \frac{F_2^A}{F_2^A + f(y)(F_L^N - F_L^A)}$$

by Q^2 rescaling at low-x, the expression of F_2 obtained in the gauge/gravity formulation reproduces the set of nuclear data

rescaling can be understood in terms of a modification of the z_{IR} in nuclei and in the change of the peak of the wave function of the bound nucleon

geometrical interpretation of nuclear shadowing

Questions:

anti-shadowing by momentum rescaling?

holographic description of the EMC effect?

Anti-shadowing usually analyzed by energy-momentum sum rules

Nature of the EMC effect debated

Conclusions

A unified description of nuclear structure functions in the full x-range is missing

The gauge/gravity duality formulation seems to capture the relevant dynamics to describe nuclear DIS phenomena at small-x

Possibilities for the description of anti-shadowing and of the EMC effect need to be investigated

Interest for neutrino DIS on nuclear targets -> neutrino cross section at high energy and small-x: a definition of the charged current in the dual approach is needed

SPARES