

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Entanglement entropy associated to an out-of-equilibrium heat flow **Daniel Fernández**

Max Planck Institute for Physics in Munich

Work in progress with:

Johanna Erdmenger Eugenio Megías Mario Flory Ann-Kathrin Straub

Motivation

Far from equilibrium AdS/CFT

- Compute real time dynamics directly \rightarrow Collective response.
- Transition to hydrodynamics at late times.
- In strongly correlated systems.

Organizing principles out of equilibrium?

Universality classes?

Examples

- Thermalization of quark-gluon plasma.
- Quenches in condensed matter systems.
- Fluctuations in the fractional Hall effect.

Simpler class of problems: Forced equilibrium steady state.

Concrete setup: Two heat reservoirs at different temperatures are put in contact at time t=0.

Initial form of energy density:

$$F(x) = \frac{c\pi}{12} \left[T_L^2 \Theta(-x) + T_R^2 \Theta(x) \right]$$

→ Experimental verification: Cold atom systems at the QCP.

Overview

Energy flow in strongly correlated systems

I. Steady state in CFT

II. Time evolution of bulk metric

Information flow

III. Analysis of entanglement entropy

A universal regime of thermal transport

Consider:

D. Bernard, B. Doyon '12

Thermal quench in 1+1 dim. CFTs T_L Two exact copies initially at equilibrium. T_R Independently thermalized. ٠ Conservation eqs. & Tracelessness: $\partial_x \langle T^{xx} \rangle = -\partial_t \langle T^{tx} \rangle = 0$ $\langle T^{xx} \rangle = \langle T^{tt} \rangle$ $\Rightarrow \begin{array}{l} \langle T^{tx} \rangle = F(x-t) - F(x+t) \\ \langle T^{tt} \rangle = F(x-t) + F(x+t) \end{array}$ "shockwaves" emanating from interface, converge to non-equilibrium Steady State. Long Time Limit: $\langle T^{tx} \rangle = cg(T_L - T_R)$ $\langle J_E \rangle \neq 0$ **Energy flow:** with thermal conductance: $g = \frac{\pi^2}{6} (T_L + T_R) (k_B^2/h)$ Lorentz-boosted thermal distribution.

Universality in d >1

M.J. Bhaseen, B. Doyon, A. Lucas, K. Schalm '13

Motivation from holography

- In 1+1, holographic dual has a unique solution: A boosted BTZ black hole.
- In d+1, assume ctant. homogeneous heat flow as well.

also unique non-singular solution: A boosted black brane.

Generalization to any d:

- Effective dimension reduction to 1+1.
- *Dissipation*: Energy can be exchanged among the various constituents.
- Linear response regime:

 $|T_L - T_R| \ll T_L + T_R$

 \rightarrow Hydro eqs. explicitly solvable.

Heat transport dominated by diffusion instead of flow?

width
$$\propto \sqrt{t}$$

distance $\propto t$

$$\langle T^{\mu\nu} \rangle = a_d T^{d+1} \left(\eta^{\mu\nu} + (d+1)u^{\mu}u^{\nu} \right)$$

 $\langle \vec{J_E}\,\rangle \neq 0\,$ even if systems asymptotically far apart.

Hydrodynamics

 L^d

M.J. Bhaseen, B. Doyon, A. Lucas, K. Schalm '13

➤ 1+1 case prediction: Lorentz-boosted energy density with $u^{\mu} = (\cosh \theta, \sinh \theta, \vec{0})$ and temperature given by

$$\left. \begin{array}{c} T_L = T \, e^{\theta} \\ T_R = T \, e^{-\theta} \end{array} \right\} \quad \langle T^{tx} \rangle = \frac{c\pi}{12} (T_L^2 - T_R^2)$$

Generic d prediction: \succ Final steady state characterized by

 $\langle T^{tx} \rangle = a_d \frac{T_L^{d+1} - T_R^{d+1}}{u_L + u_R}$

$$T^{\text{tt}} - T^{\text{tt}}_{s}(T_{L} = 7, T_{R} = 1.9)$$

ro

where
$$a_d \sim \overline{G_N}$$
 Numerical result from hydro
> Boosted thermal state: $\int T = \sqrt{T_L T_R}$ Temperature
 $\chi = \left(\frac{T_L}{T_R}\right)^{\frac{d+1}{2}}$ ~ Boost velocity
> Shockwave velocities: $u_L u_R = \frac{1}{d} = c_s^2$

Step Ansatz Hydrodynamics

Ingredients:

- Configuration with 2 steps
 Conservation of energy & momentum
 Go to 2nd order in gradient expansion: $T^{\mu\nu} = P(d u^{\mu}u^{\nu} + \eta^{\mu\nu}) + \pi^{\mu\nu} + \mathcal{O}(\partial^{2})$
- Specialize to conformal case:

 $\epsilon(P) = (d-1)P$

 $\delta p \propto |P_L - P_R|$ determines shock velocities v_L, v_R

Two posible sets of Steady State configurations: Thermodynamic branch, second branch

• <u>Numerical hydro solutions</u> Looking for sols. of the form $u^{\mu} = (\cosh[\theta(t, x)], \sinh[\theta(t, x)], \vec{0})$

Unknown functions: $\{T(t,x), \theta(t,x), \pi_{xx}(t,x)\}$ \rightarrow Late time prediction is matched

<u>Hydrodynamical evolution of 3 regions</u> Match solutions \rightarrow asymptotics of the central region?

Gravitational Dual

I. Amado, A. Yarom '15 (see Yarom's talk tomorrow)

Energy transport: Lorentz-boosted thermal distribution

ightarrow Gravity dual: Boosted black brane

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[\frac{dz^{2}}{f(z)} - f(z) \left(\cosh\theta \, dt - \sinh\theta \, dx \right)^{2} + \left(\cosh\theta \, dx - \sinh\theta \, dt \right)^{2} + dx_{\perp}^{2} \right]$$

Numerical GR

- Full out-of-equilibrium evolution of Einstein's equations.
 - Ansatz for Characteristic Evolution (Eddington-Finkelstein coord.):

$$ds^{2} = 2dt (dr - A dt - F dx) + \Sigma^{2} (e^{B} dx_{\perp}^{2} + e^{-B} dx^{2})$$

• Use gauge reparametrization to manage time evolution of the Apparent Horizon:

$$r \to r + \xi(t, x)$$

• Initial data:

Information Flow

How does information get exchanged between the systems which are isolated at t=0?

- Entanglement entropy
 → Holographic measure:
- <u>Regularization</u>: Substract result at T=0:

$$S_E = rac{{
m Area}(\gamma_A)}{4G_N^{d+2}}$$
esult at T=0: $S_{EE}^{div} \sim rac{1}{z_{uv}}$

 Z_S

L

 σ

 $\{t(\sigma), x(\sigma), z(\sigma)\}$

> Spatial induced metric on surface: $ds^2 = h_{\sigma\sigma} d\sigma^2 + g_{yy} dy^2$

> Action: $\mathcal{I} = L \int ds \sqrt{\frac{\partial x^a}{\partial \sigma} \frac{\partial x^b}{\partial \sigma}} \tilde{g}_{ab}$

Geodesic eqs. for effective metric

$$\tilde{g}_{ab} = g_{yy}g_{ab}$$

 $\ell/2$

 $\ell/2$

Entanglement Entropies

Full result

Inverval: $x \in [-0.107, 0.107]$

 $T_L=2.0; T_R=2.05$

Result with t(s)=cte, $g_{tx}=0$

0.2355

0.2350

0.2345

0.2340

0.2335

0.2330

0.0

0.2

Sentanglement

0.4

0.6

0.8

t

Mutual Information

В

What do we learn about A by looking at B?

А

Holographic procedure:

Basic features:

- Shockwaves transport information.
- When does system 1 find out about the existence of system 2?
- M.I. grows as shocks pass through the region.
- Generically, left and right sides are asymmetric, since $u_L \neq u_R$

A + B

Outlook

• Complete analysis for full range: $0 < T_L/T_R < 1$

- **a.** Qualitatively different for greater ΔT ?
- b. Any role for the 2nd branch?

Higher dimensions

a. Generalize: $2+1 \rightarrow 3+1$, what changes?

Find an interpretation

- a. Picture The shockwaves transport information?
- **b**. Asymmetry Intervals are not reached simultaneously

Thank you!