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A broad perspective from CMT

Motivation: study of compressible quantum states of matter

- Quantum: T = 0 or very low T (T << µ)

- Compressible [Huijse-Sachdev’11][Sachdev’12]:
continuum, translationally invariant, with a global charge Q;
Ground state of H− µQ is characterised by 〈Q〉 a smooth non-constant function of
µ

- Known examples:

1 Solids (translational symmetry is broken);

2 Superfluids (U(1) is broken);

3 Fermi liquids

4 Non-Fermi liquids

Zoom in: Non-Fermi liquids



Fermi liquids vs non-Fermi liquids: intro

Fermi liquids (FL)

resistivity ρ ∼ T2

Fermi surfaces

quasi-particles

perturbative field theory

Non-Fermi liquids (NFL)

resistivity ρ ∼ T

Fermi surfaces

NO quasi-particles

strongly interacting
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in terms of the symmetries of the ordered 
phases. Signatures of these states are often 
provided by their elementary excitations, 
which within the ordered phases should 
form well-defined quasiparticles at low 
temperatures and energies.

Quantum criticality is now known to 
occur in a class of metals called heavy-
fermion systems, which are reviewed by 
Philipp Gegenwart et al.3 on page 186 of 
this issue. These systems take their name 
from the strong mass renormalization of 
Landau quasiparticles due to hybridization 
of the f electrons with the conduction 
electrons. The quantum critical behaviour 
is summarized in Fig. 1. In heavy-fermion 
systems, the ordered phase that terminates 
at the QCP is magnetic, and is clearly 
visible in experiments. The connection 
between magnetic quantum criticality and 
the anomalous temperature dependencies 
of physical properties in the critical region 
is also unambiguous. The mechanism 
responsible for the superconductivity is 
not understood in detail, but a pairing 
glue (that enables the electrons to form 
Cooper pairs) consisting in part of critical 
magnetic fluctuations is very plausible in 
many cases4. Heavy fermions are therefore 
model materials in which to study quantum 
criticality in itinerant electron systems, with 
a diverse variety of behaviour that reflects 
their complex electronic structure.

In the copper-oxide superconductors 
the connection to quantum criticality 
is less clear. Figure 2 shows the phase 
diagram of the hole-doped cuprates, 
plotting the evolution with doping of 
the antiferromagnetic (AFM) Mott 
insulator — the ‘parent’ compound 
from which high-temperature 
superconductivity emerges — into a high-
temperature d-wave superconductor, 
and then into a Fermi-liquid-like metal. 
Although few compounds can be tuned 
through the entire phase diagram, it is 
believed to be broadly representative of 
the hole-doped materials. The underdoped 
side of the phase diagram is particularly 
rich: in addition to the normal-state 
pseudogap5,6, which suppresses spin and 
charge excitations below a temperature T*, 
underdoped materials exhibit a variety of 
spin and charge orders that can be static 
or fluctuate7.

The short coherence length of a Cooper 
pair, the low superfluid density and the 
high electrical anisotropy make these 
systems very susceptible to the defects and 
variations in composition that occur in real 
materials, and also to deliberately applied 
perturbations such as magnetic flux lines 
in the vortex phase. This situation makes it 
very difficult to identify which competing 
orders are essential to the description of 

high-temperature superconductivity. Two 
particularly important questions are: is 
there a universal zero-temperature phase 
transition underlying the superconducting 
dome? And is this transition continuous, 
with strong fluctuations that dominate 
the physics over a wide range of doping 
and temperature?

In addressing the first question, 
Jeffery Tallon and John Loram have made 
a comprehensive survey6 of physical 
properties across the phase diagram, 
including a large body of thermodynamic 
experiments they themselves have carried 
out. They find that the pseudogap is 
characterized by an energy scale that falls 
abruptly to zero at a critical doping of 
0.19 holes per in-plane Cu atom, in a wide 
range of materials and measurements, 
as sketched in Fig. 2. Properties such as 
electronic heat capacity change abruptly 
on crossing the critical doping, indicating 
that it may be a zero-temperature transition 
between two distinct phases. However, 
Tallon and Loram take pains to point out 
that their work indicates the T* line in the 

phase diagram to be a thermal crossover, 
not a phase transition, and it is difficult 
to conclude whether the pseudogap 
constitutes a distinct quantum state.

A number of experiments further refine 
our understanding. Benoit Fauqué et al. 
have identified a novel magnetic order in 
YBa2Cu3O6+x using neutron scattering8. 
The magnetic structure has the same 
translational symmetry as the lattice, 
but sensitive experiments, using spin-
polarized neutrons as the probe particle, 
are able to separate nuclear and electronic 
components of the diffraction signal and 
reveal an onset temperature of the effect 
that scales with T*. This may be the first 
direct evidence of a hidden order within 
the pseudogap region. Jing Xia et al. have 
recently made sensitive measurements 
of the polar Kerr effect in YBa2Cu3O6+x 
that provide some of the clearest evidence 
to date of a sharp phase transition 
coinciding with T* (ref. 9). Their ingenious 
experiment uses a zero-area-loop Sagnac 
interferometer, in which two counter-
propagating beams of circularly polarized 
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Figure 2 Doping–temperature phase diagram of the hole-doped cuprate superconductors. (For a detailed 
review see ref. 7.) The parent compounds of the cuprate superconductors are Mott insulators, which order 
antiferromagnetically below room temperature. The antiferromagnetism (AFM) is weakened by the doping 
of holes and is eventually replaced by high-temperature d-wave superconductivity (S/C), in which holes 
form Cooper pairs with finite angular momentum as a way of reducing their mutual Coulomb repulsion. The 
dome of superconductivity extends to a doping of approximately 0.3 holes per in-plane Cu atom, after which 
it is replaced by a metallic state that is widely believed to be a Fermi liquid. The most puzzling aspects of 
the phase diagram are found in the normal state: at the doping level corresponding to optimal transition 
temperature Tc, the resistivity has an anomalous form, linear in temperature to 1,000 K. At lower doping, 
the underdoped cuprates show a strong suppression of spin and charge excitations below the pseudogap 
temperature T*. The overall behaviour shows similarities to the heavy-fermion metals, and a major open 
question is whether it can be understood in terms of a QCP hidden beneath the superconducting dome. Recent 
experiments by Xia et al.9 provide new evidence in support of this view, showing a sharp time-reversal-
symmetry-breaking transition at T* (red dots).
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The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |"i, a linear superposition
of the conduction-electron orbitals will be in its down state,
|#ic, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|"i|#ic � |#i|"ic). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo eVect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent ↵ in 1⇢ ⌘ [⇢ (T )�⇢0] / T ↵ , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark ↵ = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f
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- Left: Doping-temperature phase diagram of the hole-doped cuprate superconductors [Broun ’08]

- Right: Magnetic field-Temperature in heavy-fermions metals [Gegenwart et al ’08]

Quantum critical point behind NFL



A more specific perspective from CMT

Magnetic oscillations in finite density systems

quantum oscillations in the magnetization as a function of 1/B, present in metals at low
temperature T and strong magnetic field B

standard tool to diagnostic and analyse Fermi surfaces

in ordinary metals (Fermi liquids): Landau-Kosevich-Lifshitz formula

in “exotic phases”: some surprises:

Rep. Prog. Phys. 75 (2012) 102501 S E Sebastian et al

Figure 1. (a) Schematic of the high-Tc cuprate phase diagram as a function of nominal hole doping (p) denoting the electronic structure on
the overdoped and underdoped side. Electronic structure on the overdoped side measured by photoemission experiments at B = 0 in
overdoped Tl2Ba2CuO6+x , reproduced with permission from [6], overlaid with electronic structure measured by angular magnetoresistance
experiments, reproduced with permission from [7]. Copyright 2003 Nature Publishing Group. Electronic structure on the underdoped side
measured by photoemission experiments at B = 0 in underdoped YBa2Cu3O6+x , reproduced with permission from [11]. Copyright 2008
Nature Publishing Group. For YBa2Cu3O6+x , the relation between oxygen doping (x) and hole concentration (p) is given by p ≈ 18x% [8].
Superconducting, antiferromagnetic and pseudogap regions are indicated. (b) Schematic of the high-Tc cuprate phase diagram as a function
of nominal hole doping (p) denoting the electronic structure on the overdoped and underdoped side, measured by quantum oscillation
experiments at high magnetic fields. The superconducting region at zero magnetic field is schematically represented by a dashed boundary.
Circles represent the relative size of Fermi surface orbits observed in quantum oscillation experiments [17–20].

by angular dependent quantum oscillation measurements.
For a finite Zeeman splitting, the quantum oscillation
amplitude is anticipated to vary with angle according to
cos((π/2)(m∗g∗/me cos θ)), where m∗/me is the effective
cyclotron mass, g∗ is an effective g-factor and θ is the angle
of inclination between the applied magnetic field and the
crystalline c-axis [41]. An experimental verification can
be provided by locating the crossing of quantum oscillation
amplitude from positive to negative through an angle where
the amplitude is exactly zero, known as a ‘spin zero’ angle
θr , defined by (m∗g∗/me cos θr ) = 2r + 1, where r is an
integer. Furthermore, in order to determine the value of
m∗g∗/me from spin zeros alone, the location of at least two
successive spin zeros corresponding to r and r + 1 respectively
needs to be identified in order to solve for the two unknowns
m∗g∗/me and r from the above equation. Angle-dependent
quantum oscillation measurements up to high angles reveal
a minimum in amplitude near 50◦, first identified in [28]
(figure 4(a)). In [28], it was suggested from a single spin
zero together with an overall fit to the form of the quantum
oscillation amplitude envelope that g∗ ≈ 2. Subsequent
measurements have identified a first spin zero at 53◦, and a
second spin zero at 64◦ [29] (figure 4(b)). The two identified

spin zeros at high angles are found to correspond to values
of r = 2, r + 1 = 3, yielding a value of g∗ = 2.10(5).
The absence of an additional low angle spin zero indicates an
anisotropy of the g-factor associated with the Fermi surface
pocket, such that the spin susceptibility is ≈50% higher
for magnetic field aligned parallel to the c-axis than for
magnetic field aligned perpendicular to the c-axis [29]. The
agreement of the measured anisotropy in the g-factor with the
anisotropy reported for the planar Cu sites by NMR [42] is
consistent with Fermi surface pockets originating from the
CuO2 planes rather than the CuO chains, for which either no
anisotropy or a small anisotropy in the opposite direction is
reported [47].

2.3. Fermi surface transformation

The first indication from quantum oscillations that a dramatic
transformation in the electronic structure has taken place
in underdoped YBa2Cu3O6+x is the low value of measured
frequency representing a Fermi surface enclosing ≈2%
of the Brillouin zone [17, 23, 33], as opposed to a hole
enclosing Fermi surface >50% of the Brillouin zone
expected from paramagnetic band structure calculations,

3

Figure: phase diagram from under-doped to over-doped high-Tc SC [Sebastian-Harrison-Lozarich’12]

In NFL: Magnetic oscillations and ARPES suggest gapless excitations and no quasi-particle

descriptions [Sebastian-Harrison-Lozarich’12, Sebastian-Harrison-Lozarich’11]



Prelude: Magnetic oscillations in Fermi liquids

Apply a magnetic field to a gas of electrons in (3 + 1)-dimensions:

- Landau levels + Zeeman splitting:

ε2` = k2 + m2 + (2`+ 1)γB± γB , ` = 0, 1 , . . .

- B is parallel along z-axis and k ≡ kz

- γ is proportional to the gyromagnetic ratio

What happens?

- closed quantized orbits in the plane perpendicular to k

- separation between two orbits: ∆`,`+1 ∼ B

- degeneracy: δ ∼ B

Recall: Free energy

Ω ∼ TB
∑
`

∫
dk

∑
σ=±

log

(
1 + exp

µ− ε`,σ(k)

T

)



Prelude: Magnetic oscillations in 2 + 1-d Fermi liquids

Increasing B: what happens? (2 + 1)-d example

Magnetic oscillations in cond-matt: III

� Increase B: What happens?     Example: (2+1)d-system: Oscillations as a function of B!

µ

B = 0
B

Increasing B:   then              increases but also the degeneracy (area enclosed)     increases�l,l+1 �

✏l

Increasing B: then ∆`,`+1 increases but also the degeneracy (area enclosed) δ
increases



Prelude: Magnetic oscillations in 3 + 1-d Fermi liquids

Increasing B: what happens? (3 + 1)-d example� Increase B: What happens?     Example: 3D-system:

-1.0
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0.0
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i)  similar but there is an extra degeneracy in k:  

   the crossing of FS is maximized when this degeneracy is minimal:  

   extremal cross-sectional FS! 

ii) period is controlled by the (extremal) FS! 

�S

�k
= 0

extra degeneracy in k: the crossing of Fermi surface is maximized when this

degeneracy is minimal: extremal cross-sectional Fermi surface!

period is controlled by the (extremal) Fermi surface: AF



Prelude: Magnetic oscillations in Fermi liquids: Summary

Increasing B: what happens?

- continuous jump of free energy (Ω) ⇐⇒ oscillations of magnetization M = − 1
V
∂Ω
∂µ

(crossing of FS by highest occupied Landau level)

- conditions

1 Low T (thermal effects suppressed by oscillations) and strong B: T . B << µ

2 (pure metal)

For FL: Landau-Kosevich-Lifshitz formula in 3 + 1-d

Mosc ∼
√
B
∑
`

m?T/B√
` sinh (# `m?T/B)

cos (AF`/B)

For FL: Landau-Kosevich-Lifshitz formula in 2 + 1-d

Mosc ∼ 1

B

∑
`

m?T/B

` sinh (#m?T/B)
sin (AF`/B)

with m? the effective mass, m? ∼ ∂AF
∂ε

.



Questions, goals, and methods

Questions

- Can gauge/gravity duality give an alternative prediction and description for magnetic
oscillations in strongly correlated systems?

- Can we attack the problem from a different point of view?

Our goals

- Magnetic oscillations in systems at finite density and strongly correlated via
gauge/gravity duality

- bottom-up approach without introducing probe fermions

Our approach

- Extension of electron star/cloud model [Hartnoll-Silverstein-Polchinski-Tong ’10][Hartnoll-Tavanfar
’10][VGMP-Nowling-Thorlacius-Zingg’10][Hartnoll-Petrov’10] See also previous related works:
[deBoer-Papadodimas-Verlinde’10][Arsiwalla-deBoer-Papadodimas-Verlinde’10]

- Previous work on magnetic effects in holographic metals within probe approx [Denef-

Hartnoll-Sachdev’09][Hartnoll-Hofman’09][Hartnoll-Hofman-Tavanfar’10][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen’11]

[Blake-Bolognesi-Tong-Wong’12] [Albash-Johnson-MacDonald’12][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen’13]

[Hartnoll-Hofman-Vegh’11]



The bulk model: Electron cloud at B = 0

Action

S = SEH + SM + Sfl

=
1

2κ2

∫
d4x

√
−g (R− 2Λ)−

1

4e2

∫
d4x

√
−gFµνF

µν −
∫

d4x
√

−gLfl

where on-shell Lfl = p [Schutz’ 70][Brown ’93][Bombelli-Torrence ’90][de Ritis-Lavorgna-Platania-Stornaiolo ’85]

Ingredients

- degenerate charged perfect fluid of non-interacting fermions of mass m in
4-dimensions
coupled to

- Maxwell-Einstein theory with Λ = − 3
L2

(asymptotically AdS4, with L the AdS radius)

- we search finite T configurations

κ2 = 8πGN is the gravitational coupling, e Maxwell coupling constant, here: κ
L
� 1

(classical gravity regime)

Dual: strongly correlated fermions at finite density µ = limr→0 At and at finite
temperature T = TH



The electron cloud at B = 0

UVIR
0z

fluid local  
Lorentz frame 

fermions are treated in a Thomas-Fermi approximation (or

Tolman-Oppenheimer-Volkoff) [Hartnoll-Tavanfar’10]:

mL >> 1 , and e
2 ∼ κ

L
� 1 (1)

actually it works beyond (1) [Allais-McGreevy’13][Gubankova-Brill-Cubrovic-Schalm-Schijven-Zaanen’13]

fermions are characterised by a local chemical potential

µloc(r) = Aµ(r)u
µ(r) = At(r)e

t
0(r)

(static fluid: 4-velocity uµ = (et0, 0, 0, 0), with e
µ
a the tetrad)



The electron cloud at B = 0

Eq. of state for the fermions in the rest frame: ε2 = k2 + m2

density of states

n(ε) = βε
√

ε2 − m2 electrons: β =
1

π2

fluid is described by pressure p(r), energy density ρ(r), and charge density σ(r)

p = p (µloc(r)) , ρ = ρ (µloc(r)) , σ = σ (µloc(r))

for example

σ = β

∫ µloc(r)

m

dε ε
√

ε2 − m2 =
β

3

(
µ2

loc(r)− m
2)3/2

fluid is supported if

µloc(r) ≥ m



The electron cloud at B = 0: Geometry

Ansatz

ds2 =
L2

r2

(
−

ĉ(r)2

ĝ(r)2
dt2 + dx2 + dy2 + ĝ(r)2dr2

)
, At =

eL

κ

ĉ(r)â(r)

rĝ(r)

Then

µloc(r) =
e

κ
â(r)

where ˆ denotes dimensionless quantities

Solutions at finite temperature

0.2 0.4 0.6 0.8 1.0 1.2 1.4
u

0.05

0.10

0.15

0.20

p`

Ρ
`

Σ
`

UVIR
0r0

Electron  
cloud
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AdS charged 
black brane

interior 
AdS charged 
black brane

Figure: Left: fluid profile at finite T [VGMP-Nowling-Thorlacius-Zingg’10]. Right: Cartoon of the geometry



The electron cloud at B = 0: Thermodynamics

Free energy

F = E − µQ− s T

The electron cloud geometry is the preferred solution for T ≤ Tc compared to

AdS charged black brane [VGMP-Nowling-Thorlacius-Zingg’10].

��

èè
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ΜAdS - RN

EC

0.02 0.04 0.06

T
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-0.20

-0.18

-0.16
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-0.12

cs Fs

Μs
3

3rd order phase transition [VGMP-Nowling-Thorlacius-Zingg’10][Hartnoll-Petrov’10]



The anisotropic electron cloud: B 6= 0

Now: we add a magnetic field B supported by the black brane, B is constant and pointing
along the radial direction

Action

S = SEH + SM + Sfl

=
1

2κ2

∫
d4x

√
−g (R− 2Λ)−

1

4e2

∫
d4x

√
−gFµνF

µν −
∫

d4x
√

−gLfl

where on-shell Lfl = p

we search for finite T and B configurations

charged perfect fluid of non-interacting fermions of mass m in 4-dimensions coupled to
Maxwell-Einstein theory with Λ = − 3

L2

Spin fluid models known since 70’s
[Schutz’70][Ray’72][Bailey-Israel’75][deOliveira-Salim’91][Brown’93][deOliveira-Salim’95]

Dual: strongly correlated fermions at finite density µ = limr→0 At , at finite temperature
T = TH and at finite magnetic field B = limr→0 Fxy .



The anisotropic electron cloud: B 6= 0

degenerate gas of electrons experience

µloc(r) = Aµu
µ , Hloc(r) = e

[µ
1 e

ν]
2 Fµν

Fluid equation of state: Landau levels and Zeeman splitting

ε2` = m2 + k2 + (2`+ 1)γHloc ± γHloc

Density of states

n(ε) = βγHloc
∑
`≥0

′
θ(ε2 − m2 − 2`γHloc)

ε√
ε2 − m2 − 2`γHloc

,

fluid is described by thermodynamic variables

p = p (µloc(r) ,Hloc(r)) ,

same for ρ(r) , σ(r), and the magnetization η(r). For example

σ(r) =

∫ µloc√
m2+2`γHloc

n(ε)dε

= βγHloc
∑
`≥0

′
θ(µ2

loc − m2 − 2`γHloc)
√

µ2
loc − m2 − 2`γHloc ,



The anisotropic electron cloud: some details

Ansatz

ds
2 =

L2

r2

(
− ĉ(r)2

ĝ(r)2
dt

2 + dx
2 + dy

2 + ĝ(r)2dr2
)

At =
eL

κ

ĉ(r)â(r)

rĝ(r)
, Ay =

eL

κ
B̂ x

Then

µloc(r) =
e

κ
â(r) , Hloc(r) =

e

κL
B̂ r

2

Solve for ĉ(r) , ĝ(r) , â(r).



The anisotropic electron cloud: Geometry

Solution
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Results: boundary magnetization M
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Figure: The labels denote temperatures T̂ /T̂c = 0.9 (a), 0.3 (b), 3 · 10−3 (c)

The magnetization of the electron cloud (solid lines) is lower than that of a dyonic black
brane (dashed lines) with the same parameters

only one Fermi surface: the extremal (with respect to the radial direction)
[Hartnoll-Hofman-Tavanfar’10][Hartnoll-Hofman-Vegh’11] 6= observations

overall amplitude of the magnetization M is linear in B: 6= from Landau-Fermi theory
and 6=[Hartnoll-Hofman-Tavanfar’10]][Blake-Bolognesi-Tong-Wong’12]: we have back-reaction now!

6= Friedel oscillations, which were not observed in the electron cloud
[VGMP-Nowling-Thorlacius-Zingg’11]: continuum of bulk Fermi surfaces



Period of oscillations

period of oscillations versus T:
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independent of the temperature T as expected at low T



The anisotropic electron cloud: Thermodynamics

Free energy and thermodynamics relation

F = E − sT − µQ ,
3

2
E = sT + µQ−MB

free energy: 2nd order phase transition between anisotropic electron cloud and dyonic
black hole
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Compare with B = 0: third order phase transition [VGMP-Nowling-Thorlacius-Zingg’10][Hartnoll-Petrov’10]

Expected to be first order taking into account quantum corrections as in B = 0
[Medvedyeva-Gubankova-Cubrovic-Schalm-Zaanen’13]



The anisotropic electron cloud: Phase transition

Phase transitions can be studied numerically and analytically close to the critical point
[Hartnoll-Petrov’10]

∆F ∼
∫

δp ∼ δµ3/2 ∆r ∼ (∆r)4 ∼ ∆T 2

Analytically: They match with numerics up to the third digit

- vs T (at fixed B)

∆F
µ3

= −f̂

(
m,

B

µ2
, ?

)
∆T 2

- vs B (fixed T )

∆F
µ3

= −ĝ

(
m,

T

µ
, ?

)
∆B2



Summary and Outlook

Summary

- a holographic model for a 2+1 dimensional system of strongly correlated electrons
in a magnetic field

- The system shows magnetic oscillations dominated by a single sharp Fermi surface

- The oscillation amplitude has a non-Fermi liquid character and it is different from
earlier probe fermion computations

- The model: 3+1 dimensional bulk fermions treated in a Thomas - Fermi approx in
an asymptotically AdS dyonic black brane background with gravitational and
electromagnetic back-reaction

- our results confirmed later also by [Carney-Edalati’15]

Oulook

- beyond Thomas-Fermi approx: WKB along the lines of
[Medvedyeva-Gubankova-Cubrovic-Schalm-Zaanen’13][Carney-Edalati’15] or approach of [Allais-McGreevy’13]

- Other systems

- Thermalisation effects


