Scale vs. Conformal Invariance in Holography with Higher Derivative Corrections

Yegor Korovin

Albert Einstein Institute for Gravitational Physics (MPI), Potsdam

Firenze, 15 aprile 2015

Based on work in progress with Kostas Skenderis

Related work includes

[Polchinski (1988); Osborn (1991); Dorigoni, Rychkov (2009); de Boer, Kulaxizi, Parnachev (2009); Luty, Polchinski, Rattazzi (2012); Dymarsky, Komargodski, Schwimmer, Theisen (2013); Nakayama (2011, 2013); Bzowski, Skenderis (2014); Dymarsky, Farnsworth, Komargodski, Luty, Prilepina (2014)...]

- There are real-world critical phenomena about which we do not know if the corresponding fixed point is conformally or "only" scale invariant
- Do CFTs exhaust all possible second order phase transitions?

- Field Theory Formulation
- Holographic Approach

In a CFT the conserved current associated to a conformal Killing vector ξ^{μ} is given by $j^{\mu} = T^{\mu}_{\nu}\xi^{\nu}$. Dilatation current

$$j^{\mu} = T^{\mu}_{\nu} x^{\nu}.$$

In a scale invariant theory the stress-energy tensor is not traceless. The dilatation current is

$$j^{\mu} = T^{\mu}_{\nu} x^{\nu} + V^{\mu},$$

with

$$0 = \partial_{\mu} j^{\mu} = T^{\mu}_{\mu} + \partial_{\mu} V^{\mu}.$$

The virial current V^{μ} is not conserved.

Criterium

lf

$$V^{\mu} = \partial^{\mu}L,$$

where L is a local operator, then the stress-energy tensor can be improved and made traceless. Thus in this case the theory is conformal.

Scaling anomaly

In 4d scale invariant theory allows more general anomaly when coupled to the background metric:

$$T^{\mu}_{\mu} = aE_4 - cWeyl^2 + eR^2.$$

Presence of the R^2 term in the trace anomaly is a clear signal of a scale but not conformally invariant field theory.

Under the assumptions of locality and unitarity:

- In 2D scale invariance implies conformal invariance ([Polchinski (1988)).
- In 4D there are strong arguments that scale invariance implies conformal invariance[Dymarsky, Komargodski, Schwimmer, Theisen (2013)]
- In higher even dimensions or in odd dimensions answer unknown

The natural questions are:

- Can we use holography to prove "scale => conformal"?
- Can we construct examples of scale but not conformally invariant theories?
- What is the holographic dual of the virial current?

The natural questions are:

- Can we use holography to prove "scale => conformal"?
- Can we construct examples of scale but not conformally invariant theories?
- What is the holographic dual of the virial current?

- R^2 anomaly in Einstein-Hilbert gravity?
- NO! Analysis by [Henningson, Skenderis (1998)] demonstrated that no R^2 anomaly may appear if the gravitational sector is described by Einstein-Hilbert gravity.

Generic gravitational theories with the higher derivative corrections are believed to be dual to non-unitatry field theories. There are known examples of non-unitary scale invariant theories [Riva, Cardy (2005); El-Showk, Nakayama, Rychkov (2011)]. Can one construct a holographic example of non-unitary scale invariant theory using R^2 type corrections?

$$S = \frac{1}{16\pi G_{d+1}} \int d^{d+1}x \sqrt{-G} \Big[R + \frac{d(d-1)}{L^2} + L^2 (\lambda_1 R_{abcd} R^{abcd} + \lambda_2 R_{ab} R^{ab} + \lambda_3 R^2) \Big].$$

Our goal here is to perform the Fefferman-Graham type analysis of this theory

As clarified in [Skenderis, Taylor, van Rees (2009)] and emphasized in [Smolic, Taylor (2013)] the higher derivative terms in the action generically lead to the new degrees of freedom. These have to be taken care of when setting up the variational problem. Imposing $\delta g = 0$ at the boundary of AdS is not enough to set the variational problem. Other sources have to be fixed as well. Looking for a solution of the form

$$ds^2 = dr^2 + e^{2r/l}\eta_{ij},$$

we find a fourth order characteristic equation for the radius of AdS *l*. The solution is

$$\frac{4}{l^2} = \frac{1 \pm \sqrt{1 - 64\lambda}}{8\lambda L^2}$$

with

$$\lambda = \frac{d-3}{8(d-1)} \Big(\lambda_1 + \frac{d}{2}\lambda_2 + \frac{d(d+1)}{2}\lambda_3\Big).$$

The smaller root is continuously connected to the pure AdS solution of Einstein's gravity. A priori the other mode may lead to nonunitarity and possibly to a scale (but not conformal) anomaly.

We parametrize the metric as

$$ds^{2} = dr^{2} + e^{2r/l}g_{ij}(x,r)dx^{i}dx^{j},$$

$$g_{ij}(x,r) = g_{(0)ij}(x,r) + e^{-2r/l}g_{(2)ij}(x,r) + e^{-4r/l}g_{(4)ij}(x,r) + \dots$$

At the next to leading order we find

$$g(\lambda_i)(l^2R + 2(d-1)\mathrm{tr}(g_{(2)})) = 0,$$

lf

$$g(\lambda_i) = 0 \implies$$
 Degeneracy.

In non-degenerate cases we get

$$g_{(2)ij} = \frac{1}{d-2} \Big(\frac{R_{(0)}}{2(d-1)} g_{(0)ij} - R_{(0)ij}, \Big)$$

which is the same as in the Einstein-Hilbert gravity!

For the ${\rm tr}(g_{(4)})$ we obtain the equation (in the non-degenerate case)

$$f(\lambda_i) \Big[\mathrm{tr}(g^2_{(2)}) - 4 \mathrm{tr}(g_{(4)}) \Big] - rac{l^2 L^2}{d-1} \lambda_1 \, \textit{Weyl}_{(0)}^2 = 0$$

This corresponds to a shift in the c coefficient of the (conformal) trace anomaly:

$$< T_{\mu}{}^{\mu} >= aE_4 - cWeyl^2, \qquad a \neq c.$$

Interestingly only the *Riem*² term in the action contributes to this shift [see also Nojiri, Odintsov (1999); Blau, Gava, Narain (1999); Schwimmer, Theisen (2003)].

Chern-Simons gravity in 5D is a special Lovelock type gravity $(-4\lambda_1 = -4\lambda_3 = \lambda_2 = \lambda_{\star})$ such that the two AdS vacua degenerate ($\lambda = 1/64$).

What is the holographic interpretation of this phenomenon?

- There are solutions in CS gravity involving arbitrary undetermined functions [J.T. Wheeler (1986); Charmousis, J.-F. Dufaux (2002); ...]
- There are no standard perturbative expansion around general solutions
- From the Hamiltonian point of view CS gravity is a 'degenerate' and 'irregular' system.

- The asymptotic structure of solutions in gravity with higher curvature corrections is very rich
- In the non-degenerate cases only conformal field theories are realized.
- Degenerate cases represent a challenge on its own
- Variational problem in the presence of higher curvature corrections?
- What is the holographic dual of a virial current?