

Achilleas Passias | Milano-Bicocca University

erc

AdS₅ Solutions of Massive Type IIA Supergravity

based on arXiv:1502.06620 [hep-th] and arXiv:1502.06616 [hep-th] in collaboration with F. Apruzzi, M. Fazzi, A. Rota and A. Tomasiello

Gauge/Gravity Duality 2015

The Galileo Galilei Institute for Theoretical Physics | April 2015

Introduction: AdS₅ solutions in String/M-theory

A prominent instance of the gauge/gravity duality is the AdS_5/CFT_4 correspondence Motive for the systematic study of AdS_5 backgrounds in String/M-theory

Type IIB

• Freund-Rubin backgrounds

 $\diamond \operatorname{AdS}_5 \times S^5$

 $\diamond \operatorname{AdS}_5 \times \operatorname{SE}_5(T^{1,1}, Y^{p,q}, L^{a,b,c})$

• Beyond Freund-Rubin

Pilch-Warner solution [Pilch, Warner '00]

 \diamond analysis of general $\mathcal{N}=1~AdS_5$ backgrounds* [Gauntlett, Martelli, Sparks, Waldram '05]

^{*4} Q-supercharges

Introduction: AdS₅ solutions in String/M-theory

M-theory

- general $\mathcal{N} = 1 \text{ AdS}_5$ backgrounds [Gauntlett, Martelli, Sparks, Waldram '04]
- general $\mathcal{N} = 2 \text{ AdS}_5$ backgrounds [Lin, Lunin, Maldacena '04]

An interesting class arises from wrapping M5-branes on Riemann surfaces [Maldacena, Núñez '00] [Gaiotto, Maldacena '09] [Bah, Beem, Bobev, Wecht '12] [Bah '13,'15]

Type IIA supergravity accessible via M-theory, but what about adding Romans mass?

Massive type IIA supergravity might hold surprises as shown recently by the discovery of a new AdS₇ solutions [Apruzzi, Fazzi, Rosa, Tomasiello '13]

We want to perform a general analysis of supesymmetric $AdS_5 \times M_5$ backgrounds of massive type IIA supergravity

geometry warped product of AdS_5 and a Riemannian manifold M_5

$$ds_{10}^2 = e^{2A} ds_{AdS_5}^2 + ds_{M_5}^2$$

SO(2, 4) symmetry

- warp factor A and dilaton ϕ functions on M_5
- fluxes H, F_0 , F_2 , F_4 forms on M_5

supersymmetry \exists Spin(1, 9) Majorana spinor ϵ such that the gravitino and dilatino supersymmetry variations

$$\delta_{\epsilon}\psi = \delta_{\epsilon}\lambda = 0$$

Existence of supersymmetry reduces the structure group

$$Spin(5) \rightarrow G$$

where G is the stabilizer group of the supersymmetry parameter(s)

 $\delta_{\epsilon}\psi = \delta_{\epsilon}\lambda = 0 \rightarrow$ system of differential constraints on the *G*-structure

We consider AdS_5 as a warped product of $Mink_4$ and $\mathbb R$

$$ds_{10}^2 = e^{2A} \left(\frac{dr^2}{r^2} + r^2 ds_{\text{Mink}_4}^2 \right) + ds_{M_5}^2$$

and use the system of [Grana, Minasian, Petrini, Tomasiello '05] for supersymmetric $Mink_4 \times M_6$ backgrounds.

We obtain a necessary and sufficient system of equations*

$$d_{H}(e^{3A-\phi}\operatorname{Re}\psi_{+}^{1}) + 2e^{2A-\phi}\operatorname{Im}\psi_{-}^{1} = 0$$

$$d_{H}(e^{4A-\phi}\psi_{-}^{2}) - 3ie^{3A-\phi}\psi_{+}^{2} = 0$$

$$d_{H}(e^{4A-\phi}\operatorname{Re}\psi_{-}^{1}) = 0$$

$$d_{H}(e^{5A-\phi}\operatorname{Im}\psi_{+}^{1}) - 4e^{4A-\phi}\operatorname{Re}\psi_{-}^{1} = \frac{1}{4}e^{5A} * \sum_{p}(-1)^{\left[\frac{p}{2}\right]}F_{p}$$

$$\psi^{1} \equiv e^{-A}\eta_{1} \otimes \eta_{2}^{\dagger}, \qquad \psi^{2} \equiv e^{-A}\eta_{1} \otimes (\eta_{2}^{c})^{\dagger}$$

where η_1 , η_2 are Spin(5) Dirac spinors

 ψ^1 and ψ^2 can be expressed as a sum of odd and even forms via application of Fierz expansion and the map

$$\gamma^{m_1\dots m_k} \to dx^{m_1} \wedge \dots \wedge dx^{m_k}$$

 $^{\star}d_{H} = d - H \wedge$

The stabilizer group G of η_1 and η_2

$$G = \begin{cases} \mathsf{SU}(2) \\ \mathsf{Id} \end{cases}$$

only G = Id is allowed (in contrast to type IIB)

An identity structure is characterized by an orthonormal frame

supersymmetry equations \rightarrow constraints on the frame

The fluxes are expressed in terms of the identity structure

Equations of motion implied by

- 1. Supersymmetry Equations
- 2. Bianchi identities dH = 0, $d_HF = 0$ $(F = \sum F_p)$

We have determined the local form of the metric

$$ds_{M_5}^2 = ds_{\mathcal{C}}^2 + \frac{1}{9}b^2D\psi^2 + \frac{e^{-4A+2\phi}}{b^2} \left[b^2(e^{-4A}dx^2 + dy^2) + (a_2e^{-2A}dx + a_1dy)^2 \right]$$
$$b^2 = 1 - a_1^2 - a_2^2, \quad a_1 = -\frac{1}{2}e^{-3A+\phi}y, \quad D\psi = d\psi + \rho$$

Properties

- $\xi = 3\partial_{\psi}$ generates the U(1) R-symmetry
- S^1 fibered over \mathcal{C} the curvature of the connection ρ determines the curvature of \mathcal{C} .

Solutions characterized by three functions $\{a_2, \phi, A\}$ of four variables obeying six partial differential equations

Hard to solve...

Assumption

- 1. $ds_{10}^2 = e^{2A} [ds_{AdS_5}^2 + ds_{\Sigma}^2(x_1, x_2)] + ds_{M_3}^2$
- 2. no dependence on x_1 , x_2

Consequences

• Σ has constant curvature \rightarrow compact Riemann surface Σ_q

• The PDEs reduce to ODEs for a single function $\beta(y)$!

For a subclass of massive $(F_0 \neq 0)$ cases

$$\left(\frac{16y^2\beta}{\beta'^2}\right)' = \frac{2}{9}F_0$$

$F_0 = 0 \ \text{recovered}$

- Maldacena–Núñez
- Bah–Beem–Bobev–Wecht
- Itsios–Núñez–Sfetsos–Thompson [Itsios, Núñez, Sfetsos, Thompson '13] (non-abelian T-dual of $AdS_5 \times T^{1,1}$ M-theory lift fits in the Bah–Beem–Bobev–Wecht class)

 $F_0 \neq 0$

- a couple of globally problematic solutions
- a new infinite class of massive solutions

$$\beta = \frac{y_0^3}{b_2^3 F_0} \left(\sqrt{\hat{y}} - 6\right)^2 \left(\hat{y} + 6\sqrt{\hat{y}} + 6b_2 - 72\right)^2, \quad \hat{y} \equiv 2b_2 \left(\frac{y}{y_0} - 1\right) + 36$$

 Σ_q of genus g > 1 – realised as \mathbb{H}^2/Γ

A simple example

$$ds_{M_{3}}^{2} = \sqrt{-\frac{y_{0}}{8F_{0}}} \left(\frac{d\tilde{y}^{2}}{(1-\tilde{y})\sqrt{\tilde{y}+2}} + \frac{4}{9} \frac{(1-\tilde{y})(\tilde{y}+2)^{3/2}}{2-\tilde{y}} Ds_{S^{2}}^{2} \right), \quad \tilde{y} \equiv \frac{y}{y_{0}} \in [-2, 1]$$

$$ds_{M_{3}}^{2} = \begin{cases} dr^{2} + r^{2}Ds_{S^{2}}^{2} & y = 1 \\ \frac{1}{\sqrt{r}} \left(dr^{2} + r^{2}Ds_{S^{2}}^{2} \right) & y = -2 \end{cases} \quad \text{D6 brane}$$

Flux quantization
$$\int_{S^2} (F_2 - F_0 B) = n_{D6}$$
 fixes $y_0 = -\frac{3}{8} \frac{n_{D6}^2}{F_0}$

In the general case the end-points can be

- regular points
- D6 brane
- O6 singularity $ds_{M_3}^2 = \sqrt{r} \left(dr^2 + r_0^2 D s_{S^2}^2 \right)$

One can also add D8 branes

AdS₇ origin

The form of the new solutions suggests a higher dimensional origin

[Apruzzi, Fazzi, Rosa, Tomasiello '13] new AdS7 solutions of massive type IIA supergravity

$$ds_{10}^{2} = e^{2A(r)}ds_{AdS_{7}}^{2} + dr^{2} + e^{2A(r)}v(r)^{2}ds_{S^{2}}^{2}$$

Dual to 6d (1,0) SCFTs engineered by NS5-D6-D8 brane intersections [Gaiotto, Tomasiello '14] [Hanany, Zaffaroni '97] [Brunner, Karch '97] The isometry of S² corresponds to the R-symmetry

see A. Tomasiello's talk

v, A and the dilaton ϕ which characterize the solution satisfy a set of ODEs solved initially numerically

AdS₇ origin

How do the AdS_5 solutions arise? There is a one-to-one map between the ODEs AdS_7 solutions now known analytically

The AdS_5 solution can be written in the form

$$ds_{10}^{2} = \left(\frac{3}{4}\right)^{\frac{1}{2}} \left[\frac{3}{4}e^{2A}(ds_{AdS_{5}}^{2} + ds_{\Sigma_{g}}^{2}) + dr^{2} + \frac{e^{2A}v^{2}}{1 - 4v^{2}}Ds_{S^{2}}^{2}\right]$$

An analogous "compactification" to AdS₄ was found [Rota, Tomasiello '15]

$$ds_{10}^{2} = \left(\frac{5}{8}\right)^{\frac{1}{2}} \left[\frac{5}{8}e^{2A}(ds_{AdS_{4}}^{2} + \frac{4}{5}ds_{\Sigma_{3}}^{2}) + dr^{2} + \frac{e^{2A}v^{2}}{1 - 6v^{2}}Ds_{S^{2}}^{2}\right]$$

 Σ_3 has negative constant curvature; the SU(2) symmetry of S^2 is twisted by the SU(2) rotations of $T\Sigma_3$

AdS₇ origin

$$ds_{10}^{2} = X^{\frac{3}{2}}e^{2A}ds_{7}^{2} + X^{\frac{1}{2}}\left(dr^{2} + \frac{e^{2A}v^{2}}{w}Ds_{S^{2}}^{2}\right) , \qquad w \equiv X16v^{2} + (1 - 16v^{2})$$
$$ds_{7}^{2} = \begin{cases} ds_{AdS_{7}}^{2} \\ ds_{AdS_{5}}^{2} + ds_{\Sigma_{g}}^{2} \\ ds_{AdS_{4}}^{2} + \frac{4}{5}ds_{\Sigma_{3}}^{2} \end{cases} \qquad X = \begin{cases} 1 \\ \frac{3}{4} \\ \frac{5}{8} \end{cases}$$

Conjecturally dual to compactifications of 6d (1,0) SCFTs

Free Energy simple solution

$$\mathcal{F}_{0,4} = \left(\frac{3}{4}\right)^3 \pi (g-1)\mathcal{F}_{0,6}, \quad \mathcal{F}_{0,3} = \left(\frac{5}{8}\right)^4 \text{Vol}(\Sigma_3)\mathcal{F}_{0,6}$$
$$\mathcal{F}_{0,6} = \frac{512}{45}\pi^4 n_{\text{D6}}^2 N^3, \quad N = \frac{1}{4\pi^2} \int H$$

Future directions

Holographic RG flows

A strategy is to construct a consistent reduction to a 7d gauged supergravity

- introduce SU(2) gauge fields A^i , i = 1, 2, 3 gauging the SU(2) R-symmetry
- promote *X* to a scalar field in seven dimensions

candidate theory $\mathcal{N} = 1$ SU(2) gauged supergravity [Townsend, van Nieuwenhuizen '83]. Comprises a scalar, an SU(2) gauge field and a three-form potential Shown to arise as a consistent reduction of M-theory on S^4 [Lü, Pope '99].

work in progress

. THANK YOU