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Introduction

• AdS/CFT has the uniquely efficient ability to 
compute real time finite temperature/finite 
density physics in a single framework

Includes cross-over to hydrodynamics

Can give qualitative insights into previous inaccessible physics, 
even if “weakly coupled”.



Extreme example and a revolution in numerical GR

• Nested Einstein Equations
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A revolution in numerical GR

• Homogeneous, anisotropic plasma 

Initial conditions
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A revolution in numerical GR

• Homogeneous, anisotropic plasma Heller, Mateos, Triana, 
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Three issues with holographic thermalization

• The thermalization time tends to be faster than 
expected

• The thermalization is more UV-like than 
expected

• The thermalization process is captured by the 
linear approximation far earlier than expected 



Thermalization times in holography

• Theoretically (QCD)
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Thermalization times in holography

• Theoretically (QCD)

• Experimentally ⌧ = 0.6� 1.0 fm/c

4

Fig. 3: Negative pion, kaon, antiproton, andΩ spectra from central Au+Au collisions at
√

s =200 AGeVmeasured
at RHIC [17]. The curves show hydrodynamical calculations [13] (see text).

fairly long-lived hadronic rescattering stage. The flattening of the p̄ spectra by radial flow provides a nat-
ural explanation for the (initially puzzling) experimental observation that for p⊥ > 2GeV/c antiprotons
become more abundant than pions [16].

As shown elsewhere (see Fig. 1 in [18]), the model describes these and all other hadron spectra
not only in central, but also in peripheral collisions, up to impact parameters of about 10 fm, and with
similar quality. No additional parameters enter at non-zero impact parameter.

4.2 Elliptic flow
Figure 4 shows the predictions for the elliptic flow coefficient v2 from Au+Au collisions at RHIC, to-
gether with the data [19, 20]. For impact parameters b≤ 7 fm (nch/nmax ≥ 0.5) and transverse momenta
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Fig. 4: Left: p⊥-averaged elliptic flow for all charged hadrons from 130AGeV Au+Au collisions, as a function
of collision centrality (nch is the charged multiplicity at y = 0). The curves are hydrodynamic calculations with
different choices for the initial energy density profile (see [21]). Right: Differential elliptic flow v2(p⊥) for identi-
fied hadrons from minimum bias Au+Au collisions at 200AGeV [19, 20, 22], together with hydrodynamic curves
from [23].

p⊥ <
∼ 1.5GeV/c the data are seen (left panel of Fig. 4) to exhaust the upper limit for v2 obtained from

the hydrodynamic calculations. For larger impact parameters b> 7 fm the p⊥-averaged elliptic flow v2

increasingly lags behind the hydrodynamic prediction; this will be discussed in detail in Sec. 5.2. As a
function of p⊥ (right panel of Fig. 4) the elliptic flow of all hadrons measured so far is very well described
by hydrodynamics, for p⊥ <

∼ 1.5− 2GeV/c. In particular the hydrodynamically predicted mass splitting
of v2 at low p⊥ is perfectly reproduced by the data. This mass splitting depends on the EOS [23], and
the EOS including a quark-hadron phase transition used here describes the data better than one without
phase transition (see Fig. 2 in [18]). Ideal fluid dynamics with a QGP EOS thus gives an excellent and
very detailed description of all hadron spectra below p⊥ = 1.5GeV/c. Since this p⊥-range includes more

Heinz, Kolb; ...

⌧ = 3fm/c



Thermalization times in holography

• Theoretically (QCD)

• Experimentally

• Holographically

Instantaneous (local observables)

Dimensional analysis (QNM)

“Dimensional analysis”(Wilson loops)

⌧ = 0.6� 1.0 fm/c

⌧ = 3fm/c

Bhattacharyya, Minwalla

⌧ = 1/T = 0.3fm/c Friess, Gubser, 
Michalogiorgakis, Pufu

Balasubramanian, 
Bernamonti, de Boer, 

Copland, Craps, Keski-
Vakkuri, Mueller, 

Schaefer, Shigemori, 
Staessens



Thermalization times in holography

• Theoretically (QCD)

• Experimentally

• Holographically

There is no small parameter/no other scale.
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Thermalization order in holography

• Thermalization is more UV-like

Extreme:  Vaidya metric of collapsing shell

In general: all disturbances are sourced at the boundary (UV)
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Thermalization order in holography

• Thermalization is more UV-like

Extreme:  Vaidya metric of collapsing shell

In general: all disturbances are sourced at the boundary (UV)

Counterexample: source in the IR
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CHAPTER 2. THE CHARACTERISTIC FORMULATION 26

Figure 2.3: The left plot shows B(z, t) for the first initial of profile (2.2.22), which is
shown as a thick red line at t = 0. The thick blue curve at z = 0 shows the value of
the gauge theory quantity �P(t)/E . The purple line shows the linear approximation,
explained in subsection 2.3.1. The right plot (second profile in (2.2.22)) shows similar
behaviour. The initial disturbance, which is localised in the IR part of the geometry,
propagates to the boundary in a time limited by causality. This creates the pressure
anisotropy, which quickly relaxes back to zero.

with the normal vector being null

r0EH(t)�
1

2
A (t, rEH(t)) = 0. (2.2.24)

The latter is the geodesic equation for the outgoing light ray and needs to be supple-
mented with the following condition to be imposed in the asymptotic future

rEH(t) ! ⇡T as t ! 1 . (2.2.25)

In practical terms this condition implies that when the metric eventually approaches the
form of the Schwarzschild-AdS black brane (2.2.14), rEH approaches the position of the
event horizon of the static solution. The apparent horizon in a homogeneous setting can
be found by solving the algebraic equation Ṡ(t, rAH(t)) = 0, but see subsection (3.1.2)
for a more non-trivial example in a non-homogeneous setting.

The area (3 dimensional) of both horizons gives rise to the following expression for the
entropy density:

sEH/AH(t) =
1

2⇡
N2

c

S
�
t, rEH/AH(t)

�3
, (2.2.26)

which for the event horizon is guaranteed to be a non-decreasing function of t. In
(2.2.26) we implicitly assume that a horizon is mapped onto the boundary along ingoing
null radial geodesics, i.e. along lines of constant t for the metric ansatz (2.2.1).

In figure (2.4) the horizon areas are plotted for the example profile of figure 2.3. Indeed
there is no initial apparent horizon, although in our AdS setting there will always be
a (small) event horizon. From this figure it is very clear that this profile starts out
far-from-equilibrium, since the black hole area grows more than a factor of 3.

Heller, Mateos, Triana, 
van der Schee, 



Holographic thermalization linearized

• Late time evolution is given by “ringing down” 
of quasi-normal modes (linear perturbations) 
around the black hole final state.
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Holographic thermalization linearized

• Set QNM initial conditions by matching at Tv⇤

Tv⇤ = 0.11



• Set QNM initial conditions by matching at 

Try to match as early as possible

Tv⇤ = 0.11

Holographic thermalization linearized

Tv⇤



• Set QNM initial conditions by matching at 

Try to match as early as possible

Tv⇤ = 0.03

Holographic thermalization linearized

Tv⇤



Holographic thermalization linearized

• Set QNM initial conditions by matching at 

Try to match as early as possible

Tv⇤

Tv⇤ = 0



• Set QNM initial conditions by matching at 

Try to match as early as possible

Tv⇤ = 0.03

Holographic thermalization linearized

Tv⇤



Holographic isotropization linearized

• This QNM linearization works far better than 
expected
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Figure 4. Comparison between the time evolution of the pressure anisotropy predicted by the linear
equation (4.4) (red) and the full result (blue) for 15 di↵erent initial conditions. The leading order
linearized Einstein’s equations predict both qualitative and quantitative features of the dynamics
of the dual stress tensor in our setup. A more thorough scan of the initial conditions (as shown in
Fig. 5) did not reveal any instances in which the linearized approximation broke down.

We understand this feature as a natural consequence of the fact that, due to the fixed

asymptotics, the dynamics is approximately linear near the boundary of AdS, which is

the bulk region causally responsible for the early-times dynamics. The pressure anisotropy

curves start to di↵er only after the boundary is reached by a signal propagating from the

interior of the geometry, as seen in Fig. 3, and this is the moment at which in the full

analysis nonlinear e↵ects become most visible. Our main result can be phrased as the
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Figure 5. (Top) �t

iso

is the di↵erence between the isotropization time predicted by the full and
the linear equations. The height of each bar in the histogram indicates the number of initial states
for which the evolution yielded values in the corresponding bin. The total number of initial states
is more than 800. We see both that holographic isotropization proceeds quickly, at most over a
time scale set by the inverse temperature, and that the linearized Einstein’s equations correctly
reproduce the isotropization time with a 20% accuracy in most cases. Note that the histogram is
based on a di↵erent sample of initial states than those originally considered in [1]. In particular,
we incorporated the binary search algorithm absent in [1] and were stricter about the maximum
violation of the constraint that we allowed.
(Botom) Close inspection of one of the few profiles for which the linearized approximation seemingly
fails by more than 20% (�tiso/tiso = �0.5) shows that it is the imperfect isotropization criterium
which leads to the mismatch rather than the failure of the linear approximation. Indeed, the left
plot shows that, on the scale of the initial anisotropy, the linear result yields a good approximation.
However, the isotropization criterium makes no reference to this scale, and results in a 50% di↵erence
in the isotropization times, indicated by the arrows on the right plot. See [9] for a related discussion
of subtleties involved in defining the thermalization (or more accurately hydrodynamization) time
in a similar setup.

– 16 –

~800 different initial conditions



On higher order QNM in holography

• Higher order gravitational QNM modes

Spin 2 excitations

These are “glueballs”

Imagine replacing the BH horizon with a hard/soft-wall. 

They are artificially stable in the limit

• A more realistic scenario would account for 
the instability of the higher QNM

Note that these are quantum corrections.

Classical corrections are in the full non-linear evolution.

Csaki, Ooguri, Oz, Terning
de Teramond, Brodsky

Katz, Lewansowski, Schwartz

Nc ! 1

(1/Nc)

(GN )



Including         corrections

• Qualitative approach

The result of         corrections should be that the higher order 
QNM decay into the lower QNM.

Introduce this into the evolution by hand 

We are only interested in qualitative effects. This does introduce another 
scale/small parameter.
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Including         corrections1/Nc

• The mixing is the same for the QNM's as for their complex conjugates.        has to be real. 
• Each mode has a corresponding energy                  . We let the higher energetic modes decay only 

into lower energetic modes with a rate proportional to their energy difference.
• The total energy of the modes has to be conserved during the mixing process. This introduces   

normalization factors      .
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Including         corrections1/Nc

�ci
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=
X
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Effect: shift of the poles of the QNM (rediagonalize)



Energy Check

• Energy flux through the horizon

Z v

v⇤

E(v0)

E(v⇤)
dv0

No loss introduced



Reevaluating holographic thermalization linearized

• Set mixed QNM initial conditions by matching 
at 
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Reevaluating holographic thermalization linearized

• Set mixed QNM initial conditions by matching 
at 
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Reevaluating holographic thermalization linearized

• Set mixed QNM initial conditions by matching 
at 

Tv⇤ =
35

100⇡

Tv⇤



Tv⇤ =
6

10⇡

Reevaluating holographic thermalization linearized

• Set mixed QNM initial conditions by matching 
at Tv⇤

early linearization fails 



• Set mixed QNM initial conditions by matching 
at 

Tv⇤ =
12

10⇡

Reevaluating holographic thermalization linearized

Tv⇤



Three issues with holographic thermalization

• The thermalization time tends to be faster than 
expected

• The thermalization is more UV-like than 
expected

• The thermalization process is captured by the 
linear approximation far earlier than expected 

early linearization fails with        corrections1/Nc



Thermalization is delayed

• Energy flux through the horizon

Z v
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E(v0)
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dv0



Thermalization is delayed

• Set mixed QNM initial conditions by matching 
at 

Tv⇤ =
35

100⇡

Tv⇤



Three issues with holographic thermalization

• The thermalization time tends to be faster than 
expected

• The thermalization is more UV-like than 
expected

• The thermalization process is captured by the 
linear approximation far earlier than expected 

early linearization fails with        corrections1/Nc

thermalization slows with        corrections1/Nc



UV vs IR Thermalization

Thermalization condition: 
anistropy less than 10% energy density B̂  0.025

Non-linear Regular QNM



UV vs IR Thermalization

B̂ = 0.025 B̂ = 0.025

Non-linear Regular QNM



UV vs IR Thermalization with mixing

Non-linear Mixed QNM

B̂ = 0.025 B̂ = 0.025



UV vs IR Thermalization with mixing

Non-linear Mixed QNM

�⌧IR

�⌧UV > �⌧IR

B̂ = 0.025 B̂ = 0.025



Three issues with holographic thermalization

• The thermalization time tends to be faster than 
expected

• The thermalization is more UV-like than 
expected

• The thermalization process is captured by the 
linear approximation far earlier than expected 

early linearization fails with        corrections1/Nc

thermalization slows with        corrections1/Nc

hints that thermalization becomes more IR-        
with        corrections1/Nc



Conclusions

• There are no stable* higher order QNM in any 
real system 

Taking this into account improves our qualitative insights from 
holography. 

Early linearization (QNM) is an artifact of the large      
approximation.

Including         corrections will slow down thermalization and 
make it more IR-like.

Is there a way to mimic           corrections classically? 
(Can there be an extra scale/small parameter that affects 
“universal” BH physics?)

Nc

1/Nc

1/Nc



Thank you
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Bosons and Fermions together

• AdS Einstein-Maxwell, scalars, fermions,Yukawa

- Backgrounds:

qb = 2qf

Hartman, HartnollAdS-RN/ Non-Fermi liquid AdS2 metal

Holographic Superconductor

Holographic Fermi liquid

Cooper instability (absent for NFL)

BCS gap in fermion spectral function

BCS instability and resulting background

Faulkner, Horowitz, 
McGreevy, Roberts, Vegh



Standard CMT vs Holography

• The Holographic Fermi Liquid

AdS/CFT dictionary

 = Tr �

The fermion is a composite of fundamental fields.

For energies                      composite operator acts a fundamental field.

Familiar from neutron stars.

Following textbook CMT this Fermi-liquid should have a BCS instability

E ⌧ Ebind



• Composite double trace operators

- Higher order operators mixes with          under RG flow

- Postulate: Higher order moments in the particular solution 
should be seen as vevs of these higher order operators.

Opair = O ̄CO = Tr� Tr� 

Opair

�(z) = H0z
d��� +H1z

�� + . . .| {z }+P1z
2� + P2z

2� +1 + P3z
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Homogeneous solution Particular solution


