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Introduction

In this talk we study the classical vacuum Einstein
Equations.

Rµν = 0

Deceptively simple equations capture a great deal of
complicated dynamics, in particular involving black holes.
E.g. consider the collision of two black holes. Analytically
intractable. Phenonenon seems too complicated to ever
admit an exact solution. Progress in numerics, but also
very difficult.
Natural instinct of a theorist: search for a parameter and do
perturbation theory. However Einstein’s equations do not
have a parameter. Can we invent one?
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Introduction

Similar issue with analysis of (quantum) SU(3) Yang Mills
theory in four dimensions. To make progress t’ Hooft
invented a parameter by generalizing to the study of
SU(N). New effective parameter 1

N .
In the early 1980s Witten studied the problem of quantum
bound states with the 1

r potential in a large number of
dimensions. Emergent semiclassical picture of (e.g.) the
Helium atom, with definite inter nuclear separation and
‘bond angle’. While Witten’s motivations were pedegogical,
some chemists today find this approximation in the study of
complicated real world molecules.
This talk. Buiding on earlier work by Emparan, Suzuki,
Tanabe and collaborators, we adopt a similar strategy for
the analysis of black hole dynamics in classical gravity. Our
parameter is 1

D . D is the number of spacetime dimensions.
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Introduction: the membrane region

Schwarschild Black hole in D spacetime dimenstions.

ds2 = −
(

1−
( r0

r

)D−3
)

dt2 +
dr2(

1−
( r0

r

)D−3
) + r2dΩ2

D−2

(1)

EST made the following important observation. If r is held
fixed at any value greater than r0 as D →∞ then metric
reduces to flat space.
On the other hand set r = r0(1 + R

D−3) and keep R fixed as
D is sent to∞ then

lim
D→∞

( r0

r

)D−3
= lim

D→∞
(1 +

R
D − 3

)−(D−3) = e−R.

Thus ‘tail’ of the black hole extends only over the distance
r0
D . We refer to this thin layer as the ‘membrane’ region.
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Introduction: Light Qasinormal Modes

EST proceeded to compute the quasinormal modes of the
Schwarzschild Black hole in an expansion in 1

D . As usual
there are an infinite number of qasinormal modes at every
angular momentum. At any angular momentum EST find
that all but a finite number of quasinormal modes have
frequency of order D

r0
, the inverse thickness of the

membrane.
At each angular momentum, however, there are also a
small finite number light modes (more below), whose
frequency is O(1/r0). The frequencies of these modes
have imaginary parts comparable to real parts and so are
dissipative. Moreover they are localized entirely in the
membrane region.
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Introduction: Effective low energy theory?

When a few light modes are separated from a tower of
heavy modes, it is usually possible to find a consistent
autonomous nonlinear effective theory of the light modes
obtained by ‘integrating out’ the heavy modes.
As the light quasinormal modes are localized in the
membrane region in the current context, the effective
theory should capture the dynamics of the membrane.
In this talk we will explain how this works and determine
the equations of motion of the effective theory (to leading
order) by a direct analysis of Einstein’s equations. The
method we employ is reminicent of the Fluid Gravity
correspondence. However we work in flat space; our
approximations are justified by the expansion in 1

D rather
than the long wavelength limit; we do not require
derivatives to be small in units of the Schwarschild radius.
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Einstein’s equations with SO(d + 1) Isometry

The large D limit is a simplification only when observables
are kept fixed as D is taken to infinity.
We divide up the D dimensions into two sets of p + 2 and
d + 1 respectively (D = p + d + 3). We then study only
those spacetimes that enjoy an SO(d) invariance.
In other words we require the metric to take the form

ds2
full = gµνdxµdxν + eφdΩ2

d (2)

E.g. flat space

ds2 = dwadwa + ds2 + s2dΩ2
d

In this talk we take the limit d →∞ with p held fixed.
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The large d limit

Einstein’s equations become

e−φ(d − 1)− d
4

(∂φ)2 − 1
2
∇2φ = 0

Rµν =
d
2
∇µ∇νφ+

d
4
∇µφ∇νφ

(3)

Note factors of d behind ∂φ. Intuitive reason: φ controls
the size of a d sphere. Wiggles of φ much more expensive
than those of gµν . Sensible large d limit requires gµν and φ
to be treated asymmetrically. φ varies on length scale unity.
gµν varies on length scale 1

d .
Solutions of interest are nontrivial over length scales of
order unity. However metric varies over length scale 1

d . In
order to write metric we think of spacetime collection of
approximately dp+2 patches, each of size 1

d . Solve
Einsten’s equations in each region and smoothly match.
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Coordinates in a patch

Consider a particular patch centred around xµ0 . We use
rescaled patch coordinates

xµ = xµ0 + αµa
ya

d
(4)

Also use rescaled metric and ‘dilaton’ gradient

Gab = d2gab

gµν = d2αa
µα

b
νgab = αa

µα
b
νGab

χa = ∇aφ× d = αµa∇µφ
(5)
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Equations in the patch

Adapted to patch coordinates the equations of motion
become

∇aχ
a = e−φ

d − 1
d
− 1

4
χ2

Rab =
1
2
∇aχb +

1
4d

χaχb

(6)

Here Rab is the curvature with Gab regarded as the metric.
Similarly for covariant derivatives
At leading order in 1

d the equations of motion reduce to

− 4GabΓc
abχc = 4e−φ − χ2

2Rab = −Γc
abχc

(7)

φ and χ are constants in this equation. Note d has
disappeared so we have a good large d limit.
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Black Brane Solutions

We have found a class of exact solutions to the equations
of motion preserve translational invariance in p + 2 of the
p + 3 directions.
Extremely simple solutions given by

GF + e−RO2 (8)

Here R is the ‘non translationally invariant’ coordinate, GF
is a constant metric and O a constant oneform s.t.

eφχ.χ = 4, (2dR−χ).dR = 0, (2dR−χ).O = 0, O.O = 0
(9)

(all dot products evaluated using GF ).
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Standard Coordinates for Black Branes

Given any black brane solution of the form described
above, it is possible to choose coordinates to put it in the
form

eφ = x2
0 , χ = 2dR +

2
x0

dX

ds2 = 2dRdV − a
(

1− e−R
)

dV 2 + dY idY i +
dX 2

1− ax2
0
(10)

The parameter x0 determines the constant value of φ. The
parameter a is a modulus of the solutions: it has its origin
in the scale symmetry of the vacuum Einstein equations.
Can check that we obtain the black brane metric upon
zooming into a patch of the Schwarzschild black hole
centred about its origin. a determined by r0.
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The wiggly moving membrane

We will now present the metric that describes a wiggly
moving membrane, and that also solves the large d
equations of motion everywhere outside its event horizon.
Consider a scalar function B in flat space which vanishes
on (for instance) a single compact surface. B divides the
spacetime into an inside and outside. We require that B is
negative inside, positive outside, and that the dot product
of dB with dφ = ds is everywhere positive. The zeroes of B
give the world volume of the membrane.
In terms of B define an auxilliary function ψ by

ψ = 1 +
dB.dφ

2dB.dB
B (11)

ψ is less than one inside and greater than one outside the
membrane.
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Wiggly Moving Membrane

We also need a null oneform field O in flat space. O is
additionally required to obey the conditions

O.(
dΦ

2
− dψ)|B=0 = 0. (12)

The membrane metric is given by

ds2 = ds2
flat +

OµOνdxµdxν

ψd+p (13)

Note that when (d + p)(ψ − 1) is of order unity,
1

ψd−1 = e−(d+p)(ψ−1) in the large d limit. Consider any
patch centred around a point on the membrane. Use the
coordinate R = (d + p)(ψ − 1). Then

ds2 = ds2
flat + e−ROµOνdxµdxν (14)

(13) is a black brane at leading order in large d .
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Wiggly Moing Membrane

Note also that
Our metric reduces to flat space for ψ − 1� 1

d . In
particular it solves Einstein’s equations upto terms of order
e−d when ψ − 1 is held fixed as d is taken to infinity.
In the membrane region it solves Einstein’s equations at
leading order in large d , because it reduces to the
membrane.
The metric does not solve Einstein’s equations for ψ − 1 of
order unity and negative. However it is easily verified that
the event horizon of our metric deviates from the zeroes of
B only at order 1

d . For predictability of the outside we only
need to solve Einstein’s equations everywhere outside the
event horizon. Our metric achieves this at leading order in
1
d .
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Data for the leading order solution

It follows that the membrane metric above is a good
starting point for a construction of solutions of Einstein’s
equations in a power series expansion in 1

d .
Our membrane metrics are naively parametereized by a
scalar and null oneform function over all of p + 3
dimensional spacetime.
Recall, however, that membrane metrics that differ from
each other only at order 1

d are not inequivalent starting
points for perturbation theory. It is easily verified that
inequivalent membrane metrics are parameterized only by
the zeroes of B (shape of the membrane) and the values of
O where B vanishes, i.e. on the membrane.
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The velocity field in O

The oneform O is everywhere null. The most general null
vector can be parameterized as

O = eh(1,uµ) (15)

where the first component refers to the s direction and

u2 = −1, u.k = ks − k2

ks (16)

where k is the unit normalized outward pointing normal
vector of the membrane surface.
The scalar function h is not really data for the membrane,
as it can be absorbed into a shift of order 1

d in the position
of the membrane. Total data: p + 1 functions of p + 2
variables.

Shiraz Minwalla



The first 1
d correction to the membrane metric

Method: Choose a point xµo on the membrane. Use scaled
coordinates and expand the metric. Choose coordinates
s.t. you get the black brane in standard coordinates at
leading order. Continue the expansion to first subleading
order. Obtain black brane plus an explicitly determined first
order correction, written in terms of the extrinsic curvature
of the membrane and first derivatives of the velocity field.
Allow membrane metric to be corrected at first order in 1

d .
Demand equations of motion are solved at first subleading
order in 1

d . Yields ordinary differential equations for
functions (in R) of the correction metric. Turns out
equations are all analytically solvable.
We find that the solution generically has physically
unacceptable singularities at finite values of R. The
singularities are avoided, and we have a completely
regular solution, if and only if the membrane location and
velocities obey the following equations of motion.
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Membrane Equations of Motion

(2− C)2Kss + (1− C)2Kuu − 2(1− C)(2− C)Ksu

=− n.u(1− C)

s

Pb
a

(
(1− C) (u.∇− (u.n)n.∇− (2− C)) ub+

(∂s − nsn.∇) ub

)
= 0

(17)

Here P is the projector orthogonal to the three dimensional
subspace spanned by n,u,ds and

C = −ns(u.n)

Total number of equations 1 + p. As many equations as
variables. Have an intitial value problem for the shape of
the membrane and the velocity field.
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First order corrected metric

When the equation of motion above is obeyed, the first
order corrected metric is simple, and is given by

ds2 = ηµνdxµdxν + ψ−(d+p)(Oµdxµ)2

+
ψ−d

d
(Oµdxµ)

[
K1(xα)(Oνdxν) + 2K2(xα)(ds − dψ)

− KV (xα)(Pβ
ν Usβ)dxν

]
+O

(
1
d

)2

(18)
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Details of first order correction to metric

K1(xα) = −

[
−c6 + 11c4 − 23c2 + 11(

c2 − 2
)2 (c2 − 1

)
]

R

−

[(
c2 − 1

) (
3c2 − 8

)
2
(
c2 − 2

)2

]
R2

+

[
c2R2 + 2

(
−4c4 + 7c2 + 1

)
R

2c2
(
2− c2

)2

]
(uαuβKαβ)(skθ∂θs)

−

[
c2R2 +

(
−4c4 + 6c2 + 2

)
R(

1− c2
) (

2− c2
) ]

(uβKα
β ∂αs)(skθ∂θs)

+
R

1− c2

[
2(∂νs)(∂νh)− (PµνKµν)(skθ∂θs)

]
(19)
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First order correction: details

K2(xα) = exp(h)

[
(3c4 − 6c2 + 1) +

(
c6 − 3c4 + 2c2)R

c2
(
c2 − 2

)2 (c2 − 1
)

]

+ exp(h)

[
(3c4 − 6c2 + 1) +

(
c2 − 2

)
c2R

c4
(
2− c2

)2

]
(uαuβKαβ)(skθ∂θs)

− exp(h)

[
−
(
2− c2)R + 3c2 − 5

c2
(
1− c2

) (
2− c2

) ]
(uβKα

β ∂αs)(skθ∂θs)

− s exp(h)

c2(1− c2)

[
2(2− c2)(∂θs)(∂θh)− 2(1− c2)(uθ∂θh)

− (PµνKµν)(kθ∂θs) + (1− c2)(PµνUµν)

]
KV (xα) =

2 exp(h)

(1− c2)
(1 + R)

c2 = −(kθ∂θs)(uµkµ)

R = d(ψ − 1)

(20)
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‘Duality’ between black holes and membranes

The ‘membrane’ equations of motion presented above are
the main result of this talk. Let us recap their significance.
Given any solution to the membrane equations, we have
constructed a corresponding solution to large d gravity to
first subleading order in 1

d . The gravity solution reduces to
flat space outside the membrane region. We expect that
every large d solution of gravity that reduces to flat space
outside the world volume of a compact world tube is dual
to some membrane solution by our construction.
A solution of gravity that vanishes outside the membrane
clearly describes the intrinsic dynamics of the black hole in
flat space. It follows the intrinsic dynamics of black holes in
large dimensions is governed by our membrane equations
(well defined initial value problem). It is tempting to use the
name ‘membrane paradigm’ for this phenomenon.
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Checks: Schwarschild black hole

I will now present several checks of our membrane
equations. To start with we demonstrate that well known
exact black hole solutions obey the membrane equations.
Start with the Schwarschild Black hole of unit radius. The
metric can be recast in the form

ds2 = −dt2 + ds2 + dwidw i

+

(
dt +

widx i + sds√
r2 + s2

)2( 1√
s2 + wiw i

)D−3 (21)

It follows that ψ =
√

s2 + wawa, and the membrane surface
is time indpendent and given by s2 + wiw i = 1. while

O =
s√

s2 + wiw i

(√
wiw i + s2

s
dt +

widw i

s
+ ds

)
(22)
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Checks: Schwarschild black hole

O is clearly null. The uµ oneform field is

u =

(√
wiw i + s2

s
dt +

widw i

s
+ ds

)

It is easily verified that u obeys the constraint which
determines u.k .
With the membrane surface and velocity field in hand the
extrinsic curvatures and velocity derivatives are computed
in a straightforward manner. We have verified that the
membrane equations are indeed obeyed.
This is, of course, not a very strong check as the
Schwarschild black hole is a very symmetric solution.
Stronger checks of our equations can may be obtained by
analysing exact Kerr solutions.
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Checks: Rotating black hole solutions

The Myers-Perry metric for rotating black holes can be cast
into the form

ds2 = −dt2 +

p
2∑

i=1

(dx2
i + dy2

i ) + dz2+

mρ
ΠF

dt +

1−

p
2∑

i=1

µ2
i a2

i

ρ2 + a2
i

dρ−

p
2∑

i=1

a2
i

ρ2 + a2
i

(xidyi − yidxi)

2

.

(23)

where

Π =

p
2∏

i=1

(ρ2 + a2
i ), F = 1−

p
2∑

i=1

a2
i µ

2
i

ρ2 + a2
i
. (24)
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Check: Rotating black holes

And µi and ρ are defined by the following equations
p
2∑

i=1

x2
i + y2

i

ρ2 + a2
i

+
z2

ρ2 = 1

µ2
i =

x2
i + y2

i

ρ2 + a2
i
.

(25)

It follows that ψ = ρ and the membrane surface is given by
p
2∑

i=1

x2
i + y2

i

ρ2 + a2
i

+
z2

ρ2 = 1

Moreover

O ∝

dt +

1−

p
2∑

i=1

µ2
i a2

i

ρ2 + a2
i

dρ−

p
2∑

i=1

a2
i

ρ2 + a2
i

(xidyi − yidxi)


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Check: Rotating black holes

With these results in hand it is straightforward (though
tedious) to explicitly check that O is null and that its dot
product with the normal vector to the membrane is indeed
constrained as required.
It is also straightforward to compute the extrinsic
curvatures and the velocity derivatives and check that our
membrane equations are satisfied. We have performed the
tedious algebra on mathematica; the final result is that
both equations are beautifully obeyed.
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Linearized spectrum about the Schwarschild black
hole

As a final check it is not difficult to linearize our membrane
equations about the solution dual to the Schwarschild
black holes.
The linearized equations may then be solved. All modes
are expanded in (scalar and vector) spherical harmonics
on Sp and assumed to be harmonic in time. The
dependence of modes on s is unknown. We obtain linear
differential equations in s. These equations can be solved.
The requirement that the solutions are regular imposes a
qantization on the frequencies in time. For the scalar and
vector modes respectively we find

ws = −i(l − 1)±
√

l − 1, wV = i(l − 1) (26)

where l is a positive integer related to the angular
momentum of the corresponding modes. Our results are in
perfect agreement with the leading order spectrum of
quasinormal modes obtained by ESR.Shiraz Minwalla



Things to do

This programme is very new, and I think there are a lot of
interesting things to be done.
In the 1

d expansion the wiggling membranes described in
this talk do not radiate. However it is clear that there is
radiation at order e−d , which is nonperturbative from the
viewpoint of the 1

d expansion. Because the radiation is so
weak its backreaction on membrane dynamics can be
ignored. However once we have solved for membrane
dyanamics, we should be able to compute the radiation
field this vibration produces of strength e−d .
Restated we should be able to determine the effective
stress tensor of our membrane and its coupling to external
gravitons. This sounds like an interesting thing to do
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To be done

We should be able to use the area form on the horizon and
the Hawking area increase theorem to define an entropy
current whose divergence is point wise non negative on
every solution to the membrane equations of motion. This
would demonstrate that our membrane equations are
consistent with the second law of thermodyanmics, and
perhaps help us establish uniequeness theorems for
stationary solutions.
It would also be interesting to study the interplay of the
equation of conservation of the stress tensor from the
previous subsection with the equations of motion derived in
this talk.
It would also be interesting to compare our equations with
the equations governing the motion of an isometry
preserving soap bubble in p + d + 3 dimensions.
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Generalizations

The obvious extension of our computation are to
generalize the metric and equation of motion to one higher
order in the 1

d expansion.
It would also be interesting to redo our computations in the
presence of a Maxwell field. In this situation the membrane
will, presumably, have a new dynamical degree of freedom:
the local charge density.
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Application to four dimensions

I started this talk asking for a parameter for general
relativity. We have found a parameter but is it of any use at
D = 4?
Probably unlikely worth testing. The following strategy
suggests itself. Take a tough problem in D = 4 (like the
collision of two black holes). Solve the corresponding
membrane equations. Then compute the resultant
radiation field and boldly set D = 4. Compare with the
results of a full simulation. If there are even qualitative
similarities between the answers, our expansion might
prove useful for physicists calliberating gravity wave
detectors to measure black hole mergers.
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Conclusions

We have reduced the equations that govern intrinsic black
hole dynamics in the limit of a large number of dimensions
to a well defined initial value problem for wiggly membrane
membrane. The degrees of freedom on this membrane are
its shape and a velocity field.
Our construction should be generalized in many ways: to
understand radiation, stress energy, entropy, charge and
higher orders, ...
In my opinion the construction presented in this paper
diserves the name ‘the membrane paradigm of black hole
physics’: we see it emerges at large D.
It will be interesting to see how well our large D solution
compares with results from numerical simulations in d = 4.
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