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IIA/IIB string around 
black p-brane

(p+1)-d U(N)SYM
(Dp-branes+strings)

equivalent

Gauge/Gravity Duality

We can learn about quantum gravity and BH 
by solving gauge theory.

But SYM is hard! → numerical calculation.



IIA string around 
black 0-brane
(near horizon) (0+1)-d maximal SYM

(D0-branes+strings)
equivalent

(Maldacena1997, Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

Matrix model of super-membrane (de Wit-Hoppe-Nicolai, 1988) 
Matrix model of M-theory (Banks-Fischler-Shenker-Susskind, 1996)

Numerically easiest example



effective dimensionless temperature Teff = λ-1/3T

D0-brane quantum mechanics

It should reproduce thermodynamics of black 0-brane. 

high-T = weak coupling = stringy (large α’ correction)

(dimensional reduction of 4d N=4 SYM)

0

β=1/T



Thermodynamics

→ Successful so far



Anagnostopoulos-M.H.-Nishimura-Takeuchi, 2007

M.H.-Hyakutake-Nishimura-Takeuchi, 2008

Kadoh-Kamata, 2015

Small deviation? 
We will go closer to continuum. 

(stay tuned.)

classical+next-to-leading  
in 1/T expansion 

Energy of BH & MQM

strong coupling

strong coupling

SUGRA

SUGRA



RHMC algorithm + Fourier acceleration (with FFTW3) 
Fortran 90/ Fortran 2003; MPI parallelized

FREE simulation code for BFSS/BMN matrix models

$0!

hanada@yukawa.kyoto-u.ac.jp

Runs on supercomputer, cluster,  
and macbook

Should be useful for learning about BH, M2 and M5.

If you want to know more, you can make plots by yourselves:

mailto:hanada@yukawa.kyoto-u.ac.jp


Real-time study

Aoki-M.H.-Iizuka, 1503.05562[hep-th] 
Gur Ari-M.H.-Shenker, to appear 

+ work in progress with Berkowitz, Gur Ari, Maltz and Shenker



• Full quantum study is impossible with 
current technology.

• Strong coupling lattice gauge theory

• Classical real time evolution

M.H.-Maltz-Susskind 2014 
stringy d.o.f. is manifest; still numerically demanding, but should be possible in a few years.

(+improvement)

high temperature = weak coupling = highly stringy

stochastic quantization (complex Langevin)? 
brute-force diagonalization? 
quantum simulator? → experimental quantum gravity? 

highly nonlinear & nonperturbative
“BH” = soliton (or resonance) of matrix model

We will see the formation & evaporation of “BH” in this limit.

i.e. just solve classical EOM



classical 
E/N2=6T

E/N2 in BFSS vs 0-brane mass (0707.4454[hep-th])

classical+next-to-leading  
in 1/T expansion 

There is no phase transition between low- and high-T.
Remark

go asymptotically close  
to the classical limit 

at high-T 



XM =
D0-branes

open strings

‘eigenvalues’ = D0-branes 

bound state of eigenvalues
= black hole

flat direction
= gas of D0-branes

This phase reproduced the dual BH thermodynamics.



‘eigenvalues’ = D0-branes 

bound state of eigenvalues
= black hole

flat direction
= gas of D0-branes

emission of eigenvalue
= evaporation of BH

(emission of D0)

This model can describe BH evaporation!

This evaporation is suppressed at N=∞.
(The instability has been observed in imaginary time simulation.)



discretize & solve it numerically. 
(straightforward.)

It takes only 15 - 30 minutes for average graduate students to write C or Fortran codes. 
[cf) Monte Carlo code for thermodynamics → a few months ～1 year for good students]  

(A=0 gauge)



Invariant under the scaling

All values of the energy (or ‘temperature’) are equivalent.

E, T →α4E, α4T 

Remark



BH
gas

open strings  
(off-diagonal elements)  

are excited open strings are suppressed

entropy ～ N2 entropy ～ N

・This system is chaotic. (Savvidy, 1984; Berenstein et al, 2012)

・Almost all initial conditions end up with 
‘typical’ matrix configurations — BH. 

Formation & thermalization of BH



Example: 
Collision of 2 BHs

Formation & Thermalization of “BH” can be seen. 

(I don’t have a time to explain the detail, sorry)

(Tr X2)/N, (Tr V2)/N etc are t-independent at large-N. 
(X(t), V(t)) (→‘micro-state’) changes rapidly.  

After thermalization,  



Fast scrambling

• Take a ‘micro-state’ (X, V) from a thermalized 
“BH.” 

• Then add a small perturbation:                                  
X → X+δX,  V → V+δV.



Lyapunov Exponent

�~x(0)

�~x(t)

~x(0)

~x(t)

|�~x(t)| ⇠ exp(�Lt)



Fast scrambling

• Take a ‘micro-state’ (X, V) from a thermalized “BH.” 

• Then add a small perturbation:                                  
X → X+δX,  V → V+δV.

• δX and δV grows quickly, i.e. information of the 
initial state is scrambled.

• ‘scrambling time’ ts ～ log N.  (Sekino-Susskind, 2008; 

Shenker-Stanford 2013, 2014; Maldacena-Shenker-Stanford 2015) 

• Let’s test this conjecture. 



N=8 
E/N2=10

t

|δX| exponential  
growth ～ exp(λLt)

λL : Lyapunov exponent



The slope λ  
converges to  

an O(N0) value

|δX|

～√N—

t

“scrambling time” ts = (log N)/λL ～ log N

N=8,16,32 
E/N2=10

exp(λLts)～√N—

Fast scrambling!



1/N Behavior

�L = 0.293� 0.014

N
+O(1/N2)
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(N = 8, . . . , 24)

T=1 
E/N2=6T



λL = 0.293 (λ’t HooftT)1/4

Invariant under the scaling

E, T, λ →α4E, α4T, αλ 

(E/N2=6T)



strong coupling vs. weak coupling

effective dimensionless temperature Teff = (λ’t Hooft)-1/3T

effective dimensionless ’t Hooft coupling λeff = λ’t HooftT-3

λL = 0.293 (λ’t HooftT)1/4=(0.293 λeff1/4)T

λL=f(λeff)T

λeff=λ’t HooftT-3

2π f(∞) =2π

f(λeff)

λeff1/4
Maldacena-Shenker-Stanford, 2015 

‘A bound on chaos’no phase  
transition



Classical Yang-Mills theory?

(nonzero spatial dimensions)



Lord Rayleigh 
1842-1919

James Jeans 
1877-1946

Max Planck 
1858-1947

equipartition of energy  
+ infinite d.o.f. in UV 

  
→ UV catastrophe

In classical YM, energy flows to UV; 
thermal equilibrium is never reached.  (wikipedia)

oops!

T=8mK



But UV catastrophe might 
not be so catastrophic

• Energy flow to UV is slow. (Kurkela-Moore, 2012)

p
pmax ～ aQ  @ t ～ a7/Q

f(p)
occupation  

number

where  ε = Q4N2/λ’t Hooft : energy density
scrambling time ～ (log N)/Q

no problem when (log N) << a7
exp((3/2)7)  
～2.6×107

‘thermalization’ at IR is achieved, then very slow flow to UV follows.



What can we do?
• Thermalization of black brane. 

• Correlation functions.

• Scrambling in 2d, 3d and 4d theories; how 
perturbations grow in color space and in 
spatial dimensions.

• Black hole / black string topology change.

• What is the ‘stringy effect’ ?

Similarity to & difference from  
strong coupling limit (supergravity) ? 



Evaporation
(in progress, still speculative)



chaos (or ergodicity) + flat direction
→ evaporation

BH gas

entropy ～ N2
entropy ～ N

Exponentially suppressed,  
but still can appear after long time.



BH gas

entropy ～ N2
entropy ～ N × ∞ 

(space volume)

Once brane is emitted,  
it does not come back.

※ Flat direction must be 
sufficiently flat. Will be 
explained shortly. →

chaos (or ergodicity) + flat direction
→ evaporation



‘eigenvalues’ = position of D0-branes 

entropy ～ N2 entropy ～ (N-1)2

Emission rate ～ exp(−N)
※ This is different from the emission of massless 

particles, in the sense D0-brane is heavy.

※ However the same mechanism would work for 
light particles at low-T, M-theory region, thanks 
to ‘quantum chaos’ + flat direction



eigenvalue of (XM2)ij 

= radial coordinate of D0

XM =

D0-branes

open strings

open strings

・
・



D=2 (2-matrix model), N=4

Rather unstable! BFSS (D=9) has the same instability.

t

Distribution of the largest eigenvalue of (XM2)ij

(radial coordinate 
of D0)

‘emission of D0’

x2



t

x2

Even more unstable!

D=2 (2-matrix model), N=2

(radial coordinate 
of D0)

‘emission of D0’



However, 
flat direction is too narrow!

XM = highly 
noncommutative

largesmall
sm

all
must be exactly zero 

in order for D0 to  
roll to infinity

(Very narrow)

This is just an artifact of the classical treatment.

Ouch

Bob Alice



short strings  
mass <<T  
hν << kBT

Long, heavy string 
hν is too big 

classical approximation is NOT valid

classical approximation is valid when hν << kBT 

What was wrong?



classical approximation is valid when hν << kBT 

off diagonal element  
= open string

diagonal element  
= D0-brane

open string mass = hν of harmonic oscillator



SUSY makes flat 
direction flatter

Δx

One-loop approximation  
should be valid when Δx is large.

There, fermions are not negligible,  
they cancel the attraction coming from bosons.



An “effective” model
• Turn-off the interaction (off-diagonal elements) 

once D0 goes beyond a threshold value.

• It can be done by keeping full SU(N) symmetry.

No interaction classical 
BFSS

Classical time evolution mimics formation  
and evaporation of BH.

(If you are interested in, I can tell 
you the technical detail later.)

Alice
Bob



Future directions
• More detail about the thermalization & scrambling 

processes.

• What can we learn from 1/N corrections?

• Can we make a better effective theory? Learn from 
QGP industry? Determine the potential by Euclidean 
simulation?

• Can we somehow mimic emission of massless 
particles?

• (1+1)-, (1+2)- and (1+3)-d YM; BH/BS topology change.

• Full quantum simulation?

• Firewall? No Firewall? 



backup



‘instant Lyapunov exponent’

real real or pure imaginary

our first guess: this gives λL at large-N.



surprise.…

λ

λL (the largest Lyapunov exponent)

distribution of positive 
‘instant’ exponents



why?

it depends on XM(t), and hence on t.
‘growing direction’ changes very rapidly. 

Perturbation grows to some directions 
and shrinks along other directions.

A nontrivial cancellation makes  
the Lyapunov exponent rather ‘small’. 

If XM moved even faster, the exponent could be zero.
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(~e(t),~e(0))

(�~x(t), �~x(0))

Largest eigenvector 
self-correlation

Perturbation 
self-correlation 
(properly normalized)

Perturbation cannot catch up with evolving eigenvector!



Distribution of the largest eigenvalue of (XM2)ij

x2

ρ(x2) N=4 
E/N2=3.0

(tentative)



x2

ρ(x2) N=4 
E/N2=3.0

(tentative)
‘Emission rate’  

is consistent with  
exp(−cNx2)

Distribution of the largest eigenvalue of (XM2)ij

(N>3; c is a constant)
(systematic simulations are going on)



Let’s diagonalize (XM2)ij.

(XM2)ij

suppose x1<x2<… << xN. 

x1
x2

= ......

xN

should be  
projected out  

from the interaction

XM = highly 
noncommutative

largesmall

sm
all



• There are many ways to construct a gauge-
covariant projector. For example,  

f(x) = exp(-xk)

f(XM2/R2) 

with

1

1
0

. .
.. .



Tr [XI,XJ]2 → Tr(f(XM2/R2) [XI,XJ]2)

Once an eigenvalue of XM2  becomes larger than R2,  
it propagates freely. 

Tr [XI,XJ]2 → Tr([XI,XJ]2)
= f(XM2/R2)・ X ・f(XM2/R2)

～ ～
X
～

or

• Interaction term can be modified as  



No interaction

classical 
BFSS

m2 Tr XI2
～Add a small ‘mass term’ 

which suppresses the random walk of BH. 
(If m is small enough, it does not affect the emission)

Classical time evolution mimics formation  
and evaporation of BH.


