Anisotropic Holographic Insulators and Homes' Relation

René Meyer

Kavli IPMU, Tokyo University

April 14, 2015

J. Erdmenger, B. Herwerth, S. Klug, RM, K. Schaalm, 1501.07615 + WIP

Introduction: High T_c and AdS/CFT

- Difficulty in understanding High T_c via AdS/CFT: Don't know the IR field theory (DOFs, operator content, action, scaling properties) - very different from AdS/QCD
- Need universal signatures to guide AdS/CFT model building
- Most prominent: Linear temperature resistivity
 - Many tunable bottom-up models , free parameters

```
[HSV Lishitz: Charmousis etal, Sachdev+Huijse+Schwingle, Gouteraux+Kiritsis, Gouteraux, ...; Probe Branes: Kim+Kiritsis+Panagopoulos, Holographic Lattices: Horowitz+Santos, Gauntlett etal.
```

Andrade+Withers, ...; Massive Gravity: Vegh etal; p-wave model Herzog etal. 1405.3714]

• Different generic mechanisms , also with free parameters, assumptions

[Hartnoll+Hofman 1201.3917, Davison+Schalm+Zaanen 1311.2451, Hartnoll 1405.3651]

 Momentum relaxation not completely universal, Drude works always, non-Drude non-universal

[Modulated Lattices, linear axions, Q-lattices, Bianchi backgrounds, massive gravity]

► Need additional universal signatures , Homes' relation provides such a universal signature

$$\rho_{\mathcal{S}}|_{T=0} = C\sigma_{DC}(T_{c,+})T_{c}$$

C is universal for families of superconductors

In-Plane Cuprates, Elemental BCS: $C \approx 35$

C-Axis Cuprates, Dirty Limit BCS (Nb,Pb): *C* ≈ 65

- Experimentally verified to good accuracy
- ▶ Derivation for clean/dirty BCS [Homes, C. C. et.al. Phys. Rev. B 72, 134517 (2005)]
- ► In Holographic Superconductors? Probe Limit [Erdmenger_etal 1206.5305]

Homes' relation in the Dirty BCS

▶ Dirty BCS Very broad Drude peak $(\tau^{-1} > 2\Delta)$

$$\rho_{s} \approx 2\sigma_{DC}(T_{c})\Delta$$

BCS relates the gap with critical temperature

$$\Delta \sim T_{c} \quad \Rightarrow \quad
ho_{s} \sim \sigma_{DC} T_{c}$$

Similar derivation in clean limit BCS

Translation Invariance & Momentum Conservation

$$Re\sigma_n = K\delta(\omega) + \dots, \quad Re\sigma_s = (K' + \rho_s)\delta(\omega) + \dots$$

[Erdmenger metal 1206.5305] rewrote Homes' Law by sum rules, $\tau \propto D \propto 1/T$ from diffusion in the Probe Limit

Homes & Realistic Insulators/Superconductors

► A more realistic setup

[Donos+Hartnoll 2012]

- Momentum relaxation → Bianchi VII Spacetime
- Uncondensed charged IR DOFs? → Cohesive SuCo Phase
- Extra Lifshitz IR DOFs? → Holographic Cohesive Insulator

$$S = \int d^5x \sqrt{-g} \left(R + 12 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} W_{\mu\nu} W^{\mu\nu} - \frac{m^2}{2} B_{\mu} B^{\mu} \right) - \frac{\kappa}{2} \int B \wedge F \wedge W$$
$$ds^2 = -U(r) dt^2 + \frac{dr^2}{U(r)} + e^{2v_1(r)} \omega_1^2 + e^{2v_2(r)} \omega_2^2 + e^{2v_3(r)} \omega_3^2$$

B

Bianchi VII₀ helix geometry period p; strength λ

has an "insulating" groundstate

Homes & Holographic Insulator/Superconductor

Add a charged scalar

$$\begin{split} S &= \int d^5 x \sqrt{-g} \left(R + 12 - \tfrac{1}{4} F^2 - \tfrac{1}{4} W^2 - \tfrac{m^2}{2} B^2 \right) \\ &- \int d^5 x \sqrt{-g} \left(|(\partial_\mu - i q A_\mu) \rho|^2 + m_\rho^2 |\rho|^2 \right) - \tfrac{\kappa}{2} \int B \wedge F \wedge W \end{split}$$

▶ Massless case ($m_o = m = 0$) and large $|\kappa| > 0.57$:

Cohesive Superconducting ground state: $|*F|_{Horizon} \stackrel{T \to 0}{\to} 0$

$$*{\it F}|_{\it Horizon}\stackrel{T\to 0}{\to} 0$$

All phases unstable towards superconductivity.

Phase Diagram

► T_c depending strongly on lattice data, Possible Quantum Phase Transition, Homogeneity/Overshooting

Optical Conductivity

Drude Theory in Normal Phase

Drude model

$$\sigma(\omega) = \frac{\sigma_{\rm DC}}{1 - \mathrm{i}\omega\tau} = \frac{n_{\rm n}e^2\tau}{m^*} \frac{1}{1 - \mathrm{i}\omega\tau} = \frac{\omega_{\rm P}^2}{4\pi} \frac{1}{^1/\tau - \mathrm{i}\omega}$$

$$\operatorname{Re} \sigma(\omega) = \frac{\sigma_{\mathrm{DC}}}{1 + \omega^2 \tau^2} \qquad \qquad \operatorname{Im} \sigma(\omega) = \frac{\omega \tau}{1 + \omega^2 \tau^2} \sigma_{\mathrm{DC}}$$

N.B.: Not for medium/strong momentum relaxation intermediate and IR DOFs mix → Homes' relation

F-Sum Rule

Plasma frequencySuperfluid strength

$$\omega_{Ps}^2 = 8 \int_0^\infty d\omega \operatorname{Re} \sigma_s(\omega)$$

$$= 4\pi \frac{n_s e^2}{m} = \lambda_L^{-2} \equiv \rho_s$$

► Ferrell-Glover-Tinkham sum rule

$$\rho_{\rm S} = \int\limits_{0^+}^{\infty} {\rm d}\omega \left[{\rm Re}\,\sigma_{\rm n}(\omega) - {\rm Re}\,\sigma_{\rm S}(\omega) \right]$$
 assuming no residual regular or high frequency contribution

20

Holds irrespective of strength of momentum relaxation.

Two Fluid Model

Two fluid model

$$\operatorname{Re} \sigma(\omega) = \frac{e}{m^*} \left(\chi_{\mathrm{n}}(T) \frac{\tau}{1 + \omega^2 \tau^2} + \frac{\pi}{2} \chi_{\mathrm{s}}(T) \delta(\omega) \right)$$
 regular metallic part superfluid part

 $\begin{array}{lllll} \begin{tabular}{lll} χ is controlling the strength \\ normal phase: & superconducting \\ phase: & \\ $\chi_n(T>T_c)=n_n$ & $\chi_n(T=0)=0$ \\ $\chi_s(T>T_c)=0$ & $\chi_s(T=0)=n_s$ \\ & \rho_s(T\to0)\approx n_s(T\to0)$ & \\ & \rho_s(T\to0)\approx 0$ & $\chi_s(T\to0)\approx n_s$ & \\ & \chi_n(T\to0)\approx 0$ & \\ & \chi_n(T$

N.B.: $\rho_s \neq n_s$ for stronger momentum relaxation

Homes' Relation for $\kappa = 0$

► Holds in intermediary regime: $\frac{\lambda}{\mu} \approx 4.5 \dots 6$, $\frac{p}{\mu} \approx 1 \dots 2$

- Strong lattice important: $\ln \rho_s = \ln C + \ln \sigma_{DC}(T_c) T_c$
- ► Holographic Homes' constant: $C = 6.2 \pm 0.3$
- ▶ In-plane/BCS (35/8 \approx 4.4) and Out-plane/dirty (65/8 \approx 8.1)
- On the border of applicability of Drude/Two Fluid model

Zero Temperature Phase Diagram (preliminary)

- Zero Temperature Numerics difficult
- Phases distinguished by behavior of DC conductivity (Insulating/Conducting)

► Homes' relation holds close to the insulating/conducting phase transition, as well as the minimum of the critical temperature → WIP

Conclusions & Outlook

- Homes' relation a candidate for a universal relation in high temperature superconductivity
- ► For holographic superconductors: probe limit [Erdmenger et al 2012]
- Problematic: Translation invariance & IR D.O.Fs
- ► Break translation invariance via Bianchi VII₀
 Use Insulating Geometry of [Donos+Hartnoll '12]
 Use Cohesive Superconducting Phase
- Sum rules hold, Homes relation holds in a regime of intermediary momentum dissipation
- ► To Do List:
 - ullet Homes' law for other values of κ
 - Understand the QPTs with and without superconducting order parameter
 - Understand Relation with QC Physics & (Non-)Planckian dissipation
 - Fluctuations at T = 0, ρ_s vs. n_s , other instabilities?

International Workshop on

Condensed Matter Physics and AdS/CFT

May 25 - 29, 2015

Kavli IPMU, Kashiwa campus, University of Tokyo

Poster Session & Gong Show! Register until Mar. 31, 2015!

Invited Speakers include

*tentative

Joe Bhaseen

Zhong Fang

Phil Phillips

Shinsei Ryu

Shin-ichi Sasa

Suchitra Sebastian

Yoshiro Takahashi

W. Witczak-Kempa*

Cenke Xu

Matt Visser

Ben Craps

Sumit Das

Johanna Erdmenger

Jerome Gauntlett

Sean Hartnoll

Elias Kiritsis

Yi Ling

Hirosi Ooguri

Koenraad Schalm

Tadashi Takayanagi

Sandip Trivedi

Organizing Committee

Rene Meyer (Kavli IPMU)

Shin Nakamura (Chuo U./ISSP)

Hirosi Ooguri (Caltech/Kavli IPMU)

Masaki Oshikawa (ISSP)

Masahito Yamazaki (Kavli IPMU)

Hongbao Zhang (VUB Brussels)

Funded by

Hosted by Kavli IPMU in cooperation with ISSP

Website: http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=49

Campus access: http://www.ipmu.jp/visitors/access-ipmu

Towards Homes' Relation in AdS/CFT [1206.5305]

- Three Assumptions
 - 1. FGT sum rule: $\rho_s + \int_{0+}^{\infty} Re\sigma_{xx,s}(\omega) d\omega = \underbrace{\int_{0}^{\infty} Re\sigma_{xx,n}(\omega) d\omega}_{=\omega_{P_n}^2/8}$
 - 2. Tanner's relation: $n_s \sim n_n \quad \Rightarrow \quad \omega_{Pn}^2 \sim \omega_{Ps}^2$
 - 3. Drude model: Two scales ω_{Pn}^2 and $\tau \Rightarrow \sigma_{DC} \sim \omega_{Pn}^2 \tau(T_c)$
- ► S & P-wave superconductor in probe limit: $D_{M/R} \sim \frac{1}{7}$

$$\rho_s = \omega_{Ps}^2 \stackrel{(2)}{\sim} \omega_{Pn}^2 \stackrel{(3)}{\sim} \sigma_{DC} T_c \quad \Leftrightarrow \quad T_c \tau(T_c) \sim T_c D_{M/R}|_{T_c} = const.$$

Towards Homes' Relation in AdS/CFT [1206.5305]

- Three Assumptions
 - 1. FGT sum rule: $\rho_s + \int_{0+}^{\infty} Re\sigma_{xx,s}(\omega) d\omega = \underbrace{\int_{0}^{\infty} Re\sigma_{xx,n}(\omega) d\omega}_{=\omega \widetilde{\rho}_n/8}$
 - 2. Tanner's relation: $n_s \sim n_n \quad \Rightarrow \quad \omega_{Pn}^2 \sim \omega_{Ps}^2$
 - 3. Drude model: Two scales ω_{Pn}^2 and $\tau \Rightarrow \sigma_{DC} \sim \omega_{Pn}^2 \tau(T_c)$
- ► S & P-wave superconductor in probe limit: $D_{M/R} \sim \frac{1}{T}$

$$\rho_s = \omega_{P_S}^2 \stackrel{\text{(2)}}{\sim} \omega_{P_D}^2 \stackrel{\text{(3)}}{\sim} \sigma_{DC} T_c \quad \Leftrightarrow \quad T_c \tau(T_c) \sim T_c D_{M/R}|_{T_c} = const.$$

- ▶ Finite backreaction changes T_c and $D_{M/R}$
 - → Changing the charge of the order parameter

Towards Homes' Relation in AdS/CFT [1206.5305]

- ► Three Assumptions

 - 2. Tanner's relation: $n_s \sim n_n \quad \Rightarrow \quad \omega_{Pn}^2 \sim \omega_{Ps}^2$
 - 3. Drude model: Two scales ω_{Pn}^2 and $\tau \Rightarrow \sigma_{DC} \sim \omega_{Pn}^2 \tau(T_c)$
- ► S & P-wave superconductor in probe limit: $D_{M/R} \sim \frac{1}{T}$

$$\rho_s {=} \omega_{Ps}^2 \stackrel{(2)}{\sim} \omega_{Pn}^2 \stackrel{(3)}{\sim} \sigma_{DC} T_c \quad \Leftrightarrow \quad \textit{$T_c \tau(T_c) \sim T_c D_{M/R}|_{T_c} = const.}$$

- ▶ Finite backreaction changes T_c and $D_{M/R}$
 - → Changing the charge of the order parameter
- ▶ What could have gone wrong?
 - Need to introduce momentum relaxation beyond probe limit.
 - Sum rules may not hold (at T = 0?)
 - Is the Drude model valid? Is it useful?
 - Uncondensed charged IR DOFs? Extra Lifshitz IR DOFs?

Zero Temperature Solutions

▶ Break translations by Bianchi VII₀ Helix

[1212.2998]

$$\omega_1 = dx$$
, $\omega_2 + i\omega_3 = e^{ipx}(dy + idz)$
 $ds^2 = -U(r)dt^2 + \frac{dr^2}{U(r)} + \sum_{i=1}^3 e^{2v_i(r)}\omega_i^2$

► Charge density and Helix Field, Order Parameter

$$A = a(r)dt$$
, $B = w(r)\omega_2$, $\rho = \rho(r) \in \mathbb{R}$

▶ QPT by μ or Helix source/pitch: $|\kappa_c| \approx 0.57$

[1212.2998]

Two Mechanisms of Instability

▶ Usual superconducting instability: $AdS_2 \times \mathbb{R}^3$ with the charged scalar mode $\delta \rho \sim r^{\alpha}$ unstable if

$$3+m_{\rho}^2-2q^2<0$$

Two Mechanisms of Instability

• Usual superconducting instability: $AdS_2 \times \mathbb{R}^3$ with the charged scalar mode $\delta \rho \sim r^{\alpha}$ unstable if

$$3+m_{\rho}^2-2q^2<0$$

▶ Insulating geometry with charged hair: $(\kappa = 1/\sqrt{2})$

$$a = a_0 r^{5/3} + \dots, \quad w = w_0 + w_1 r^{4/3} + \dots, \quad U = U_0 r^2 + \dots$$

$$e^{v_1} = e^{v_{10}} r^{-1/3} + \dots, \quad e^{v_2} = e^{v_{20}} r^{2/3} + \dots, \quad e^{v_3} = e^{v_{30}} r^{1/3} + \dots,$$

$$\rho = \rho_0 + \rho_1 r^{4/3} + \dots$$

- ► Cohesive Phase (no flux): $\int_{\mathbb{R}^3} *F \bigg|_{horizon} = 0$
- ▶ Flows to both insulating and superconducting fixed points
- Superconducting ground state expected to have lower free energy

Two Mechanisms of Instability

- ▶ Usual superconducting instability: AdS₂ × R³
- ► Free energy competition Insulator/Superconductor

Zero Temperature Thermodynamics

Thermodynamics

Second order phase transition of mean field type:

Holographic vs. Real Superconductor

- Ways to improve the situation:
 - Momentum relaxation → Bianchi VII Spacetime
 - Uncondensed charged IR DOFs? → Cohesive Phase
 - Extra Lifshitz IR DOFs? → Holographic Insulator

Probes: (semi-holography)

$$S = \int d^dx \left[-\frac{1}{2} (\partial \phi)^2 - \phi \mathcal{O}_{\mathcal{CFT}} \right] + S_{CFT}$$

$$G(\omega, k) = \frac{1}{\omega - vk + \Sigma(\omega)}$$

$$\Sigma(\omega) \sim e^{-(k^z/\omega)^{1/(z-1)}}$$
 $\Sigma(\omega) \sim \frac{1}{N}\omega^c$

Interaction with geometric d.o.f. in Lifshitz background (z dynamical critical exponent)

Standard loop correction

Faulkner, Liu, McGreevy, Vegh; Faulkner, Polchinski; Sachdev; Hartnoll, Polchinski, Silverstein, Tong,....

Thursday, May 22, 14

• Probes: (semi-holography)

$$S = \int d^dx \left[-\frac{1}{2} (\partial \phi)^2 - \phi \mathcal{O}_{\mathcal{CFT}} \right] + S_{CFT}$$

Thursday, May 22, 14

Definitions & Measurement

(Super)fluid density from plasma frequency

$$\rho_n = \omega_{Pn}^2 = \frac{4\pi n_n e^2}{m_*}$$

$$\rho_s = \omega_{Ps}^2 = \frac{4\pi n_s e^2}{m} = \lambda_L^{-2}$$

Reflectivity measurements

Superfluid Density and Sum Rules

 Oscillator Strength sum rule (Thomas-Reiche-Kuhn sum rule)

$$\frac{\omega_P^2}{8} = \int_0^\infty d\omega \underbrace{Re(\sigma(\omega))}_{\sim \delta(\omega_f - \omega_i) |<\omega_f| H_{int} |\omega_i > |^2}$$

Spectral Weights

$$N_n = rac{\omega_{Pn}^2}{8} = \int\limits_0^\infty Re\sigma(\omega)|_{T>T_c} \;, \quad N_s = \int\limits_{0_+}^\infty Re\sigma(\omega)|_{T< T_c}$$

► Ferrell-Glover-Tinkham sum rule (no missing spectral weight)

$$\rho_{s} = 8(N_{n} - N_{s})$$

Superfluid Density and Sum Rules

Ferrell-Glover-Tinkham sum rule (no missing spectral weight) $\rho_s = 8(N_n - N_s)$

$$Re\sigma(\omega) = \rho_s \delta(\omega)$$
 $(\omega < 2\Delta)$

 Holds in Holographic Superconductors with similarities to high Tc cuprates (after introducing a lattice)

- Normal State: Two Time Scales
 - Plasma frequency ω_{Pn} (density of charge carriers)
 - Scattering rate $\tau^{-1}(T)$ (relaxation timescale τ)

$$\Rightarrow \sigma_{DC}(T_c) = rac{\omega_{Pn}^2 \tau(T_c)}{4\pi} = rac{n_n e^2 \tau(T_c)}{m_*}$$

A fraction of the charge carriers condenses: Tanner's law

$$n_{\rm S} pprox rac{n_n}{4}$$

Planckian dissipation: (Quantum Criticality) [van der Marel et al 2003]

$$ag{ au(T_c) \sim rac{\hbar}{k_B T_c}}$$

From these assumptions Homes' law follows:

$$\sigma_{DC}(T_c)T_c \sim \underbrace{\frac{n_s e^2}{m_*}}_{=\omega_{cs}^2 = \rho_s} \tau(T_c)T_c \sim \rho_s \frac{\hbar}{k_B}$$