
From strange metals to black holes and back:
Effective theories of thermoelectric transport

Blaise Goutéraux

Stanford U. and APC, CNRS Paris

Friday April 17, 2015

Gauge/Gravity duality 2015 conference
Galileo Galilei Institute, Florence, Italy

1



References and acknowledgments

Based on

Dissecting holographic conductivities, to appear with R. Davison

Momentum dissipation and effective theories of coherent and
incoherent transport, JHEP 1501 (2015) 039 arxiv:1411.1062, with
R. Davison

Holographic metals and insulators with helical symmetry, JHEP
1409 (2014) 038 arxiv:1406.6351, with A. Donos and E. Kiritsis

Charge transport in holography with momentum dissipation, JHEP
1404 (2014) 181, arxiv:1401.5436

Universal scaling properties of extremal holographic cohesive phases,
JHEP 1401 (2014) 080, arXiv:1308.2084

My research is supported by a Marie Curie International
Outgoing Fellowship within the Seventh European Community
Framework Programme.

2



Unconventional transport in strange metals

La2−x Srx CuO4

[Cooper et al, Science’09] [Kasahara et al, PRB’10]

Resistivity linear in T rather than quadratic (Fermi liquid).

Short-lived quasiparticles.

Strong coupling.
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Frequency behaviour of the AC conductivity

[Uchida et al, PRB’91]

[Cooper et al, PRB’91]

Drude-like peak at low frequencies for high doping.

At intermediate doping, the peak broadens out.

Metal/insulator transition at low doping.
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What is a Drude peak?

Operationally: a purely imaginary pole
close to the real axis

σ(ω,T ) = n2
(ε+ p)(Γ− ıω)

⇒ σDC = σ(ω = 0,T ) = n2/Γ(ε+ p)

Needs a current relaxation rate Γ: may
come from long-lived quasiparticles (e.g.
Fermi liquid), almost conserved
momentum ([Hartnoll & Hofman’12])...

Observe that σDC → +∞ for Γ→ 0.

The peak gets sharper as Γ→ 0.

Its width O(Γ)� T

5



Take home messages

To explain the unconventional properties of strange metals,
we need to understand the nature of thermoelectric transport
in strongly-coupled systems without quasiparticles and/or with
fast momentum relaxation.

QFT approaches based on a quasiparticle picture of transport
are typically not reliable.

Gauge/gravity duality provides a new arena to describe
strongly-coupled thermoelectric transport.
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Take home messages

We have learned a lot about gravity by confronting
gravitational duals to Condensed Matter expectations.

Intense effort has gone into deriving top-down models which
could be dual to specific Condensed Matter systems.

However, (bottom-up) holographic computations may pave
the way for the construction of effective theories independent
from holographic setups.

N.B.: We are interested in low energy phenomena. These depend mostly on the IR
part of the spacetime where Lorentz symmetry is broken, so asymptotically AdS
boundary conditions are not an obstacle. AdS is now a proxy to have a reliable
holographic dictionary.
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Outline

1 Holography with momentum relaxation and relation to
hydrodynamics/memory matrices

2 Quantum critical transport from holography

8



1 Holography with momentum relaxation and relation to
hydrodynamics/memory matrices

2 Quantum critical transport from holography
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Holographic momentum relaxation

Momentum relaxation is needed for realistic transport properties.

We now know many ways to dissipate momentum in holography.

Simplest example to date: use spatial scalar sources to dissipate
momentum [Andrade & Withers’13]:

Ward identities: ∇µ〈Tµν〉 = ∇νψI(0)〈OI
ψ〉+F (0)νµ

ext 〈Jµ〉 µ, ν = t, x , y

∇µ〈Jµ〉 = 0

S =
∫

d4x
√
−g
(
R + 6− 1

4F
2 + ∂ψ2

x + ∂ψ2
y

)
Black brane solution with ~ψ = m~x and horizon radius r0, [Bardoux,
Caldarelli & Charmousis’12] parameterized by: T , µ, m (temperature,
chemical potential and strength of momentum relaxation)
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Holographic DC conductivities
DC thermoelectric conductivities can be calculated from horizon data
[Blake & Tong’13, Andrade & Withers’13, Donos & Gauntlett’14] using
radially conserved quantities [Iqbal & Liu’08]

σDC = 1 + µ2

m2 , κ̄ = 4πsT
m2 , α = 4πµ

m2r0

It is tempting to organize these results in terms of
momentum relaxation and pair creation contributions.

The first would dominate the slow momentum relaxation regime, the
second the fast momentum relaxation regime.

N.B.1:The pair creation interpretation is correct at zero density when particle-hole
symmetry of the CFT is restored.
N.B.2: Equivalent formulæ exist for other systems (including a dilaton [B.G.’14,
Donos & Gauntlett’14] or higher order kinetic terms [Taylor & Woodhead’14,
Baggioli & Pujolas’14], massive gravity [Blake & Tong’13, Amoretti et al’14],
Bianchi VII [Donos, Kiritsis & B.G.’14] and inhomogeneous lattices [Blake,
Tong & Vegh’13, Donos & Gauntlett’14], random-field disorder [Davison, Schalm
& Zaanen’13, Lucas, Schalm & Sachdev’14, O’Keefe & Peet’15])
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But...

Radially conserved quantities are deceptive: there is no simple map
from horizon to boundary data in general.

At zero density, the holographic DC heat conductivity κ̄ = 4πsT
m2 can

only be related to a momentum relaxation rate for slow momentum
relaxation [Davison & B.G.’14].

What about non-zero charge density?
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Linearized hydrodynamics

To understand the origin of the various terms in the DC
conductivities, we need to turn on the frequency dependence.

We can do so in a small ω expansion in the context of linearized
hydrodynamics [Policastro, Son & Starinets’02, Herzog’02]

Focussing on the electric conductivity, we find that it receives two
independent contributions

σ = σ+ + σ−

which originate from two independent, decoupled gauge-invariant
modes in the bulk.
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Contributions to the DC electric conductivity

σDC = σ+ + σ−|ω=0 = 1 + µ2

m2

where

σDC
+ = σQ + O(m2) , σDC

− = µ2

m2 + 1− σQ + O(m2) ,

and

σQ =
(

sT
ε+ p

)2
∣∣∣∣∣
m=0

= 1
9

(
µ2 − 12r20
µ2 + 4r20

)2

The full DC conductivity is a non-trivial rearrangement of terms
between σ+ and σ−.

Our DC results are actually non-perturbative in m.

What is the low frequency dependence of σ+ and σ−?
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Coherent vs Incoherent transport [Hartnoll et al’13, Hartnoll’14]

Slow momentum relaxation Γ� Λ

Coherent transport dominated by
momentum relaxation with rate Γ

Purely imaginary pole ω ∼ −ıΓ close
to the real axis ⇒ sharp peak

Fast momentum relaxation Γ & Λ

Incoherent transport dominated by
energy/charge diffusion

No well-defined low energy excitation ⇒
Constant optical conductivity
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Coherent vs incoherent contributions to the optical conductivity

Our calculations yield at small values of m (slow momentum relaxation)

σ+ = σQ + O(m2) , σ− =
n2

ε+P + #m2

Γ− iω + O(m2) ,

where
Γ = 4m2r0

12r20 + 3µ2 + O(m4) = sm2

4π(ε+ P) + O(m4)

We reproduce translationally invariant results obtained in [Hartnoll
& Herzog’08, Hartnoll’09].

σ+ is a purely incoherent contribution without any (hydrodynamic)
poles close to the real axis.

σ− is a purely coherent contribution which sets the height/width of
the Drude peak. It includes higher-order corrections in m2 (# is a
complicated, uninformative number). Its ω = 0 limit reproduces our
non-perturbative DC result at the relevant order.
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Other comments

The story is similar for the other thermoelectric conductivities κ̄ and
α, both at zero and non-zero frequency.

At zero density, we recover that the electric optical conductivity is
totally incoherent (constant) for all frequencies [Herzog et al’07]:
the current and the momentum operators decouple.

At zero density and slow momentum relaxation, the heat
conductivity takes the form (no incoherent contribution)

κ̄ = s
Γ− iω + O(Γ) , Γ = m2

4πT + O(m4)

in agreement with our previous results [B.G. & Davison’14].
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Further comments

We expect the same decomposition will hold in other setups.

This provides an derivation of the thermoelectric conductivities of
these states from the Kubo formula, which agrees with [Donos &
Gauntlett’14].

Can we obtain these results directly from a first-principles,
hydrodynamic or memory matrix-type analysis?
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Hydrodynamics with weak momentum relaxation

[Hartnoll et al’07] proposed:

∇µTµν = −ΓδνiT 0i + F νµext Jµ , ∇µJµ = 0
Tµν = εuµuν + p∆µν − η∆µα∆νβ

(
∂αuβ + ∂βuα − ηαβ∂λuλ

)
+ O(∂2)

Jµ = nuµ − σQ∂
µ
( µ
T

)
+ O(∂2)

By assumption Γ� T in order to be able to neglect modifications to the
constitutive relations.

One can then linearize these equations around thermodynamic equilibrium
to describe the relaxation of the (almost) conserved charges δε, πx , δn
and compute the thermoelectric conductivities from linear response.
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Thermoelectric conductivities from hydrodynamics
Hydrodynamics predict [Hartnoll et al’07]

σ = σQ + n2
(ε+ p) (Γ− iω) , α = − µT σQ + ns

(ε+ p) (Γ− iω)

κ̄ = µ2

T σQ + Ts2
(ε+ p) (Γ− iω)

At zero density, these formulæ agree with our holographic results at
O(Γ0).

At non-zero density, these formulæ are compatible with the
holographic DC results, but only at O(Γ−1): they do not capture
O(Γ) terms correcting the weight of the Drude peak, which are the
same O(Γ) as σQ .

There is a similar discrepancy with existing memory-matrix
calculations [Lucas & Sachdev’15].
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1 Holography with momentum relaxation and relation to
hydrodynamics/memory matrices

2 Quantum critical transport from holography
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Anomalous dimensions for charge and energy

If transport is dominated by quantum criticality (fast momentum
relaxation), then what matters most are the scaling properties of
our system.

At fast momentum relaxation, charge and energy density are the
operators of interest [Hartnoll’14].

We can imagine giving them anomalous dimensions

[ε] = d + z − θ , [n] = 1
2 (ζ + d − θ)

θ = 0 and ζ = d − θ recover the usual dimensions.

These translate as anomalous scalings for observables of
experimental interest [Huijse et al.’11, B.G.’13,’14, Karch’14]

[s] = d − θ , [σ] = ζ − 2
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Holographic quantum critical points with anomalous
dimensions

[ε] = d + z − θ , [n] = 1
2 (ζ + d − θ)

Examples of non-trivial θ in CMT include Fermi surfaces [Huijse et
al’11] or systems with dimensional crossovers. Recently proposed
examples of CMT systems with non-trivial ζ [Karch’15].

Non-trivial values of θ and ζ abound in holographic setups, like
EMD [Charmousis et al’10, B.G. & Kiritsis’11, Huijse et al’11,
B.G. & Kiritsis’12, Gath et al’12, B.G.’13,’14] or probe branes
[Ammon, Kaminski & Karch’12, Karch’14].
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Scaling theory of the cuprate strange metals

It was proposed by [Hartnoll & Karch’15] that cuprates strange
metals have (d = 2)

z = 4
3 , θ = 0 ζ = 2

3
assuming that transport is dominated by the quantum critical
sector, time-reversal invariant and not particle-hole symmetric.

This way, [Hartnoll & Karch’15] can match the scaling of the
resistivity, the Hall Lorenz ratio, the Hall angle, the
magnetoresistance and the thermopower.
Not thermodynamic quantities like the specific heat or the magnetic
susceptibility though.
See also [Khveshchenko’15]

Effective theory of thermoelectric transport inspired by holography,
but the validity of which does not necessarily rely on the existence
of a holographic model.
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Summary

Do not trust radially conserved quantities!

σDC = 1 + µ2

m2 = σQ + µ2

m2 + 1− σQ + O(m2)

Holography can suggest effective models of thermo-electric
transport without need for quasiparticles.

Hydrodynamic/Memory matrix formulation of transport with
momentum relaxation.

Scaling theory of quantum critical transport.

These effective models can be generalized beyond their holographic
origin and be contrasted to more realistic systems.

23


	Holography with momentum relaxation and relation to hydrodynamics/memory matrices
	Quantum critical transport from holography

