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Introduction and the model
Motivation

The prototype of holographic models at finite density is the RN black
hole. In its ground state, the conductivity for small ω is

Re(σ) ∼ δ(ω) + ωn

[Hartnoll, Herzog & Horowitz 0810.1563]
[Horowitz & Roberts 0908.3677]

In the real world,
I There is a hard gap in superconductors and Mott insulators.
I The translational invariance is broken.
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Introduction and the model

The action is

S =

∫
d4x
√
−g

[
R − 1

2
(∂φ)2 − V (φ)− Z (φ)

4
F 2 − W (φ)

2
A2 − Y (φ)

2

2∑
i=1

(∂ψi )
2

]

where the leading IR behavior of V , Z , W , and Y are

V (φ) = V0e−δφ, Z (φ) = eγφ, W (φ) = W0eηφ, Y (φ) = eλφ.
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Introduction and the model

I Conductivity with translational invariance

S =

∫
d4x
√
−g
[
R − 1

2
(∂φ)2 − V (φ)− Z (φ)

4
F 2
]

[Charmousis, Goutéraux, Kim, Kiritsis & Meyer 1005.4690]

I Conductivity with momentum dissipation

S =

∫
d4x
√
−g

[
R − 1

2
(∂φ)2 − V (φ)− Z (φ)

4
F 2 − Y (φ)

2

2∑
i=1

(∂ψi)
2

]

The last term is responsible for the momentum dissipation. The
massless scalars ψi take the form ψi = kxi .

[Andrade & Withers 1311.5157; Donos & Gauntlett 1311.3292]
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Introduction and the model
IR fixed points

I IR charged
I φ = φ∗: AdS2 × R2

I φ→∞: Hyperscaling-violating geometry (z 6= 1, θ)

I IR neutral
I φ = φ∗: AdS4
I φ→∞: Hyperscaling-violating geometry (z = 1, θ)

[Goutéraux & Kiritsis 1212.2625]
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Introduction and the model
Hyperscaling-violating geometry (z, θ)

ds2 =
1
r2

(
−g(r)

h(r)
dt2 +

dr2

g(r)
+ dx2

)

r

IR geometry

ds2 = r̃
2θ
d

(
−dt2

r̃2z +
dr̃2 + dx2

r̃2

)
ds2 =

1
r2

(
− dt2

r2d(z−1)/(d−θ) + r2θ/(d−θ)dr2 + dx2
)
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Introduction and the model
Gubser criterion

Z (φ) ∼ eγφ, V (φ) ∼ e−δφ (1)

I IR charge solution:

z =
γ2 + 2γδ − 3δ2 + 4

γ2 − δ2 , θ =
4δ
γ + δ

z + 2− θ
2z − 2− θ

> 0,
z − θ + 1

2z − 2− θ
> 0,

z − 1
2z − 2− θ

> 0

I IR neutral solution:

z = 1, θ =
2δ2

δ2 − 1

δ2 < 3
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Introduction and the model
Finite temperature geometry and the extremal limit

S ∼ T
2−θ

z
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Conductivity with translational invariance

To obtain the conductivity, we perturb the system by δAx = ax (r)e−iωt

and δgtx = gtx (r)e−iωt . Generically, for the metric

ds2 = −D(r)dt2 + B(r)dr2 + C(r)(dx2 + dy2).

the equation for ax after eliminating gtx is(
Z

√
D
B

a′x

)′
+

(
Z

√
B
D
ω2 −

Z 2A′2t√
BD

)
ax = 0.

After we impose an appropriate boundary condition in the IR (to be
discussed below), the asymptotic behavior in the UV is

ax (r) = a(0)
x + a(1)

x r + · · · ,

and the conductivity is calculated from

G =
a(1)

x

a(0)
x

, σ(ω) =
G
iω
.
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Conductivity with translational invariance
Schrödinger equation for the conductivity

After a change of variables by

dξ
dr

=

√
B
D
, ãx =

√
Zax ,

we can obtain a Schrödinger equation

−d2ãx

dξ2 + Ṽ (ξ)ãx = ω2ãx .

The potential is given by

Ṽ =
ZA′2t

B
− DB′Z ′

4B2Z
+

D′Z ′

4BZ
− DZ ′2

4BZ 2 +
DZ ′′

2BZ
.
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Conductivity with translational invariance
Schrödinger potential for the conductivity

UV IR
r ω0 0

Ṽ Re(σ)
δ(ω − ω∗)

(a)

UV IR
r ω0 0

Ṽ Re(σ)

(b)
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Conductivity with translational invariance
Gapless case

ξ =

√
h0

g0

2− θ
2z

r
2z

2−θ S ∼ T
2−θ

z

Ṽ (ξ) =
ν2 − 1/4

ξ2 , ν =
3z − θ

2z

The IR limit is at ξ → ∞, which happens when z
2−θ > 0. In this case,

the extremal limit of the small black hole branch is at T → 0. Moreover,
the Gubser criterion implies that we have ν > 1

2 .

ãx ∼
√
ξH(1)

ν (ωξ) ∼ eiωξ.

The current-current correlator is gapless in this case.

Re(ω) ∼ δ(ω) + ω2ν−1
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Conductivity with translational invariance
Gapped case

ξ =

√
h0

g0

2− θ
2z

r
2z

2−θ S ∼ T
2−θ

z

Ṽ (ξ) =
ν2 − 1/4

ξ2 , ν =
3z − θ

2z

The IR limit is at ξ → 0, which happens when z
2−θ < 0. In this case, the

extremal limit of the small black hole branch (that is now thermodynam-
ically unstable) is at T →∞.

ãx = C1
√
ξJ−ν(ωξ) + C2

√
ξJν(ωξ) ∼ C1 ξ

1/2−ν + C2 ξ
1/2+ν .

The second linearly independent solution is normalizable when |ν| < 1, and
is non-normalizable when |ν| > 1. If there are two normalizable solutions, the
boundary condition in the IR depends on how the singularity is resolved, and
thus the calculation of the correlator is unreliable and can only be fixed when
the singularity is properly resolved.
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Conductivity with translational invariance
Gapped case

ξ =

√
h0

g0

2− θ
2z

r
2z

2−θ S ∼ T
2−θ

z

Ṽ (ξ) =
ν2 − 1/4

ξ2 , ν =
3z − θ

2z

The IR limit is at a constant non-zero ξ, which happens when z
2−θ → 0.

In this case, the extremal limit is at a constant T , and the Schrödinger
potential is a constant V0. The general solution for ax is

ax = C1e
√

V0−ω2 ξ + C2e−
√

V0−ω2 ξ.

When ω2 > V0, the first solution describes the in-falling wave with the
ω → ω+ iε prescription. If we analytically continue the ω2 > V0 solution
to ω2 < V0, the solution for ax is unambiguous for all ω.
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Conductivity with translational invariance
IR charged solution

In region A (yellow), the extremal limit is at T → 0; σ(ω) gapless.
In region B (red), the extremal limit is at T →∞; σ(ω) gapped.
In region C (green), the extremal limit is at T →∞; σ(ω) gapless.
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Conductivity with translational invariance
IR neutral solution

In region A (yellow), the extremal limit is at T → 0; σ(ω) gapless.
In region B (red), the extremal limit is at T →∞; σ(ω) gapped.
In region C (green), the extremal limit is at T →∞; σ(ω) gapless.
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Conductivity with momentum dissipation

S =

∫
d4x
√
−g

[
R − 1

2
(∂φ)2 − V (φ)− Z (φ)

4
F 2 − Y (φ)

2

2∑
i=1

(∂ψi)
2

]

To calculate the conductivity, we perturb the system by

δAx = ax (r)e−iωt , δgtx = gtx (r)e−iωt , δψ1 = χ(r)e−iωt

After eliminating gtx and defining

bx ≡
ik
ω

√
D
B

CYχ′,

we obtain the two coupled equations for ax and bx .

[Andrade & Withers 1311.5157; Goutéraux 1401.5436]
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Conductivity with momentum dissipation
After inserting the hyperscaling-violating geometry to the equations,
we obtain

−d2ãx

dξ2 +
c1

ξ2 ãx = ω2ãx +
d1

ξα
b̃x ,

−d2b̃x

dξ2 +

(
c2

ξ2 +
c3

ξ2α−2

)
b̃x = ω2b̃x +

d2

ξα
ãx ,

where

α = 2− κλ− 2
2z

,

and c1, c2, c3, d1, and d2 are constants. The coefficients c1 and c2 are
given by c1 = ν2

1 − 1/4 and c2 = ν2
2 − 1/4, where

ν1 =
3z − θ

2z
, ν2 =

2− z − θ − κλ
2z

.

The terms involving the power α are subleading corrections. The gap
in the conducttivity remains.
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Conductivity with momentum dissipation
DC conductivity at finite temperature

There is a radially conserved quantity Π at ω = 0. By taking advantage
of this quantity, a formula for the DC conductivity is obtained

σDC =
Π

iωλ1

∣∣∣∣
r=rh

= Zh +
q2

k2ChYh
= eγφh +

q2

k2Cheλφh
.

[Blake & Tong 1308.4970; Goutéraux 1401.5436; Donos & Gauntlett
1401.5077]
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Conductivity with momentum dissipation
DC conductivity for near-extremal geometries

The near-extremal black hole has an analytic solution in the IR
[Charmousis, Goutéraux, Kim, Kiritsis & Meyer 1005.4690].

The DC conductivity for the near-extremal black hole is

σDC ∼ r̃α1
h +

q2

k2 r̃α2
h .

In terms of z and θ,

α1 =
θ − 4

2 + z − θ
, α2 =

θ − 2 + κλ

2 + z − θ
.
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Conductivity with momentum dissipation
DC conductivity for extremal geometries

σDC =
Π

iωλ(0)1

I Case 1: ν2 > 1. The solution for bx is bx ∼
√

Z2ξ
1/2+ν2 The

radially conserved quantity Π evaluated at the IR is

Π ∼ r
(γ−δ)(γ−5δ−4λ)−4

(γ−δ)2 → 0.

I Case 2: ν2 < −1. The solution for bx is bx ∼
√

Z2ξ
1/2−ν2 . The

radially conserved quantity evaluated in the IR is

Π→ constant
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Conductivity with momentum dissipation

Figure: Parameter space for the conducting and insulating phases. The
parameter space constrained by the Gubser criterion is enclosed by dashed
lines; moreover, we have excluded the holographically unreliable region in
which there are two normalizable solutions in the IR. In the gray region, the
axions term is relevant in the IR. In the green region, the system is a
conductor; in the red region, the system is an insulator. The parameter space
for the gapped geometry is above and below the two curves
(γ − δ)(γ + 3δ) + 4 = 0.
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Holographic supersolids

The action is

S =

∫
d4x
√
−g

[
R − 1

2
(∂φ)2 − V (φ)− Z (φ)

4
F 2 − W (φ)

2
A2 − Y (φ)

2

2∑
i=1

(∂ψi )
2

]
where the leading IR behavior of V , Z , W , and Y are

V (φ) = V0e−δφ, Z (φ) = eγφ, W (φ) = W0eηφ, Y (φ) = eλφ.

UV IR
r ω0 0

Ṽ Re(σ)
δ(ω − ω∗)

(a)

UV IR
r ω0 0

Ṽ Re(σ)

(b)
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Summary

I From an Einstein-Maxwell-Dilaton system, the AC conductivity can
have a hard gap and a discrete spectrum, with a δ(ω) due to the
translational invariance.

I In the presence of IR irrelevant momentum dissipation, the
correlator still has a discrete spectrum, with the only difference
that the zero frequency δ-function has now disappeared.

I The gapped geometries with momentum dissipation can describe
a metal or an insulator, depending on the parameters.

I We also find holographic supersolids, which are hard-gapped
superconductors with translational symmetry breaking.
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