Entanglement entropy in a holographic model

of the Kondo effect

Mario Flory

Max-Planck-Institut fiir Physik

Ap-Byzt

Max-Planck-Institut fiir Physik
Wornastsmaben bt MAX-PLANCK-GESELLSCHAFT

Gauge/Gravity Duality 2015
The Galileo Galilei Institute, Florence

MARIO FLORY ENTANGLEMENT ENTROPY & KONDO



Overview

@ Part I: The holographic Kondo model

» The Kondo effect
» Bottom up bulk model

@ Part Il: Including backreaction

> Israel junction conditions
» General results for AdS3/BCFT,
> Including Chern-Simons fields

@ Part Ill: Entanglement entropy for Kondo model

» Numerical results

» Qualitative discussion
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Part |: The holographic Kondo model

@ Field theory side:

» Spin-spin interaction of electrons with a localised magnetic impurity.

» Can be mapped to 1 + 1 dimensional conformal system [Affleck et. al.
1991].

> At low temperature, electrons form a bound state around impurity, the
Kondo cloud.

@ Holographic gravity side: [Erdmenger et. al.: 1310.3271]

» Dual gravity model has 2 + 1 (bulk-) dimensions.

» Localised spin impurity is represented by co-dimension one hypersurface
("brane") extending from boundary into the bulk.

» Finite T is implemented by BTZ black hole background.

» Kondo cloud is described by condensation of scalar field ®.
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The holographic Kondo model

Kondo cloud of electrons
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spin impurity

Field theory picture:

Gravity picture: @
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The holographic Kondo model

How can we obtain information about the Kondo cloud from our model?

@ Kondo cloud is formed by anti-aligned spins #+

@ = expect imprint on entanglement entropy Sgg, e.g. entanglement of state

V) = % (44 ) = 11 ...)) does not vanish.

@ Sge is determined by spacelike geodesics [Ryu, Takayanagi, 2006]

= to calculate it, we need backreaction on the geometry.

@ What is the backreaction of an infinitely thin hypersurface carrying

energy-momentum? [srael junction conditions!
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Part Il: Including backreaction

In electromagnetism: To describe field around an infinitely thin charged surface
Y, integrate Maxwells equations in a box around X:

= E|| continuous, E| discontinuous on X

In gravity: To describe backreaction of an infinitely thin massive surface,
integrate Einsteins equations in a box

= Israel junction conditions [Israel, 1966]:
(Ki =7K") = (Kj —vK™) = —rS;

Sjj: energy momentum tensor on the brane, 7;: induced metric,

K=: extrinsic curvatures depending on embedding.
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Israel junction conditions

With mirror symmetry (Kt = —K~): Ki —viKt=-5%S; (%)
= Embedding (location of the brane) will not be x = 0 anymore, but a dynamical
function x(z) with (x) its own equations of motion. J
boundary boundary
ypersurface

bulk / \ bukk <=> """"""""""""""

z_( ? %”(;)
identify points

With (%) we arrive at a general setting for the study of AdS/boundary CFT

correspondence proposed by Takayanagi et. al.: [Takayanagi 2011, Fujita et. al.
2011, Nozaki et. al. 2012].
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Israel junction conditions

KJ —’)/,'J'K+ = —% SU

curvature = energy momentum

Geometric equations of a similar form as Einstein equations, extrinsic curvature
tensors (K;/) instead of intrinsic ones (R, ).
General questions:

@ Impact of energy conditions on possible geometries?

@ Find exact solutions for simple toy models of S;;?

@ Investigate Kondo model?

Answers in [Erdmenger, M.F., Newrzella: 1410.7811].
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Possible geometries

Utilising the barrier theorem [Engelhardt, Wall: 1312.3699], we can constrain the
possible geometries allowed by different energy conditions. J

x
NEC | WEC | SEC | comment
Q1| vyes yes no
Q2 | yes yes yes Si; =0
\ Q3 | vyes no yes
0 Q4 | ves yes yes | U shaped
Q1

Whether or not a brane @ bends back to the boundary or goes deep into the bulk
depends on whether Sj; satisfies or violates WEC and SEC. J
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Junction conditions for Chern-Simons field
@ Our Kondo model contains both the metric field and a Chern-Simons field in
the bulk. Assume CS field to be U(1) in simplest case.

@ Similarly to the metric, we get junctions conditions for the CS field along the
hypersurface Q (located at = 0) if it carries a current in its worldvolume.

o Split up field: A~ (n)A* + 6(—n)A~ + 5(n)A°.
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Junction conditions for Chern-Simons field

With D, = (Al + A-Ih /2 (projected mean value),
Cm= AL — Al (projected discontinuity),
and Ag =A%, (component localised on Q is normal)

we find: €™ (C,~ + B;Ao) =271J" [y, ¥, a, D]
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Part Ill: Entanglement entropy for Kondo model

5brane[am7 CD] = = f dvbrane (%fmnfmn + 'an(qu))Tan) + \/((DTCD))

@ Due to Yang-Mills field a™, SEC is violated everywhere in the bulk.

@ Hence brane starts at boundary and falls into black hole, does not turn
around and bend back to boundary.

@ Preliminary numerical results:

® condenses
Kondo cloud forms

Z=ZH
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Numerical results

Preliminary results on entanglement entropy: Difference of Sge(¢) relative to
solution with ® = 0.
See(l) - SEE(O’@;O
- d=0,a"#0
03 T0 T3 70 23 7

0.00
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%_0-20 sign of Kondo cloud?

~02s

Y
0300 ® condenses, Kondo cloud forms

[Erdmenger, M.F., Hoyos, Newrzella, O’'Bannon, Wu: work in progress]
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Discussion
Some of the features of these results follow directly from the energy conditions

and geometric considerations.

@ Entanglement entropy for given ¢ decreases as Kondo cloud forms, because
® satisfies NEC, brane bends to the right.

@ As / — oo, curves go to a constant.

@ The fall-off towards this constant value is for large ¢ exponential, due to

simple geometric arguments:
ASee(l) == o+ c(T)T (1 +2e 47 + )

Qualitative agreement with results of field theory calculations [Affleck et. al.
2007, 2009; Eriksson, Johannesson 2011]:
+..)

T 2mlT 24T
ASee(0) = & + = 5“ oth(”f >—>&0+”§C (1+2e* f

v: Fermi velocity, (x: Kondo scale
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Summary and Outlook

@ We studied a holographic model of the Kondo effect.
@ Gravity dual involves thin brane carrying energy-momentum.
@ Backreaction of the brane is described by Israel junction conditions.

@ We obtained general results constraining possible geometries of the brane by

energy conditions [Erdmenger et. al. 1410.7811].

@ These results may also be applicable to holographic duals of BCFTs
[Takayanagi, 2011] or the Hall effect [Melnikov et. al, 2012] involving thin

branes.

@ Specific Kondo model will be solved numerically, results on entanglement

entropy can be compared to field theory literature.
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Back up slides...
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Entanglement entropy

Entanglement entropy Sge(A) defines the entropy of a subsystem A with respect
to the total system AU B.

See(A) = —Tralpalog(pa)l

with reduced density matrix pa = Trg[paus]-

[see e.g. Nielsen, Chuang: Quantum Computation and Quantum Information]
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Holographic entanglement entropy
In AdS/CFT correspondence: bulk spacetime M, boundary OM.

M oM

A
EA

See(A) = M where £, is a spacelike extremal surface in the bulk.

— Generalisation of Bekenstein-Hawking entropy formula

[Ryu, Takayanagi, 2006]
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A simple form

Our brane has 1 + 1 dimensions, hence there are only two distinct null directions.

d>3

l7l, =0= riri
li’f’,', =-1

two distinct
Lightcone null directions

Define a basis of symmetric (0,2)-tensors:

S
Sij = EW + Sililj + Sgrirj = trace part + traceless parts

Static case: no energy flux from left to right, hence S| = Sg = S /.
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A simple form

d>3
lili =0= riri
li’f’i =1
two distinct
Lightcone null directions
)
S = E'y;j + Silil; + Sgrirj = trace part + traceless parts

Doing this decomposition on both sides, the tensorial equation

K~k =55, J

becomes the set of scalar equations

/C=§S, ]CL=§SL, ]CR='§SR J
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Energy conditions

Null energy condition (NEC)
5,-J-m"mj >0V mim;=0 = 5,5 >0

Weak energy condition (WEC)
S,-jm"mj >0V mim; <0=5,,5% >0, S<255r

Strong energy condition (SEC)
(S,j = Sv,;)m"mj >0 Vmm<0 = S5,,5x >0, S>—-2/55¢r

This SEC will be of much phenomenological importance.
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Energy conditions and conservation of energy momentum

In the static case (S, = Sg = S;/r), SEC reads:
5,5 >0, S+ 2SL/R > 0.

Energy-momentum conservation V;S¥ = 0 implies for embeddings in Poincaré
background:

4
82 (5 + 2SL/R) = ;SL/R'

By NEC, the right hand side is positive, hence S + 25, /g can only grow with z.

When NEC holds and the SEC is satisfied near the boundary z = 0, it is satisfied
everywhere in the bulk. J
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Possible geometries

Barrier Theorem (Engelhardt, Wall arXiv:1312.3699)

Let Q be a hypersurface splitting the spacetime N in two parts N with
boundaries M. such that K,-jrv"vf < 0 for any vector field v/ on Q. Then any
spacelike extremal surface 7" which is anchored in M, remains in N.

we
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K viv? <0 for ), Q3. We call 1, Q2, Qs extremal surface barriers.
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Possible geometries

With the junction conditions, we can express the assumption made in the barrier
theorem in terms of energy conditions:

WEC and SEC satisfied on @ = Kl-jrv"vj <0V

M,
1 | 7
N / /
.2 S
N - _
\ S __ -
\
l\\ 1
|
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Q3| AN
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Yz o ILERN ¢
a S~
Qo 2y vQu

K;;-vivj <0 for ()1,Q3. We call Q1,Q2, Qs extremal surface barriers.
()2 violates SEC, @), violates WEC. For Q3, S;; = 0.
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Possible geometries
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K;;-vivj <0 for Q)1,Q3. We call )1, Q2, Qs extremal surface barriers.
()2 violates SEC, @), violates WEC. For Q3, S;; = 0.

Whether or not a brane Q bends back to the boundary or goes deep into the bulk
depends on whether Sj; satisfies or violates WEC and SEC. J

MaARIO FLORY

ENTANGLEMENT ENTROPY & KONDO

26 / 16



Exact analytical solutions

We first studied simple models for S;; and obtained some exact analytical

solutions to the junction conditions for:

@ Perfect fluids:
Sij = (p+ p)uiuj + pyjj with p=a-p, aeR.
@ As the special case thereof with a = 1: The free massless scalar ¢ with
1 2
S = 0i90;6 — 57(9¢)".
@ The U(1) Yang-Mills field a; in the absence of sources:

1 1
Sij = _menfmnfyij + ’ymnfmifnj = _5711 Cz'

All of these were studied in AdS and BTZ backgrounds.
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Exact analytical solutions

For the free massless scalar ¢ with S = 0;¢0;¢ — 3;;(9¢)?, we obtain

cz3 137
x(z) = —2f (5, VibE c224> .

with 2F1(a, b; ¢; d) the hypergeometric function. WEC and SEC are satisfied,
hence the brane bends back to the boundary.
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