INCOHERENCE and DIFFUSION

The Incoherence of the Incoherence

From Wikipedia, the free encyclopedia

The Incoherence of the Incoherence (Arabic: تهافت التهافت Tahāfut al-Tahāfut) by Andalusian Muslim polymath and philosopher Ibn Rushd (Averroes) (1126–1198) is an important Islamic philosophical treatise,^[1] in which the author defends the use of Aristotelian philosophy within Islamic thought.

It was written in the style of a dialogue against Al-Ghazali's claims in *The Incoherence of the Philosophers* (*Tahāfut al-Falasifa*), which criticized Islamic Neoplatonic thought. Originally written in Arabic, *The Incoherence of the Incoherence* was subsequently translated into many other languages. The book is considered Averroes' landmark; in it, he tries to create harmony between faith and philosophy.

Daniele Musso

The Abdus Salam International Centre for Theoretical Physics

based upon:

[A. Amoretti, A. Braggio, N. Magnoli, D. Musso hep-th/1411.6631]

Outline

Motivations

(both theoretical and experimental)

- **Diffusion of charge and heat** (framework to study circumstances beyond quasi-particle)
- Holography without translation invariance (specifically, massive gravity)
- Coherent/Incoherent transport
- Looking for bounds on diffusivity

Motivations from Condensed Matter

- High-Tc SUCO's
- Normal phase: strange metal & critical "valley"
- **Robustness**, both in *(high)* T and in the sense of *universality*

[Hussey, J. Phys: Condens. Matter 20 (2008) 123201]

More widely, strongly coupled systems

Diffusion

- Conserved charges
- Thermodynamics
- Low frequency and wave number
- Linear response

 $\frac{\partial d}{\partial t}n_{A} = D_{AB}\nabla^{2}n_{B}$ overdamped modes

Considering a system conserving charge and energy density...

Einstein's relations connecting the thermodynamical and transport quantities to the thermo-electric diffusivities

$$D_{+}D_{-} = \frac{\sigma}{\chi}\frac{\kappa}{c_{\rho}}$$

$$D_{+}+D_{-} = \frac{\sigma}{\chi}+\frac{\kappa}{c_{\rho}}+\frac{T(\zeta\sigma-\chi\alpha)^{2}}{c_{\rho}\chi^{2}\sigma}$$

Also when there are no quasi-particles and regardless of the speed of momentum dissipation

[Hartnoll, JHEP 1502 (2015) 100]

Diffusivity bound

$$D = \frac{\eta}{\mathcal{E} + P}$$

$$\frac{\eta}{s} \ge \frac{1}{4\pi} \frac{\hbar}{k_B}$$

[Policastro, Son, Starinets, JHEP 0209 (2002) 043; Kovtun, Son, Starinets, Phys. Rev. Lett. 94 (2005) 111601]

[Hartnoll, JHEP 1502 (2015) 100]

Hints

Tension between Particular and Universal

Robustness calls for *universal* mechanisms *however momentum dissipation* (which is essential to define the DC transport coefficients) appears to be intimately *model dependent*...

Can a proper definition of incoherence provide the correct setup?

"insensitivity to details"

Context

Conjectural nature of holographic bounds and limitations thereof

[Kovtun, cond-mat.stat-mech/1407.0690; Cremonini Mod.Phys.Lett. B25 (2011) 1867-1888]

Charge diff. const. in the metallic phase of a singleband Hubbard model with DMFT

Absence of a quantum limit to charge diffusion in bad metals?

ATTENTION:

- Incoherence as MIR violation
- Violation of Hartnoll's bound at coherent/incoherent crossover
- Bound satisfied for strongly correlated systems in the high temperature region where the resistivity is close to linear in temperature

[Pakhira, McKenzie, cond-mat/1409.5662]

Holographic massive gravity*

[de Rham, Gabadadze, Phys. Rev. D 82, 044020 (2010); de Rham, Gabadadze, Tolley, Phys. Rev. Lett. 106:231101 (2011)]

$$S = \int d^4x \sqrt{-g} \left[R + 6 + \underbrace{\mathcal{M}(g)}_{\swarrow} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right] + S_{\text{c.t.}}$$

[Vegh, hep-th/1301.0537]

 $\mathcal{K}^{\mu}_{\ \nu} = g^{\mu\alpha} f_{\alpha\nu}$ $\mathcal{K} \equiv (\sqrt{\mathcal{K}^2})^{\mu}_{\ \nu}$

$$\mathcal{M}(g) = \alpha \operatorname{tr}(\mathcal{K}) + \beta \left[\operatorname{tr}(\mathcal{K})^2 - \operatorname{tr}(\mathcal{K}^2) \right]$$

Theories of massive gravity *inevitably* include an auxiliary reference metric

> [Hassan, Rosen, Schmidt-May, JHEP 1202 (2012) 026]

$$f_{\mu\nu} = \operatorname{diag}(0, 0, 1, 1)$$

The auxiliary metric is spatially isotropic and homogeneous but breaks spatial diffeomorphisms

* Use responsibly, it may induce instabilities. In case of ghost contact your physicist immediately.

Bulk

Effective mass of the bulk graviton *(two parameters)*

$$m^2(z) = -2\beta - \frac{\alpha}{z}$$

[Vegh, hep-th/1301.0537; Blake, Tong, Phys.Rev. D88 (2013) 10, 106004]

ANSATZ:
homogeneous and
isotropic
$$\begin{cases}
ds^2 = \frac{1}{z^2} \left[-f(z)dt^2 + dx^2 + dy^2 + \frac{1}{f(z)}dz^2 \right] \\
A = a(z) dt$$
A = $a(z) dt$

$$\begin{cases}
f(z) = 1 - \frac{z^3}{z_h^3} + \frac{z\alpha}{2} - \frac{z^3\alpha}{2z_h^2} + z^2\beta - \frac{z^3\beta}{z_h} + \frac{z^4\mu^2}{4z_h} - \frac{z^3\mu^2}{4z_h} \\
a(z) = \mu \left(1 - \frac{z}{z_h} \right)$$
L = 1, q = 1, $\kappa = 1/\sqrt{2}$

- A thorough thermodynamic and linear response analysis is essential for consistency reasons (possible pathology of massive gravity...)
 [Davison, Phys.Rev. D88 (2013) 086003; Blake, Tong, Phys.Rev. D88 (2013) 10, 106004; Amoretti, Braggio, Maggiore, Magnoli, Musso, JHEP 1409 (2014) 160]
- DC transport coefficients are efficiently and analytically computed (in various circumstances... see **Amoretti**'s talk)

[Donos, Gauntlett JHEP 1411 (2014) 081; Amoretti, Braggio, Maggiore, Magnoli, Musso, Phys.Rev. D91 (2015) 2, 025002]

Diffusion at high T

- Is it possible do distill *intrinsic* momentum conserving contributions?
- Naive limit of big beta leads to possibly pathological consequences (for both the dual viewpoints)
- *alpha* crucial to make sense of the high T behavior?

$$m^2(z) = -2\beta - \frac{\alpha}{z}$$

$$\frac{k_B}{\hbar \bar{v}^2} D_c = \frac{3}{4\pi T} + \mathcal{O}\left(\frac{1}{T^3}\right) \qquad \alpha = 0$$

$$\frac{k_B}{\hbar \bar{v}^2} D_h = \frac{\pi T}{\beta} + \frac{3}{8\pi T} + \mathcal{O}\left(\frac{1}{T^3}\right)$$
Unpleasant! Pleasant! As in the momentum conserving holographic plasma
$$[e.g. \text{ Kovtun, Ritz, Phys. Rev. D 78 (2008) 066009]}$$

$$\frac{k_B}{\hbar \bar{v}^2} D_c = \frac{3}{4\pi T} + \frac{3\alpha}{16\pi^2 T^2} + \mathcal{O}\left(\frac{1}{T^3}\right)$$

$$\frac{k_B}{\hbar \bar{v}^2} D_h = -\frac{3}{2\alpha} + \frac{9\beta}{4\pi\alpha^2 T} + \mathcal{O}\left(\frac{1}{T^2}\right)$$

$$\alpha \neq 0$$

Positive (positivity of graviton mass) and "UV finite"

Puzzle?

- Coherence: Drude-like pole dominating the long-time dynamics (over other poles and analytic contributions).
 Momentum is quasi conserved
- Incoherence: otherwise

[Hartnoll, JHEP 1502 (2015) 100]

[Davison, Goutéraux, JHEP 1501 (2015) 039]

Discussion

We should probably not think of the momentum dissipation scale and T as unrelated

But this seems a feature of massive gravity where momentum dissipation is controlled by the parameters *alpha* and *beta* setting the graviton mass

- Massive gravity is too rigid
- There is a way of *phenomenologically* tune the graviton mass and relate it to T
- Our real focus is on the possibility of saturating a Tdependent diffusivity bound and we want the system to be governed by temperature alone (being even agnostic about taking large or small momentum dissipation rate!)

Incoherence (stricter version!)

The extrinsic (momentum dissipating) processes **do not** introduce features associated to scales other than the temperature

If massive gravity was rigid by itself, we are making the analysis even stiffer *(i.e. adding a constraint)*. However, we can hope of being able to grasp the essential features of a system governed by temperature alone

- Nice relation with optical transport coefficients
- Nice relation with symmetry enhancement

[Davison, Goutéraux, JHEP 1501 (2015) 039]

Incoherence in holographic massive gravity: **spectral** standpoint

[Davison, Goutéraux, JHEP 1501 (2015) 039]

Undesirable because it contrasts the sought for robustness ...

Incoherence in holographic massive gravity: diffusion standpoint

 $\begin{aligned} \alpha &= 0\\ \beta \text{ fixed} \end{aligned}$

Again, strict incoherence is a delicate circumstance. However...

...we possibly have direct and quantitative control of a genuinely incoherent state!

... with alpha as well

- We notice the "regularizing" effect of *alpha* in the high-T region
 - Diffusion constants at zero temperature are finite
 - Impossibility of having incoherence (at least in its strict version) at finite chemical potential

Chasing bounds...

Reality and positivity of the momentum dissipation rate
Positivity of black hole and graviton masses

Interesting questions

- Could the simplest *heat transport* provide a diffusion bound?
- Necessity of *alpha* for both UV physics and IR bounds?
- Relation between boundary and bulk physical soundness (bottom-up cure for massive gravity pathologies...)?

[Alberte, Khmelnitsky, Phys.Rev. D91 (2015) 4, 046006]

• Possibility of playing phenomenologically with the radial profile of the fiducial metric?

[Blake, Tong, Phys.Rev. D88 (2013) 10, 106004; Marolf, Class.Quant.Grav. 31 (2014) 015008]

Future prospect

- Analysis in other models (e.g Q-lattices); different renormalization for the momentum dissipating device [Donos, Gauntlett, JHEP 1404 (2014) 040]
- Seeking for robust incoherence and check the "goodness" of the attained (even though delicate) incoherence
- Diffusivity and magnetic field (many good theoretical and experimental reasons to do that... see **Amoretti**'s talk)

[Hayes, Breznay, Helm, Moll, cond-mat.str-el/1412.6484; Amoretti, Musso, hep-th/1502.02631]

THANKS!

Acknowledgements:

A.Amoretti, M.Bertolini, A.Braggio, R.Davison, D.Forcella, N.Magnoli, A.Mezzalira, G.Musso, G.Policastro, F.Porri, H.Raj, D.Son

Physics on the Riviera 2015

16-18 September 2015 Grand Hotel Villa Balbi Europe/Rome timezone

Overview

Call for Abstracts

- . View my abstracts
- Submit a new abstract
- Timetable
- Contribution List

Author index

Registration

- ... Registration Form
- List of registrants
- How to reach Sestri Levante
- Welcome Cocktail

Support Support

Physics on the Riviera 2015: an isthmus between high energy and condensed matter theoretical physics

