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Introduction

• Conductivity is one of the most important observables in condensed mat-

ter systems

• It is relatively easy to define and measure.

• It tells us a lot about the dynamics of charge carriers in a medium

• For low enough voltages it is controlled by the retarded current two-point

function.

Holographic conductivity, Elias Kiritsis
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Strongly correlated electrons

• In metals, although bare electrons are strongly coupled, there are ”dressed”

(fermionic) quasiparticles that are weakly-coupled and behave as almost free

electrons. They are responsible for transporting charge.

• In most materials that are on the border with magnetism (like the

cuprates) there are no weakly-coupled quasiparticles.

• Such systems are Mott insulators in some part of the their phase diagram.

• They have a benchmark linear conductivity in the area above their super-

conducting dome.

• In some of them the AC Conductivity shows a very simple scaling law,

σ(ω) ∼ ω−2
3

Van der Marel et al.
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Scaling in AC conductivity

Van Der Marel et al.

Holographic conductivity, Elias Kiritsis
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Insulators

• There are several mechanisms for insulating behavior in condensed matter:

1) Band gap insulators, where the conduction band is empty, and there is

therefore a gap that prevents current transport.

2) Anderson localization that is effective in two dimensions and where strong

disorder inhibits conduction.

3) Mott localization, where strong onsite interactions localize electrons.

4) A new mechanism at strong coupling: Momentum-dissipating interac-

tions become relevant (strong) in the IR, and they inhibit conduction
Donos+Hartnoll

Generalized to arbitrary EMD theories
Donos+Gouteraux+Kiritsis

5) A hybrid of (1)+(3) in holographic systems.
Jie Ren et al.
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Supersolids

• A supersolid is a generalization of a superfluid state. It is characterized
by a spontaneously broken U(1) symmetry which guarantees a superfluid
component (a zero frequency δ-function).

• It has (spontaneously) broken translational invariance.

• Therefore the appropriate two-point function has a discretely localized
spectral density.

• If probed at a generic non-zero frequency it is non-responsive. If it is
probed at zero frequency it behaves as a superfluid.

• They have been theoretically anticipated and studied, especially in the
last 2-3 years.

Legget, Fisher+Nelson, Anderson, Nicolis+Penco+Rosen
• There are proposed realizations with cold atoms.

Keilmann+Cirac+Roscilde

• There have been claims for presence in solid Helium4 as well as a recent
refutation.

Kim+Chan

• They can be realized holographically
Jie Ren et al.
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The Plan of the rest

• Review of conductivity in Holographic Theories

• AC conductivity and scaling in a holographic non-fermi liquid

• Generic scaling of the holographic AC conductivity

Holographic conductivity, Elias Kiritsis
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The Wilsonian setup

• Holographic theories are generically RG flows between fixed points.

• The first step: Classification of Scale Invariant/Fixed-point theories (The

Wilsonian approach in holography).

• The strategy is to use Effective Holographic Theories (in order to explore

all possible QC holographic scale invariant theories with given symmetries.
Charmousis+Gouteraux+Kim+Kiritsis+Meyer (2010)

• Once fixed points are classified for a given bulk action, the conductivity

can be studied first “locally” (in the IR fixed point) and then globally (along

the whole flow).

Holographic conductivity, Elias Kiritsis
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Generic Scaling Geometries: A classification of

all QC points in holography

Charmousis+Gouteraux+Kim+Kiritsis+Meyer (2010), Gouteraux+Kiritsis (2011),

Huisje+Sachdev+Swingle, (2011)

• Assume translation and rotational invariance in space and time.

• The QC points generically break hyperscaling invariance and are charac-
terized by several exponents. Two appear in the metric (z, θ).

• z → dynamical exponent

• θ → hyperscaling violation exponent

ds2 = r
2θ
d

dt2
r2z

+
dr2 + dx21 + dx22 + · · ·+ dx2d

r2


10



• There is invariance under:

xi → λ xi , t→ λz t , r → λ r , ds→ λ
θ
d ds

• The entropy scales as

S ∼ T
d−θ
z

which gives an interpretation to the hyperscaling violation exponent.

• There is a third exponent, associated with the charge density, the con-
duction exponent ζ:

Gouteraux+Kiritsis, Gouteraux

At = Q rζ−z

It is also a hyperscaling violation exponent:hyperscaling is valid iff both
θ = 0 AND ζ = 0.

Holographic conductivity, Elias Kiritsis
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Conductivity:basics

• It can be calculated in the linear regime from the correlators of the

currents

σij(ω, k⃗) =
1

iω

∫
dpxdt e−iωt−ik⃗·x⃗⟨Ji(t, x⃗)Jj(0,0)⟩

or more generally as the (non-linear) response to an external electric field

Ji = σij Ej

• Translational invariance and finite density imply a pole at zero frequency

for the conductivity.

σ(ω) ≃ K

(
δ(ω) +

i

ω

)
+ · · · , K =

4ρ2

ε+ p

• K is the Drude weight.

11



• Weak scattering over ions or impurities, resolves the zero frequency pole

σ(ω) ≃
Kτ

1− iωτ
+ · · · ,

1

τ
= scattering rate

• This is the so-called Drude peak and defines the response of a metal at
low frequencies.
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• As T → 0, τ → ∞. In this limit τ → ∞ we obtain back the zero frequency
pole and δ-function.

Holographic conductivity, Elias Kiritsis
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General features of holographic conductivities

• When the bulk action of the U(1) gauge field is linear in F2

SF ∼
∫
d4x

√
g Z(ϕ) F2

the DC conductivity has the schematic form

σDC ∼ σpair + σdrag

Blake+Tong, Donos+Gauntlett

• The first term σDC ∼ Z was interpreted as a term coming from the

pair-production of charge.
Karch+O’Bannon

• It is non-zero even when Q = 0.

• It does not contribute to thermal transport.
Donos+Gauntlett
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• It is finite, even when there is no momentum dissipation (does not con-

tribute to the Drude weight).

• σdrag ∼ τ is due to momentum-dissipating interactions.

• If more than one mechanisms of momentum dissipation are at work,

σdrag =
∑
I

σIdrag , τ =
∑
I

τI

(inverse Mathiessen law)
Donos+Gouteraux+Kiritsis

• In the limit of vanishing dissipation, τ → ∞, it generates the Drude

δ-function.

• When charge dynamics is described by the DBI action then

σDC =

√
σ2pp+ σ2drag

Holographic conductivity, Elias Kiritsis
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The AC conductivity in a holographic strange

metal

Kim+Kiritsis+Panagopoulos

• The bulk is the AdS Schwarzschild black hole (in light-cone coordinates).

• The charge is described by a standard DBI action coupled to the metric

SDBI = N
∫
d5x

√
det(g+ F )

• The ansatz for the ground state is

A = (Ey+ h+(u))dx+ + (b2Ey+ h−(u))dx
− + (b2Ex− + hy(u))dy,

• It is a stationary solution in lightcone coordinates with a nontrivial charge
density and a light-cone electric field F+y = E

• The DBI equations can be solved exactly and the conductivity computed
à la Karch-O’Bannon.

Holographic conductivity, Elias Kiritsis

13



The DC conductivity

• The parameters are E, J+, T . E is similar to the doping parameter of
cuprates.

• They can be combined in one scaling variable t and parameter J.

t =
πℓT

2
√
E

, J2 =
J2+

(2N )2
√
2(E)3

,

and the DC conductivity becomes

σDC = σ0

√
σ2DR+ σ2PP ,

σ2DR =
J2

t2A(t)
, A(t) = t2 +

√
1+ t4 , σ2PP =

t3√
A(t)

.

• We will also define the ratio

q ≡
σ2DR
σ2PP

that determines in which regime we are: q ≫ 1 is the Drude regime, q ≪ 1
is the pair-production regime.

14



• The conductivity is as follows:

ρ =



(σ0J)
−1 t q ≫ 1, t≪ 1 linear

√
2σ−1

0 J t2 q ≫ 1, t≫ 1 quadratic

∣∣∣∣∣∣∣∣Drude regime (DR)

σ−1
0 t−3/2 q ≪ 1, t≪ 1 regime I

√
2σ−1

0 t−1/2 q ≪ 1, t≫ 1 regime II

∣∣∣∣∣∣∣∣Pair-Production regime

.
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Center: Location of the four regimes in the space of parameters (J, t) log-log scale. The black line q = 1,

separates the DR respect to the QC regime. The magenta line represents the region with q = 10−2 and

the red one q = 100.
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La2−xSrxCuO4

Kim+Kiritsis+Panagopoulos

Holographic conductivity, Elias Kiritsis
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The AC conductivity

• From the AC conductivity equations one can compute the asymptotics

• The large ω behavior

(
b2ℓNT

)−1
σ(ω) = i

(
2π

3

)7/3 2

Γ (1/3)Γ (7/3)

(
ω

T

)−1/3
eiπ/6

• The generalized relaxation time defined as

σ(ω) ≈ σDC
(
1+ iτω+O(ω2)

)
,

can be computed analytically but has a complicated formula.

15



Conductivity for three different temperatures in the PP (up) and in the DR (down) regimes. The left

figures show the real part of the conductivity while the right figures the imaginary part of the conductivity.

Continues lines represent the numerical data, dashed lines correspond to a fit to the Drude peak formula.
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The colored continuous lines show the Drude fitting using the analytic computation of the generalized

relaxation time. Straight black and dashed gray lines show the UV and the intermediate power law

behavior of the AC conductivity.
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Absolute value (left) and argument (right) part of the conductivity. The blue continuous line shows the

Drude fit using the analytic computation of the generalized relaxation time. Straight black and dashed

gray lines show the UV and the intermediate power law behavior of the AC conductivity.
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Lessons learned

• When the conductivity is dominated by the drag mechanism (momentum

dissipation) there is a clear Drude peak.

• When the conductivity is dominated by the pair-production mechanism

there is no Drude peak.

• There is an associated scaling tail in the conductivity (here σ ∼ ω−1
3).

This always survives beyond the Drude peak as it falls off slower than ω−1.

• It has the feature seen in experiment by Van der Marel et al.: Constant

phase matching the power falloff.

• These properties seem to hold more generally and beyond the system

under study.

Holographic conductivity, Elias Kiritsis
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General Scaling

Charmousis+Gouteraux+Kiritsis+Kim+Meyer

Gouteraux

Consider EMD solutions with general scaling exponents z, θ, ζ. (unbroken

U(1)) and gapless charge excitations.

• The conductivity is obtained by solving for the fluctuations of the gauge

field, δAi = ai(r)e
iωt.

1

Z

√
grr

gtt
∂r

(
Z

√
gtt

grr
a′i

)
+

[
grr

gtt
ω2 −

Q2 grr

Zg2xx

]
ai = 0

• By a field and coordinate redefinitions it can be mapped into a Schrödinger

problem

−ψ′′ + Veff ψ = ω2ψ , Veff(x) = V1(x) +Q2V2(x)

V1(x) ∼
1

x2
, V2 ∼

1

x2a
, x→ ∞

a ≥ 1
16



• The Charge density is “supporting” the IR geometry. Q2 is fixed in terms

of z, θ. Both terms in the potential contribute at the same order.

|σ| ∼ ωm , Arg(σ) ≃ −
π m

2

m =
2(z − 1) + d− θ

z

• In his case m is always positive.

• The case where the IR geometry is AdS2 can be obtained for z → ∞
giving m = 2.

• For hyperscaling violating semilocal geometries, we must take, θ → ∞,

z → ∞ with θ
z = −η fixed.

m = 2+ η > 0

16-



Contour plots to illustrate the region in the parameter space where the exponent m takes negative values

for the single charged model. Left: Conductivity in the charged case for d = 2. Right: Conductivity in the

charged regime for d = 3. The allowed values for the parameters are bounded by the gray mesh. The

negative values for m are outside the permitted region.
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• The Charge density is a probe in the IR geometry. The charge term is

subleading or absent.

|σ| ∼ ωm , Arg(σ) ≃ −
π m

2

m =
∣∣∣∣z+ ζ − 2

z

∣∣∣∣− 1 ,

• It allows for negative values in m but always m ≥ −1 (unitarity bound)

• For an AdS2 IR geometry the exponent can be obtained by an z → ∞
giving m = 0.

• For hyperscaling violating semilocal geometries we must take θ → ∞,

z → ∞ with θ
z = −η fixed and obtain

m =
d− 2

d
η > 0

• Finally, for the gauge field conformal case we obtain m = 0 when d = 2.

16-



Contour
plots to illustrate the region in the parameter space where the exponent m takes negative values for the

probe charge density case. The plots above correspond to d = 2. Left: m for κ̄ = −5. Right: m for κ̄ = 10.
The allowed values for the parameters are bounded inside the gray mesh. Green dashed lines are the

contour levels where m = −2/3 and blue dashed lines m = −1/3.
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Contour
plots to illustrate the region in the parameter space where the exponent m takes negative values for the

probe charge density case. The plots above correspond to d = 3 Left: m for κ̄ = −5. Right: m for κ̄ = 10.
The allowed values for the parameters are bounded inside the gray mesh. Green dashed lines are the

contour levels where m = −2/3 and blue dashed lines m = −1/3.

Holographic conductivity, Elias Kiritsis
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Outlook

• The scaling of the holographic AC conductivity is a generic phenomenon

• It is controlled generically by the pair-production mechanism and seems

independent of the momentum dissipation mechanism

• It always dominates the Drude peak tail for sufficiently large ω.

• It has the general properties observed in cuprates

• The relevant exponent can be negative only if the charge density does

not backreact on the geometry.

• It is important to analyze all this in concrete and complete RG Flows

with and without U(1) symmetry breaking.

Holographic conductivity, Elias Kiritsis
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The four regimes of the model

Left: Comparison of the function A(t) with its low and high t behaviour.
Center: Location of the four regimes in the space of parameters (J, t) log-log scale. The black line q = 1,
separates the DR respect to the QC regime. The magenta line represents the region with q = 10−2 and

the red one q = 100.

Right: Contour Plot of the DC conductivity as a function of the scaling charge density and the

temperature.

Holographic conductivity, Elias Kiritsis
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Overview of the solutions

• The gravitational action:

S =M3
∫
d5x

√
−g

[
R−

1

2
(∂ϕ)2 + V (ϕ)−

Z1(ϕ)

4
F2
1 −

Z2(ϕ)

4
F2
2

]

with F iµν ≡ ∂µA
i
ν − ∂νA

i
µ

and

V (ϕ) →IR ∼V0 e−δϕ , Z1(ϕ) ∼
IR

Z10 e
γ1ϕ , Z2(ϕ) ∼

IR
Z20 e

γ2ϕ .

• The metric ansatz has helical symmetry and we parametrize the scaling

solutions as :

ds2 = r
2θ
3

[
−
dt2

z2z
+
L2dr2 + ω1

2

r2
+

1

r2z2

(
ω2

2 +
λ

r2
ω3

2
)]

, A1 ∼ rζ−z

where

ω1 = dx1 , ω2 = cos(kx1)dx2+sin(kx1)dx3 , ω3 = sin(kx1)dx2−cos(kx1)dx3

Holographic conductivity, Elias Kiritsis
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Critical lines vs critical points in Cuprates

Kim+Kiritsis+Panagopoulos

Anomalous Criticality in the Electrical Resistivity of La2−xSrxCuO4.
R.A. Copper et. al. 2009

Holographic conductivity, Elias Kiritsis
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Breaking Translation Invariance

• Charge lattices lead to non-linear (gravitational) PDEs that are in general
very difficult to solve.

Horowitz+Santos+Tong (2012), Lin+Liu+Wu+Xiang (2013), Donos+Kiritsis (2013)

• Some other string mechanisms of translation invariance breaking (mo-
mentum dissipation) are simpler to analyze:

♠ An effective “phenomenological” treatment of momentum dissipation
using massive gravity.

Vegh (2013), Davison (2013), Blake+Tong (2013), Davison+Schalm+Zannen (2013)

♠ Interactions of charge with a bulk sector that carries most of the energy
(DBI probe approximation)

Karch+O’Bannon (2007), Charmousis+Gouteraux+Kiritsis+Kim+Meyer (2010)

♠ Interactions with string axions that model a kind of homogeneous disor-
der.

Andrade+Withers (2013), Gouteraux (2013), Donos+Gauntlett (2013)

♠ The use of random field disorder in holography.
Hartnoll+Herzog (2008), Davison+Schalm+Zaanen (2013), Lucas+Sachdev+Schalm (2014)

♠ Study of saddle points with helical symmetry.
Kachru et al. (2012), Donos+Gauntlett (2012), Donos+Hartnoll (2012)

Holographic conductivity, Elias Kiritsis

22



DC conductivity

• The general structure of the holographic DC conductivity at strong cou-

pling:

σDC =

√
(σppDC)

2 + (σdragDC )2 , σDC = σ
pp
DC + σ

drag
DC

• σpp is the pair-creation contribution: it exists also when Q = 0.

• σdrag is the “drag” contribution. It originates from the force and dissipa-

tion a fractionalized charge (a string) feels as it is moving in the strongly

coupled medium.
Karch+O’Bannon, (2007)

Holographic conductivity, Elias Kiritsis
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Ground-states with helical symmetry
Work with A. Donos and B. Gouteraux, to appear

• The gravitational action:

S =M3
∫
d5x

√
−g

[
R−

1

2
(∂ϕ)2 + V (ϕ)−

Z1(ϕ)

4
F2
1 −

Z2(ϕ)

4
F2
2

]

with F iµν ≡ ∂µA
i
ν − ∂νA

i
µ

and

V (ϕ) →IR ∼V0 e−δϕ , Z1(ϕ) ∼
IR

Z10 e
γ1ϕ , Z2(ϕ) ∼

IR
Z20 e

γ2ϕ .

• The metric ansatz has helical symmetry and we parametrize the scaling
solutions as :

ds2 = r
2θ
3

[
−
dt2

z2z
+
L2dr2 + ω1

2

r2
+

1

r2z2

(
ω2

2 +
λ

r2
ω3

2
)]

, A1 ∼ rζ−z

where

ω1 = dx1 , ω2 = cos(kx1)dx2+sin(kx1)dx3 , ω3 = sin(kx1)dx2−cos(kx1)dx3

Holographic conductivity, Elias Kiritsis
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Anisotropic saddle points

(a) IR marginal current (ζ = θ − 2− 2z2)

Sa ∼ T
2z2+2−θ

z

vanishes at T → 0 • For the DC conductivity

σaDC ∼ T
ζ−2
z

• σDC along the helical axis vanishes always at T = 0 (power insulators)

• For the IR limit of AC conductivity we find

σaAC(T = 0) ∼ ω
θ−2z2−4

z

• This is the same power as the DC conductivity and σaAC(T = 0) → 0 as

ω → 0.

25



• (b) IR Irrelevant current (z = 3
2z2).

Sb ∼ T
(2z2+2−θ)

z ,

• For the DC conductivity

σbDC ∼ T
ζ−2
z

• It is sometimes diverging (metal) and sometimes vanishing (insulator).

• σDC comes always for the pair creation term. Therefore in the metallic

case we expect no Drude peak (incoherent metals) .

• For the AC conductivity at zero T:

σaAC(T = 0) ∼ ωmin{n1,n2}

n1 = −1+
∣∣∣∣−4+ 2ζ +3z2

3z2

∣∣∣∣ , n2 = −1+
1

3

√√√√4θ2 +96z2 − 76θz2 +217z22
z22

25-



• Whenever the system is an insulator, n1 dominates and the the AC and

DC exponents are equal.

• When n2 dominates, the system is metallic with a decaying low-frequency

AC tail. A δ(ω) may bridge this behavior.

• When the system is metallic and n1 dominates, it can have:

1. Diverging AC frequency power tail and match the DC scaling

2. Diverging AC frequency power tail without matching the DC scaling

3. Decaying AC frequency power tail.

• Whenever σAC ∼ ω0 then σDC ∼ T0 or σDC ∼ T−2

Holographic conductivity, Elias Kiritsis
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The effective temperature

The effective temperature on the brane is not t for non-trivial E:

teff = t

√√√√√√√J
2A(t)2

√
A(t)− 2t2 + t5

(
t2A(t) + 2t4 +3

)
2
√
2t3

(
t5
√
A(t) + J2

)

Dependence of the world-volume temperature Teff with the parameters J and t, the effective temperature

is always bigger than the background temperature T .

Holographic conductivity, Elias Kiritsis
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Holographic gapped systems at finite density

• There are two ways that a system can be insulating at T=0:

♠ Charged excitations are gapped. In that case the conductivity is non-zero
only above the gap.

♠ There is no gap but the limit ω → 0 gives a vanishing conductivity. In

both cases the operator/mechanism that breaks translation invariance, is relevant in the

IR.

• Gapped holographic systems are known at zero charge density, and they
are in use as models of YM.

Witten, ’98, Gursoy+Kiritsis+Nitti, ’07, Nishioka+Ryu+Takatanagi, ’10

• At finite density, many saddle-points with discrete spectrum were found,
in the classification of QC points in EMD Theories.

Charmousis+Gouteraux+Kiritsis+Kim+Meyer, ’10, McGreevy+Balasubramanian, ’10

S =
∫
d4x

√
−g

[
R−

1

2
(∂ϕ)2 − V (ϕ)−

Z(ϕ)

4
F2
]

, V ∼ e−δϕ , Z ∼ eγϕ

27



• The conductivity is obtained by solving for the fluctuations of the gauge
field, δAi = ai(r)e

iωt.

1

Z

√
grr

gtt
∂r

(
Z

√
gtt

grr
a′i

)
+

[
grr

gtt
ω2 −

Q2 grr

Zg2xx

]
ai = 0

• By a field and coordinate redefinitions it can be mapped into a Schrödinger
problem

−ψ′′ + Veff ψ = ω2ψ

27-



The parameter space

The regions A, B, and C are the parameter space constrained by the Gubser criterion. In region A (yellow),

the extremal limit is at T → 0, and the current-current correlator is gapless. In region B (red), the extremal

limit is at T → ∞, and the current-current correlator is gapped. In region C (green), the extremal limit

is at T → ∞, and the current-current correlator is gapless. Region D (enclosed by blue boundaries) is

holographically unreliable.

Holographic conductivity, Elias Kiritsis
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The finite temperature picture

• The gapped systems above are at finite density, and have therefore a zero-frequency
δ-function: They are perfect conductors.

• Note also that we are at T = 0. In this respect as far as the δ-function is concerned
they resemble real metals at T = 0.

• Up to T = Tmin this is the only saddle-point for the system. For T > Tmin there are also
two black holes that are competing at the same temperature.

• At T = Tc > Tmin there is a first order phase transition to the large black hole phase that
is a gapless plasma phase. This is very similar to the confinement-deconfinement phase
transition in gauge theories.

Holographic conductivity, Elias Kiritsis
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Adding Momentum dissipation

• We use axions as a source of momentum dissipation.

S =
∫
d4x

√
−g

R−
1

2
(∂ϕ)2 − V (ϕ)−

Z(ϕ)

4
F2 −

Y (ϕ)

2

2∑
i=1

(∂ψi)
2

 ,

V (ϕ) ∼ e−δϕ, Z(ϕ) ∼ eγϕ, Y (ϕ) ∼ eλϕ.

ψ1 = kx , ψ2 = k y

• We also choose λ in the region where the axions are “irrelevant” in the

IR.
29
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• Momentum dissipation is expected to remove the zero frequency δ-

function but:

(a) We are in the T=0 geometry as long as T < Tc

(b) The axions are irrelevant in the deep IR.

• A detailed analysis of the Drude weight is needed.

• The fluctuation equations for the conductivity involve not only δAi but

also the axions.

• There is a direct formula for the DC conductivity in the presence of a

regular (non-extremal) horizon.

σDC = Zh+
q2

k2(gxx)hYh
≡ Z1 +

q2

k2
Z2

Gouteraux, Donos+Gauntlett
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• There is also a direct formula for the Drude weight:

Π(ω) = fHλ′1 −
q

k2
fZ2

(
Z1

Z2

)′
λ2, , ∂rΠ = O(ω2)

λ1 =
Z1

H

(
ax −

q

k2
Z2

Z1
bx

)
, λ2 =

Z2

H
(qax+ bx) .

• It can be shown that Π(0) is the Drude weight. We can then establish
that:

(a) when σDC → ∞ at extremality then there is a zero-frequency δ-function,
and this happens in the gapless geometries.

(b) when σDC → 0 at extremality, then there is no zero-frequency δ-
functions and this happens for the gapped geometries.

• We have therefore found holographic system with a charged spectrum
that is gapped and discrete.

• These are insulators that share properties of both band-gap insulators
and Mott insulators.

Holographic conductivity, Elias Kiritsis
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generalized relaxation time

The generalized relaxation time τ as a function of the scaling temperature variable t.The

left plot shows the behaviour of the dimensionless quantity Tτ (T is the temperature)

deep in the Drude regime (DR). The right plot shows the behavior in the pair-production

regime at zero density. Dots show numerical data and the continuous line is the analytic

formula obtained in the text using perturbation theory .

Holographic conductivity, Elias Kiritsis
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