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Figure 2: The allowed region (shown in white)
for up quark and down quark masses. This re-
gion was determined in part from papers report-
ing values for mu and md (data points shown)
and in part from analysis of the allowed ranges
of other mass parameters (see Fig. 3). The pa-
rameter (mu + md)/2 yields the two downward-
sloping lines, while mu/md yields the two rising
lines originating at (0,0).
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Figure 3. The values of each quark mass parameter taken from
the Data Listings. The points are in chronological order with
the more recent measurements at the top. Points from papers
reporting no error bars are colored grey. The shaded regions
indicate values excluded by our evaluations; some regions were
determined in part through examination of Fig. 2.
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Basic principles of 
LOW-ENERGY QCD :

special role of STRANGE QUARKS

Confinement of quarks & gluons in hadrons

Chiral Symmetry 

spontaneously broken 
(QCD dynamics)

explicitly broken 
by non-zero 

quark masses
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NAMBU - GOLDSTONE  BOSONS: 

Spontaneously Broken  
CHIRAL                               SYMMETRYSU(3)L × SU(3)R

Pseudoscalar SU(3) meson octet {φa} = {π, K, K̄, η8}

DECAY CONSTANTS:   

µ

ν

  axial 
current

π

K

fπ = 92.4 ± 0.3 MeV

Chiral limit: f = 86.2 MeV

〈0|Aµ
a(0)|φb(p)〉 = iδab pµ

fb

fK = 110.0 ± 0.9 MeV

m
2
π
f
2
π

= −
mu + md

2
〈ūu + d̄d〉Gell-Mann,

Oakes,
Renner
relations 

m
2
K f

2
K = −

mu + ms

2
〈ūu + s̄s〉

+ higher order 
corrections

(order parameter)
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Figure 1: Feynman diagrams for the meson-baryon interactions in chiral perturbation theory.
(a) Weinberg-Tomozawa interaction, (b) s-channel Born term, (c) u-channel Born term, (d)
NLO interaction. The dots represent the O(p) vertices while the square denotes the O(p2)
vertex.

where qi, Mi and Ei are the momentum, the mass and the energy of the baryon in channel i, and χσi is
the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we
obtain the WT interaction

V WT
ij (W ) = −Cij

4f2
(2W − Mi − Mj)

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
. (15)

The Cij coefficients express the sign and the strength of the interaction for this channel. With the
SU(3) isoscalar factors [101, 102], it is given by [103, 104]

Cij =
∑

α

[6 − C2(α)]

(
8 8 α

Iī, Yī Ii, Yi I, Y

)(
8 8 α

Ij̄, Yj̄ Ij, Yj I, Y

)
, (16)

Y = Yī + Yi = Yj̄ + Yj, I = Iī + Ii = Ij̄ + Ij,

where α is the SU(3) representation of the meson-baryon system with C2(α) being its quadratic Casimir,
Ii and Yi are the isospin and hypercharge of the particle in channel i (i stands for the baryon and ī for
the meson). Explicit values of Cij for the S = −1 meson-baryon scattering can be found in Ref. [8]. It
is remarkable that the sign and the strength of the interaction (15) are fully determined by the group
theoretical factor Cij. This is because the low energy constant is absent in the Lagrangian (13), as it
is derived from the covariant derivative. In the language of current algebra, this is the consequence
of the vector current conservation (Weinberg-Tomozawa theorem) [74, 75]. Indeed, at threshold of
the πN → πN amplitude, Eq. (15) gives the scattering length (the relation of the T-matrix with the
nonrelativistic scattering amplitude is summarized in Appendix)

aπN→πN =






MN

4π(MN + mπ)

mπ

f 2
for I = 1/2

− MN

8π(MN + mπ)

mπ

f2
for I = 3/2

,

in accordance with the low energy theorem.
It is also remarkable that the phenomenological vector meson exchange potential [6] leads to the

same channel couplings with Cij when the flavor SU(3) symmetric coupling constants are used. In fact,
with the KSRF relation g2

V = m2
V /2f 2 [105, 106], the vector meson exchange potential reduces to the

contact interaction V ∝ Cij/f2 in the limit mV → ∞.
Another important feature of Eq. (15) is the dependence on the total energy W . This is a consequence

of the derivative coupling nature of the NG boson in the nonlinear realization. The energy dependence
is an important aspect for the discussion of the s-wave resonance state.
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CHIRAL SU(3) EFFECTIVE FIELD THEORY
ordered hierarchy of driving interactions

next-to-leading order (NLO)
input:  several low-energy constants

O(p2)

[8]

[8]

PS meson
octet

baryon
octet

Leading-order terms 
(Weinberg & Tomozawa)

Examples:         (S = -1) and        (S = +1) threshold (s wave) amplitudes : K̄N KN

T(K+p)thr = 2T(K+n)thr = −

mK

f2

T(K−p)thr = 2T(K−n)thr =
mK

f2
attractive

repulsive explicit 
chiral symmetry breaking

order parameter of
spontaneous

chiral symmetry breaking +

+
4



2 M.F.M. Lutz et al.

Thus, it is useful to review also in detail effective coupled-channel field theories
based on the chiral Lagrangian.

The task to construct a systematic effective field theory for the meson-baryon
scattering processes in the resonance region is closely linked to the fundamental ques-
tion as to what is the ’nature’ of baryon resonances. The radical conjecture10), 5), 11), 12)

that meson and baryon resonances not belonging to the large-Nc ground states are
generated by coupled-channel dynamics lead to a series of works13), 14), 15), 17), 16), 18)

demonstrating the crucial importance of coupled-channel dynamics for resonance
physics in QCD. This conjecture was challenged by a phenomenological model,11)

which generated successfully non-strange s- and d-wave resonances by coupled-channel
dynamics describing a large body of pion and photon scattering data. Of course,
the idea to explain resonances in terms of coupled-channel dynamics is an old one
going back to the 60’s.19), 20), 21), 22), 23), 24) For a comprehensive discussion of this
issue we refer to.12) In recent works,13), 14) which will be reviewed here, it was shown
that chiral dynamics as implemented by the χ−BS(3) approach25), 10), 5), 12) provides
a parameter-free leading-order prediction for the existence of a wealth of strange and
non-strange s- and d-wave wave baryon resonances. A quantitative description of
the low-energy pion-, kaon and antikaon scattering data was achieved earlier within
the χ-BS(3) scheme upon incorporating chiral correction terms.5)

§2. Effective field theory of chiral coupled-channel dynamics

Consider for instance the rich world of antikaon-nucleon scattering illustrated in
Fig. 1. The figure clearly illustrates the complexity of the problem. The K̄N state
couples to various inelastic channel like πΣ and πΛ, but also to baryon resonances
below and above its threshold. The goal is to bring order into this world seeking a
description of it based on the symmetries of QCD. For instance, as will be detailed
below, the Λ(1405) and Λ(1520) resonances will be generated by coupled-channel
dynamics, whereas the Σ(1385) should be considered as a ’fundamental’ degree of
freedom. Like the nucleon and hyperon ground states the Σ(1385) enters as an
explicit field in the effective Lagrangian set up to describe the K̄N system.

The starting point to describe the meson-baryon scattering process is the chiral
SU(3) Lagrangian (see e.g.26), 5)). A systematic approximation scheme arises due to a
successful scale separation justifying the chiral power counting rules.27) The effective
field theory of the meson-baryon scattering processes is based on the assumption

s1/2
KN

[MeV]

poles

thresholds
ΣηΛη

Λ
**(1520)

Λ
*(1405)Σ

*(1385)

Σ(1195)Λ(1116)

KN
ΣπΛπ

15001000

Fig. 1. The world of antikaon-nucleon scattering

KN
_

√

s [MeV]

Low-Energy  K N  Interactions
_

Chiral Perturbation Theory NOT applicable:
Λ(1405)resonance 27 MeV below          threshold

N. Kaiser,  P. Siegel,  W. W.  (1995)
E. Oset,  A. Ramos (1998)

Leading s-wave I = 0 meson-baryon interactions (Weinberg-Tomozawa)

0 ∞

1 GeVu,d s c

“light”  quarks “heavy”  quarks

0 ∞

1 GeVu,d s c

“light”  quarks “heavy”  quarks

K̄ N

π

Σ

0 ∞

1 GeVu,d s c

“light”  quarks “heavy”  quarks

K̄ N

π ΣK̄ N Σ

π

K̄NπΣ

channel coupling

Framework: Chiral SU(3) Effective Field Theory  . . .  but :

Non-perturbative 
Coupled Channels 

approach based on 
Chiral SU(3) Dynamics

Recent  Review:
T. Hyodo,  D. Jido 

  Prog. Part. Nucl. Phys. 67 (2012) 55

K−p
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SIDDHARTA

CONSTRAINTS  from  SIDDHARTA

Kaonic hydrogen 
precision data 

  M. Bazzi et al.  (SIDDHARTA)   
  Phys. Lett. B 704 (2011) 113

Strong interaction 
1s energy shift and width

∆E = 283 ± 36 (stat)±6 (syst) eV

Γ = 541 ± 89 (stat)±22 (syst) eV
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 (f
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Re f(K−p → K−p)

[fm]

√

s [MeV]
√

s [MeV]

Re a(K−p)

Im a(K−p)

K−p          SCATTERING AMPLITUDE  from 
CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Complex scattering length (including Coulomb corrections)

f(K−p) =
1

2

[

fK̄N(I = 0) + fK̄N(I = 1)
]

Ima(K−p) = 0.81 ± 0.15 fmRe a(K−p) = −0.65 ± 0.10 fm

Λ(1405)

Λ(1405)

: K̄N (I = 0) quasibound state embedded in the πΣ continuum

Y. Ikeda,  T. Hyodo,  W. W. 
PLB 706 (2011) 63 
NPA881 (2012) 98

Prototype example for emergence of resonant structure close to a threshold
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Note:  qualitative structural change depending on quark mass 
(interplay of spontaneous & explicit chiral symmetry breaking)  

New
developments: 

(not quite physical yet)
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Pole structure in the complex energy plane
Resonance state ~ pole of the scattering amplitude

∼

Tij(
√

s) ∼ gigj√
s − MR + iΓR/2

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

Λ(1405) in meson-baryon scattering

T. Hyodo, D. Jido, arXiv:1104.4474

K̄NπΣ

The   TWO  POLES   scenario 

dominantly
πΣdominantly

K̄N

T. Hyodo,  D. Jido 
  Prog. Part. Nucl. Phys. 67 (2012) 55

Pole positions from chiral SU(3) coupled-channels calculation 
using SIDDHARTA           threshold constraints:

E1 = 1424 ± 15 MeV

Γ1 = 52 ± 10 MeV Γ2 = 162 ± 15 MeV

E2 = 1381 ± 15 MeV Y. Ikeda, T. Hyodo,  W. W. : 
Nucl. Phys.  A 881 (2012) 98

Characteristic feature of Chiral SU(3) Dynamics : 

Coupled channels 
with 
energy dependent 
driving interactions 

Dynamics explored and tested in several experiments at J-PARC,  JLab, GSI-HADES
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plus potentially important information about K-NN absorption 

Missing information :  the 

Predicted antikaon-neutron amplitudes at and below threshold
Y. Ikeda et al :      Phys. Lett. B 706 (2011) 63 ,  Nucl. Phys.  A 881 (2012) 98

Needed:   accurate constraints from 
                  antikaon-deuteron threshold measurements

complete information for both isospin I = 0 and channelsI = 1 K̄N

K−n scattering length and amplitude

Tetsuo Hyodo

October 24, 2011

The K−n scattering length is calculated as

aK−n = 0.29 + i0.76 fm (WT)

aK−n = 0.27 + i0.74 fm (WTB)

aK−n = 0.57 + i0.72 fm (NLO)

The scattering amplitude is shown in Fig. .
The jump of the real part of the scattering length in the step WTB → NLO is correlated with

the jump of the K−p scattering length:

aK−p = −0.93 + i0.82 fm (WT)

aK−p = −0.94 + i0.85 fm (WTB)

aK−p = −0.70 + i0.89 fm (NLO)

Note that the results with the WT and WTB models are a bit off the SIDDHARTA result.
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Figure 1: Scattering amplitude in K−n channel.
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1

Re f(K−

n → K
−

n) Im f(K−

n → K
−

n)
[fm]

[fm]

√

s [MeV]
√

s [MeV]

TW

TW

TW + Born

TW + Born

NLO

NLO

a(K−

n) = 0.57
+0.04

−0.21
+ i 0.72

+0.26

−0.41
fm

. . . plus 
many other
theory 
activities

I = 1 K̄N system

a case for
SIDDHARTA-2

10



Fig. 4. Uncertainty of the boundary of allowed values for AKd. The central value
(solid line) corresponds to the average of ap from scattering data and the SID-
DHARTA value; uncertainty (shaded area) from the combined errors of these two
sources.

4. In summary, we have reanalysed the predictions for the kaon-deuteron
scattering length in view of the new kaonic hydrogen experiment from SID-
DHARTA. Based on consistent solutions for input values of the K−p scatter-
ing length, we have explored the allowed ranges for the isoscalar and isovector
kaon-nucleon scattering lengths and explored the range of the complex-valued
kaon-deuteron scattering length that is consistent with these values. In partic-
ular, the new SIDDHARTA measurement is shown to resolve inconsistencies
for a0, a1, and AKd as they arose from the DEAR data. A precise measure-
ment of the K−d scattering length from kaonic deuterium would therefore
serve as a stringent test of our understanding of the chiral QCD dynamics
and is urgently called for.
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Chiral SU(3) Effective Field Theory 
and Hyperon-Nucleon Interactions
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN → ΣN 1
2

3
10 (−C27

ξ + C
8s
ξ ) 1

2 (−C
8a
ξ + C10∗

ξ ) −3√
20

C
8s8a
ξ

ΣN → ΛN 1√
20

C
8s8a
ξ

ΣN → ΣN 1
2

1
10 (C27

ξ + 9C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) 3√
20

C
8s8a
ξ

ΣN → ΣN 3
2 C27

ξ C10
ξ –

singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian

LMB = tr
(
B̄

(
iγ µDµ − M0

)
B

)
− D

2
tr
(
B̄γ µγ5{uµ,B}

)
− F

2
tr
(
B̄γ µγ5[uµ,B]

)
, (14)

with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA & 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]

P =





π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6



 , B =





Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



 .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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P =





π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6



 , B =





Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



 .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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which leads to a vertex between two baryons and one meson. In the same way, the term involving
the chiral connection Γµ gives

L2 = 1

4f 2
0

tr
(
iB̄γ µ

[
[P, ∂µP ],B

])
, (17)

which describes a (Weinberg–Tomozawa) vertex between two baryons and two mesons.
Writing the pseudovector interaction Lagrangian L1 explicitly in the isospin basis, one gets

L1 = −fNNπ N̄γ µγ5τN · ∂µπ + ifΣΣπ Σ̄γ µγ5 × Σ · ∂µπ

− fΛΣπ

[
Λ̄γ µγ5Σ + Σ̄γ µγ5Λ

]
· ∂µπ − fΞΞπΞ̄γ µγ5τΞ · ∂µπ

− fΛNK

[
N̄γ µγ5Λ∂µK + h.c.

]
− fΞΛK

[
Ξ̄γ µγ5Λ∂µK̄ + h.c.

]

− fΣNK

[
N̄γ µγ5τ∂µK · Σ + h.c.

]
− fΣΞK

[
Ξ̄γ µγ5τ∂µK̄ · Σ + h.c.

]

− fNNη8N̄γ µγ5N∂µη − fΛΛη8Λ̄γ µγ5Λ∂µη

− fΣΣη8Σ̄ · γ µγ5Σ∂µη − fΞΞη8Ξ̄γ µγ5Ξ∂µη. (18)

Here, we have introduced the isospin doublets

N =
(

p

n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, K̄ =

(
K̄0

−K−

)
. (19)

The signs have been chosen according to the conventions of Ref. [48], such that the inner product
of the isovector Σ (or π ) defined in spherical components reads

Σ · Σ =
∑

m

(−1)mΣmΣ−m = Σ+Σ− + Σ0Σ0 + Σ−Σ+. (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling
constants are related to each other by [48]

fNNπ = f, fNNη8 = 1√
3
(4α − 1)f, fΛNK = − 1√

3
(1 + 2α)f,

fΞΞπ = −(1 − 2α)f, fΞΞη8 = − 1√
3
(1 + 2α)f, fΞΛK = 1√

3
(4α − 1)f,

fΛΣπ = 2√
3
(1 − α)f, fΣΣη8 = 2√

3
(1 − α)f, fΣNK = (1 − 2α)f,

fΣΣπ = 2αf, fΛΛη8 = − 2√
3
(1 − α)f, fΞΣK = −f. (21)

Evidently, all coupling constants are given in terms of f ≡ gA/2f0 and the ratio α = F/(F +D).
The expression for the one-pseudoscalar-meson exchange potential is similar to the standard

one-pion-exchange potential [33]

V OBE
B1B2→B3B4

= −fB1B3P fB2B4P
(σ 1 · q)(σ 2 · q)

q2 + m2
P

IB1B2→B3B4 . (22)

Here, mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use
the physical masses mπ , mK , mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the
mass splitting between the pseudoscalar mesons is taken into account. The η meson is identified
with the octet-state η8. The isospin factors IB1B2→B3B4 are given in Table 2.

. . . generate Nambu-Goldstone boson exchange processes
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN → ΣN 1
2

3
10 (−C27

ξ + C
8s
ξ ) 1

2 (−C
8a
ξ + C10∗

ξ ) −3√
20

C
8s8a
ξ

ΣN → ΛN 1√
20

C
8s8a
ξ

ΣN → ΣN 1
2

1
10 (C27

ξ + 9C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) 3√
20

C
8s8a
ξ

ΣN → ΣN 3
2 C27

ξ C10
ξ –

singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian

LMB = tr
(
B̄

(
iγ µDµ − M0

)
B

)
− D

2
tr
(
B̄γ µγ5{uµ,B}

)
− F

2
tr
(
B̄γ µγ5[uµ,B]

)
, (14)

with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA & 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]

P =





π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6



 , B =





Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



 .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].
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The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian
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with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA & 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
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+ Λ√
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Σ+ p
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n
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
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For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]
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For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i
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2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
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DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]
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which leads to a vertex between two baryons and one meson. In the same way, the term involving
the chiral connection Γµ gives

L2 = 1

4f 2
0

tr
(
iB̄γ µ

[
[P, ∂µP ],B

])
, (17)

which describes a (Weinberg–Tomozawa) vertex between two baryons and two mesons.
Writing the pseudovector interaction Lagrangian L1 explicitly in the isospin basis, one gets

L1 = −fNNπ N̄γ µγ5τN · ∂µπ + ifΣΣπ Σ̄γ µγ5 × Σ · ∂µπ

− fΛΣπ

[
Λ̄γ µγ5Σ + Σ̄γ µγ5Λ

]
· ∂µπ − fΞΞπΞ̄γ µγ5τΞ · ∂µπ

− fΛNK

[
N̄γ µγ5Λ∂µK + h.c.

]
− fΞΛK

[
Ξ̄γ µγ5Λ∂µK̄ + h.c.

]

− fΣNK

[
N̄γ µγ5τ∂µK · Σ + h.c.

]
− fΣΞK

[
Ξ̄γ µγ5τ∂µK̄ · Σ + h.c.

]

− fNNη8N̄γ µγ5N∂µη − fΛΛη8Λ̄γ µγ5Λ∂µη

− fΣΣη8Σ̄ · γ µγ5Σ∂µη − fΞΞη8Ξ̄γ µγ5Ξ∂µη. (18)

Here, we have introduced the isospin doublets

N =
(

p

n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, K̄ =

(
K̄0

−K−

)
. (19)

The signs have been chosen according to the conventions of Ref. [48], such that the inner product
of the isovector Σ (or π ) defined in spherical components reads

Σ · Σ =
∑

m

(−1)mΣmΣ−m = Σ+Σ− + Σ0Σ0 + Σ−Σ+. (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling
constants are related to each other by [48]

fNNπ = f, fNNη8 = 1√
3
(4α − 1)f, fΛNK = − 1√

3
(1 + 2α)f,

fΞΞπ = −(1 − 2α)f, fΞΞη8 = − 1√
3
(1 + 2α)f, fΞΛK = 1√

3
(4α − 1)f,

fΛΣπ = 2√
3
(1 − α)f, fΣΣη8 = 2√

3
(1 − α)f, fΣNK = (1 − 2α)f,

fΣΣπ = 2αf, fΛΛη8 = − 2√
3
(1 − α)f, fΞΣK = −f. (21)

Evidently, all coupling constants are given in terms of f ≡ gA/2f0 and the ratio α = F/(F +D).
The expression for the one-pseudoscalar-meson exchange potential is similar to the standard

one-pion-exchange potential [33]

V OBE
B1B2→B3B4

= −fB1B3P fB2B4P
(σ 1 · q)(σ 2 · q)

q2 + m2
P

IB1B2→B3B4 . (22)

Here, mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use
the physical masses mπ , mK , mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the
mass splitting between the pseudoscalar mesons is taken into account. The η meson is identified
with the octet-state η8. The isospin factors IB1B2→B3B4 are given in Table 2.

. . . generate Nambu-Goldstone boson exchange processes
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Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ε1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.
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Mass Radius Relationship

Lattimer & Prakash , Science 304, 536 (2004).
39/40

STRANGE
QUARK 
MATTER

NUCLEONIC
MATTER

  New constraints  
from 2-solar-mass  NEUTRON  STARS

sufficiently stiff equation of state required: 
exotic scenarios (quark matter, kaon condensation etc.) unlikely
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ChEFT

PNJL, Gv � 0.5G

PNJL, Gv � 0
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NEUTRON  STAR  MATTER
Equation of State

quark-nuclear
coexistence occurs
(if at all) only
at baryon densities  
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“conventional” EoS
(nucleons & pions)

quark - nuclear
coexistence

see also:
 K. Masuda, T. Hatsuda, T. Takatsuka

PTEP (2013) 7, 073D01
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Phys. Rev. C90 (2014) 045801

neutron star
constraints

conventional 
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equation of state
seems to work
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NEUTRON  STAR  MATTER including HYPERONS

with inclusion of hyperons:  EoS too soft to support 2-solar-mass star
unless strong short-range repulsion in YN and / or YNN interactions

4

been performed. In this case the additional repulsion
provided by the model (II) pushes ρthΛ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of Λ particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ΛN interac-
tion leads to the very low maximum mass of 0.66(2)M⊙,
while the repulsive ΛNN potential increases the pre-
dicted maximum mass to 1.36(5)M⊙. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
 [M
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R [km]

PNM

N

N + NN (I)

N + NN (II)

0.0
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11 12 13 14 15

PSR J1614-2230

PSR J0348+0432

Figure 2. (Color online) Mass-radius relations. The key is

the same of Fig. 1. Full dots represent the predicted max-

imum masses. Horizontal bands at ∼ 2M⊙ are the ob-

served masses of the heavy pulsars PSR J1614-2230 [18] and

PSR J0348+0432 [19]. The grey shaded region is the excluded

part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
Λ threshold density. In particular, when model (II) for
the ΛNN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (ρ ≤ 0.56 fm−3).
It is interesting to observe that the mass-radius relation
for PNM up to ρ = 3.5ρ0 already predicts a NS mass
of 2.09(1)M⊙ (black dot-dashed curve in Fig. 2). Even
if Λ particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and Λ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
ΛNN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M⊙. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until ρ = 0.56 fm−3 and the lower
limit for the predicted maximum mass is 2.09(1)M⊙.
Therefore, within the ΛN model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies
in Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (Λ-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a vΛΛ are included
in the calculation.
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new QMC calculations
using phenomenological hyperon-nucleon 
& hyperon-NN three-body interactions

 D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva;  arXiv:1407.4448
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Figure 3. The Λ separation energy BΛ as a function of A−2/3
. The red dots are the results

obtained with an Hamiltonian containing a two-body ΛN force only. Blue diamonds are AFDMC

calculations with the original 2- and 3-body ΛN potential by Usmani [28]. Black triangles are the

current AFDMC results with the refitted 3-body interaction [27]. Green dots are experimental

results. Lines and bands are drawn as a guid to the eye.

DMC results and the variational ones via the positive defined relation [23]:

�O�real =
�ψ0|O|ψ0�
�ψ0|ψ0�

=

�
�ψT |O|ψ0�
�ψT |ψ0�

�2

�ψT |O|ψT �
�ψT |ψT �

=
�O�2DMC

�O�V MC

, (14)

where O is the density operator ρ̂ =
�

i δ(r − ri), ψT is the trial wave function and ψ0 is the

projected ground state wave function. The addition of the Λ particle to the nuclear core of
4
He

has the effect to reduce the nucleon density in the center. The Λ particle tries to localize close

to r = 0, enlarging therefore the nucleon distribution. When the three-body ΛNN interaction

is turned on (right panel of Fig. 4), the repulsion moves the nucleons to large distances but the

main effect is that the hyperon is pushed away from the center of the system.

As can be seen from Fig. 5, this effect is much more evident for large A. When the hypernucleus

is described by the ΛN interaction alone, the Λ particle is localized near the center, in the range

r < 2 fm (top panel of Fig. 5). The inclusion of the three-body ΛNN potential forces the hyperon

to move from the center, in a region that roughly correspond to the skin of nucleons. It should be

noticed that the nuclear densities given by the AV4’ are widely overestimated. However we want

to point out a couple of interesting facts. First of all, when using the AV6’ potential we found

the same effects on the Λ particle, confirming the importance of the three-body hyperon-nucleon

Mass - radius relation of neutron stars
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constrained by hypernuclei
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ε1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.
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Density dependence of        
single particle potential in nuclear and neutron matterΛ
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SUMMARY

Chiral SU(3) Effective Field Theory: approved concept & tool

well organized coupled-channels framework for both 
antikaon- and hyperon-nuclear systems

Systems with strangeness  S = -1 and baryon no. B = 1,2: 

realization of low-energy QCD; special role of strangeness

progress in understanding the unusual structure of the Λ(1405)

           threshold and subthreshold physics K̄NN

Role of strangeness in dense baryonic matter
new constraints from two-solar-mass neutron stars:
very stiff equation-of-state
new conditions for hyperon-nuclear two- and three-body interactions:
quest for strong short-/intermediate-distance repulsion 

(quasi-molecular       state imbedded in strongly coupled      continuum)K̄N πΣ

22

K̄N and

 required:  high-precision kaonic deuterium      SIDDHARTA-2

    required:  much improved hyperon-nucleon data base + hypernuclei    


