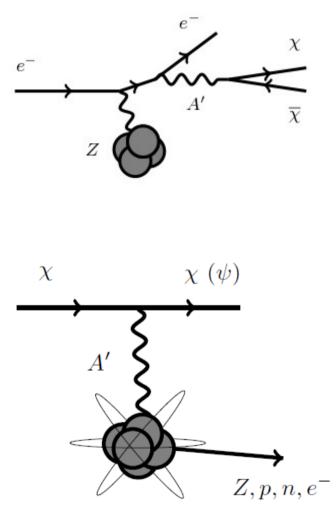
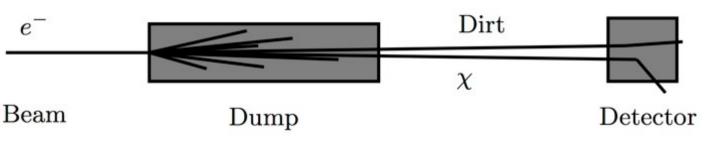

A Beam Dump eXperiment (BDX) at LNF

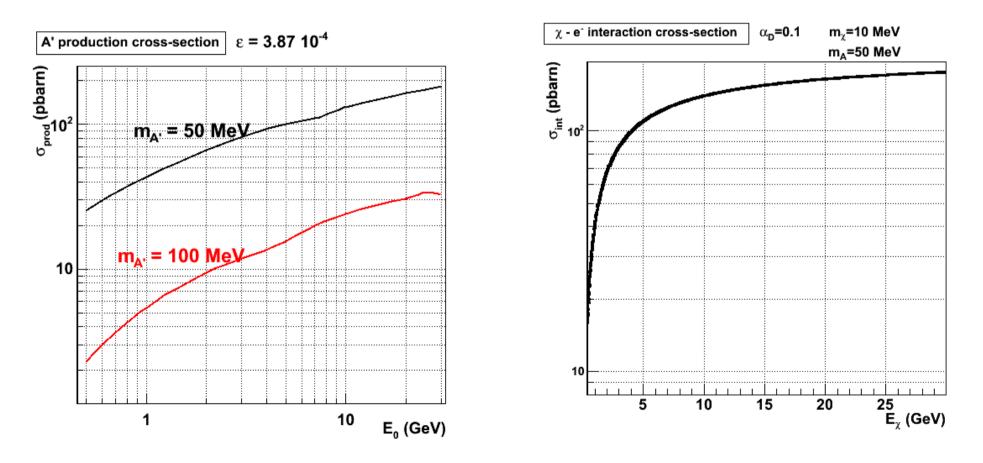

A. Celentano (for the BDX collaboration) INFN - Genova


Beam dump experiments with e⁻ beam

How to access the A' invisible decay: direct detection in a two-step process.

- Fixed-target: A' produced in the dump, decays promptly to invisible $\boldsymbol{\chi}$
- Detector: Neutral-current scattering of χ trough A' exchange, detect recoil. Different signals depending on the interaction (e⁻ scattering, coherent nuclear, quasi-elastic,..)

[arXiv:1307.6554]


Accelerator requirements

• **Beam current: critical.** The experimental sensitivity scales linearly with this parameter*.

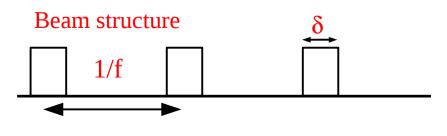
* Assuming 0 beam-related background (see later)

Accelerator requirements

- **Beam current: critical.** The experimental sensitivity scales linearly with this parameter*.
- Beam energy:
 - A' production and χ matter interaction cross-sections increase smoothly with the beam energy.
 - At low energy (E₀ ~ m_A), there is a further signal enhancement with E₀ due to increased detector acceptance (χ beam more focused forward).

Accelerator requirements

- **Beam current: critical.** The experimental sensitivity scales linearly with this parameter*.
- Beam energy:
 - A' production and χ matter interaction cross-sections increase smoothly with the beam energy.
 - At low energy (E₀ ~ m_A), there is a further signal enhancement with E₀ due to increased detector acceptance (χ beam more focused forward).
- Beam structure:
 - A pulsed beam permits to reject uncorrelated backgrounds by making a time coincidence between the beam RF signal and an hit in the detector


Continuous beam: detector time resolution is a mandatory requirement. δT

$$R \simeq \frac{\delta I}{3\sigma} <\simeq 100$$

Beam structure Detector Time Res . σ $\uparrow \delta T \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \circ 0.1-0.2$ ns

Pulsed beam: detector time resolution is not critical, if smaller than the bunch length.

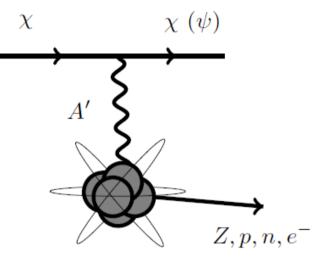
$$R = \frac{1}{f \cdot \delta} = 2 \cdot 10^5 @ 50 Hz, 100 ns$$

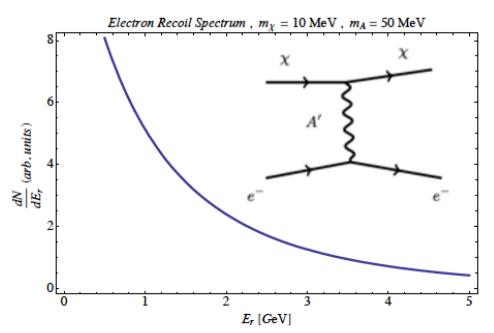
χ - matter interaction

1) Elastic scattering on nucleons

The χ scatters elastically on a nucleon (p) in the detector producing a visible recoil (~ MeV)

Experimental requirements:


- Sensitivity to ~ MeV nucleon recoil (low detection thresholds)
- Low energy backgrounds rejection capability

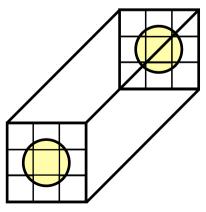

2) Elastic scattering on electrons

The χ scatters elastically on an electron in the detector producing a well visible recoil (~ GeV)

Experimental requirements:

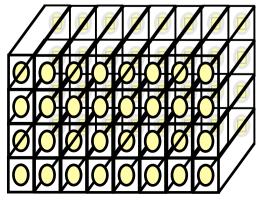
Sensitivity to ~GeV electrons (EM showers)
 → Easy background rejection

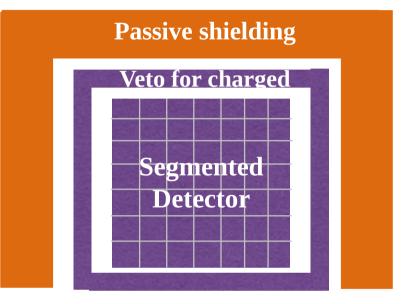
Detector design and requirements


Signal detection:

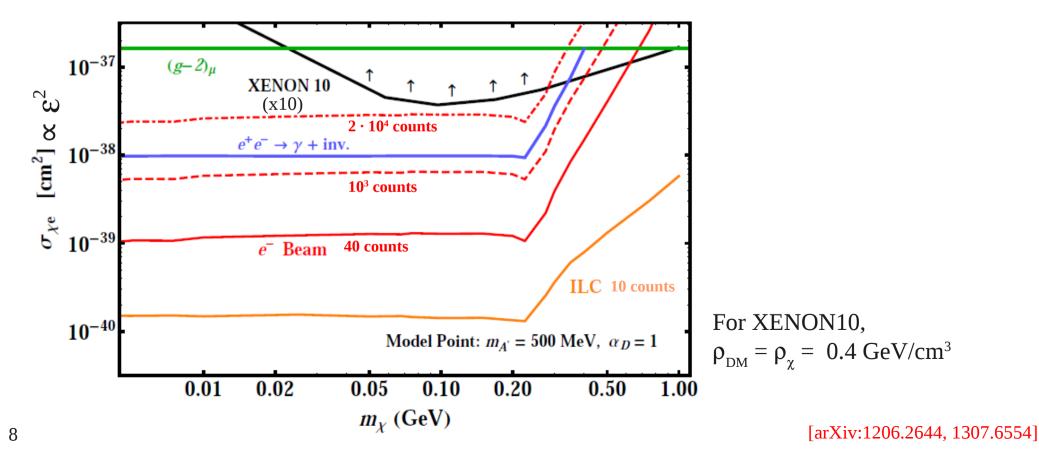
- High density
- Low threshold for nucleon recoil detection (~ MeV)
- EM showers detection capability
- Scintillation-based detector

Background rejection / suppression:


- Segmentation
- Active veto
- Passive shielding
- Good time resolution (for continuous beams only)


Inner detector:

- Single optical module (possibly made of multiple opt. channels with single readout)
- Matrix of modules aligned wrt the $\boldsymbol{\chi}$ beam



Possible reach

Reach for a "benchmark" beam-dump experiment at an electron machine:

- 10²² EOT, 12 GeV / 125 GeV (ILC)
- 1 year of run
- 1 m³ detector, ρ =1 g/cm³, placed 20 m from the beam dump

In the low-mass region ($m_{\chi} < 1 \text{ GeV}$), the reach of a beam-dump like experiment is O(100-1000) better than a traditional direct-search experiment.

A beam-dump experiment at LNF

Accelerator parameters:

- EOT (1 full year):
 - **Today:** $5 \cdot 10^{19}$ (10 ns/bunch, 5 nC/bunch, 50 Hz), although legal regulations impose $< \sim 10^{18}$
 - **"Reasonable" upgrade:** 2.5 · 10²⁰, to be tested (larger bunch length / higher gun pulse height)
 - **"Optimistic" scenario:** $\sim 1 \cdot 10^{21}$ (if all the possible upgrades are performed)
- Beam energy:
 - **Today:** 750 MeV
 - **"Reasonable"** upgrade: 1.1 GeV (12 m new accelerating sections @ 21 MeV/m, pushing existing sections)
- Beam structure:
 - **Today:** 50 Hz @ 10 ns \rightarrow Background rejection factor $2 \cdot 10^6$
 - **"Reasonable" upgrade:** 50 Hz @ 100 ns \rightarrow Background rejection factor $2 \cdot 10^5$

Experimental setup: detector location

Use the existing ADONE beam-dump and install the detector in the DA Φ NE service room

- O(m) distance between the beam-dump and the detector: increased detector acceptance.
- Available space can fit a detector up to 5 m long.
- Minor engineering work required to prepare the hall for the detector installation (see P. Valente's talk)

Experimental setup: detector location

Use the existing ADONE beam-dump and install the detector in the DA Φ NE service room

- O(m) distance between the beam-dump and the detector: increased detector acceptance.
- Available space can fit a detector up to 5 m long.
- Minor engineering work required to prepare the hall for the detector installation (see P. Valente's talk)
- Existing dump needs to be re-enginereed.

ADONE beam-dump (today): 4.5 m long, ~ 3 m ground + ~ 1.5 m concrete

New design requirements:

- **Dissipated power:** ~ 200 W today \rightarrow < 10 kW for the best upgrade scenario
- Beam-related backgrounds shielding: ~2 m iron + ~ 2 m concrete to reduce beam-related backgrounds (γ/n) to less than few counts / year

Detector design

Different solutions are possible for the inner detector.

Comparison of main properties, considering a ~ 1 ton detector.

Technology	Density	Optical module size	N. of channels	Cost
Plastic scintillator	~1 g/cm³	15x15x30 cm ³	280	2 M€
BSO Crystals	6.8 g/cm ³	10x10x15 cm ³	90	2.6 M€

Crystal solution seems the most promising option:

- Higher density \rightarrow compact detector
- Easy EM shower detection.
- Comparable cost to plastic.

Open issues to be addressed:

- Is the χ scattering on a free N equivalent to a quasi-free scattering on heavy nuclei?
- Light quenching?
- Minimum proton momentum detectable?

Dedicated measurement campaign required (see M. De Napoli talk)

Detector design

Beam

Realistic option: build the detector using CsI crystals from a dismissed calorimeter

- Reduced costs: existing crystals, already equipped with readout and FE-electronics.
- Compact time-line: detector can be assembled and ready for measurement in O(1 year).

Hypothesis under investigation: **BaBar**, L3, CLEO From preliminary contacts, **the BaBar option seems the most promising one.**

Technology	Density	Crystal-size	N. of channels	Cost
Csl Crystals	4.5 g/cm³	5x5x30 cm ³	120	0.5 M€

(Possible) setup:

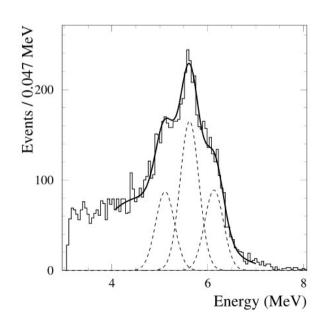
- 1 crystal: 5(6) x 5(6) x 30 cm³
 - Tapered geometry is not an issue.
- 2 crystals align face-to-face
- Matrix of 12x45 modules: ~ 1080 crystals
 - If re-using BaBar readout, 1080 channels
 - If using PMTs, ~ 120 channels
- Detector: ~ 60 x 60 x 225 cm³

This solution is equivalent to a plastic-based detector, 10 m long (with the same front-face)

13

Reuse of BaBar crystals

Design:


- 6580 CsI(Tl) ~ 5(6) x 5(6) x 30 cm³ crystals (tapered geometry)
- 820 end cup + 5760 barrel crystals
- 2x Hamamatsu S2744-08 silicon diodes readout, thermalized
- 18-bit effective readout (dual-range output from FEE)

Properties:

- $\sim 7300 \text{ phe} / \text{MeV}$
- Low-energy calibration point for each crystal @ 6.13 MeV
- 250 keV ENE.

Low-energy calibration system:

 ${}^{19}\text{F} + n \rightarrow {}^{16}\text{N} + \alpha$ ${}^{16}\text{N} \rightarrow {}^{16}\text{O}^* \rightarrow {}^{16}\text{O} + 6.13\,\text{MeV}\gamma$

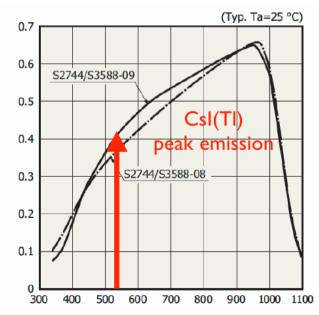


Photo sensitivity (A/W)

[arXiv:0105.5044]

Backgrounds

Beam-related backgrounds (R. De Vita's talk):

1) Prompt backgrounds (γ/fast n):

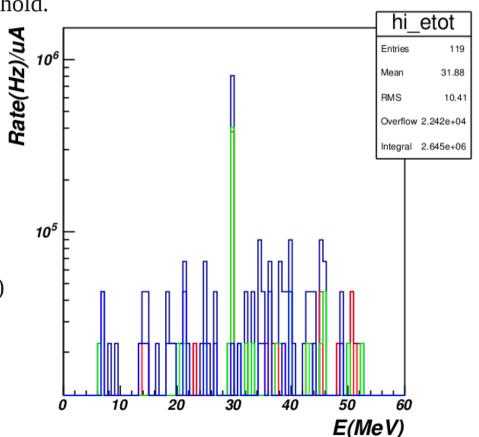
- Can't be reject with the detector-beam RF time coincidence
- Shielding is required to reduce γ /fast n rate on the detector
 - From preliminary simulations, 2 m iron + 2 m concrete are enough to reduce contribution to less than O(1 particle / year) @ 10 uA

2) Low energy / thermal n: not an issue

- Can apply detector-beam RF time coincidence
- Very low energy hits in the detector: cut with threshold.

3) Neutrinos:

• Neutrino flux on the detector:


 $\Phi \sim 1.16 \ 10^{-7} \ v$ / EOT, $E_v < 50 \ MeV$

(isotropic, from at-rest processes)

• Cross-section:

 $\sigma \sim 10^{\text{-40}} \text{ cm}^{\text{2}}$

- Interactions (for 2.5 10^{20} EOT): $N \sim 60$
- Further suppression:
 - Energy threshold (~50% efficieny @ 1 MeV thr)
 - Beam RF-detector signal coincidence (not all processes are prompt)

Backgrounds

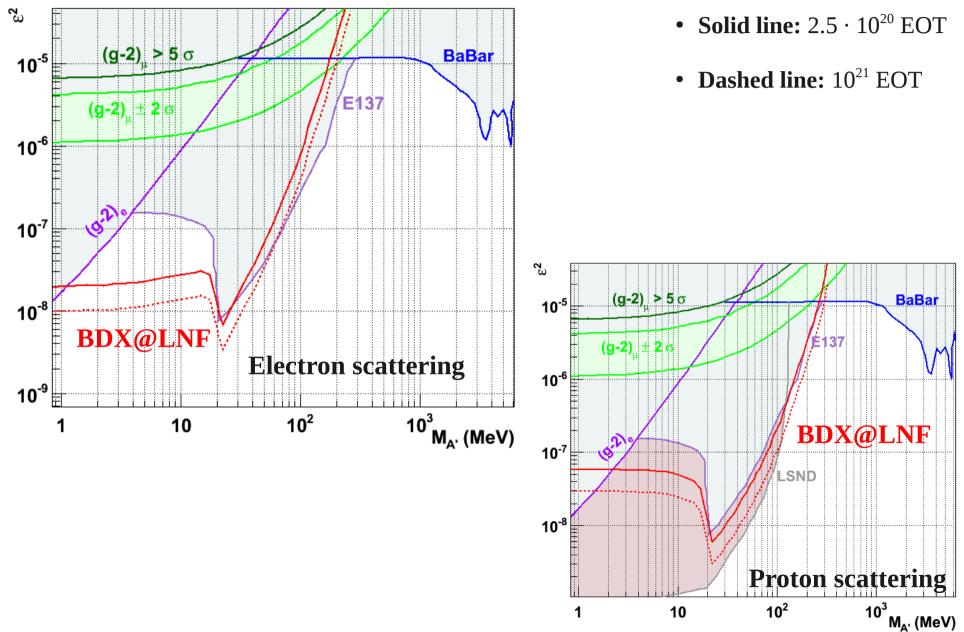
Beam-unrelated backgrounds (M. De Napoli's talk): all reduced by the beam RF – detector time coincidence

1) Cosmic neutrinos

• Considering flux, interaction cross-sections, and thresholds the contribution is negligible.

2) Cosmic muons

- Different background contributions (crossing/stopping/decaying/..).
- Reduced trough shielding + VETO around the detector + threshold + signal topology (different from χ -p and χ -e interactions).
- From preliminary estimates, 30 cm of iron around the detector, equipped with 2 VETO layers (5% inefficiency), are enough to reduce the contribution to O(counts)/year.

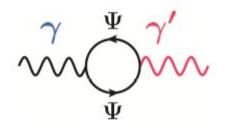

3) Cosmic neutrons

- High-energy neutrons can penetrate the shielding and interact inside the detector, mimicking a χ -N interaction.
- Reduced trough shielding + VETO around the detector + threshold.
- From preliminary estimates, 30 cm of iron around the detector, equipped with 2 VETO layers (5% inefficiency), are enough to reduce the contribution to O(counts)/year.

The BDX@LNF reach is evaluated with $N_s=3$, $N_b=0$

Experimental reach

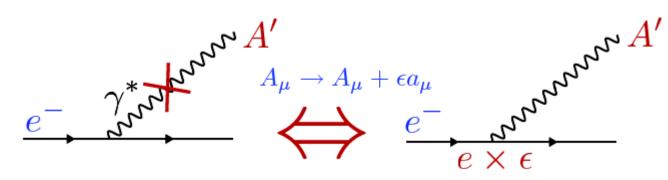
Experimental reach for BDX@LNF, evaluated at m_{χ} =10 MeV, α_{D} =.1


Conclusions

- The dark sector may be more complex than originally expected
 - Extensive search for low mass DM
 - Natural extension of the heavy photon model to include light DM via invisible A' decay
- Beam dump experiments with electron beams are the "ideal" way to probe low-mass (< 1 GeV) dark-matter
 - "Benchmark" scenario: 12 GeV beam, 10^{22} EOT, 1 m³ detector (ρ =1)
 - Sensitivity is O(100-1000) better than "conventional" direct-search experiments.
- **Opportunity to run a beam-dump experiment at INFN-LNF**
 - Short time-scale, O(1-2 years)
 - Reduced costs:
 - Only "reasonable" Linac upgrade are required
 - Build the detector with existing BaBar CsI crystals
 - Foreseen reach: cover the low A' mass region \sim 1-20 MeV, down to $\epsilon^2 \sim 10^{\text{-8}}$

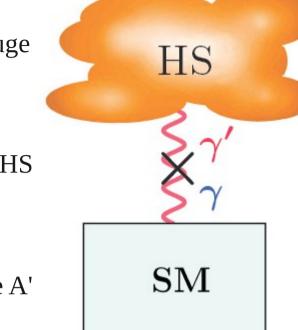
Dark Photons

 Consider an additional U(1) hidden symmetry in nature: this leads to a kinetic mixing between the photon and the new gauge boson A'



Ψ is a huge mass scale particle (M~1EeV) coupling to both SM and HS

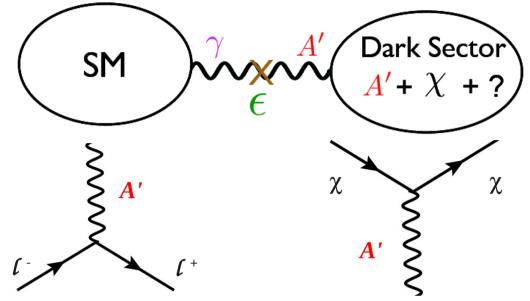
• General hypothesis to incorporate new physics in the SM: the A' acts as a "portal" between the SM and the new sector

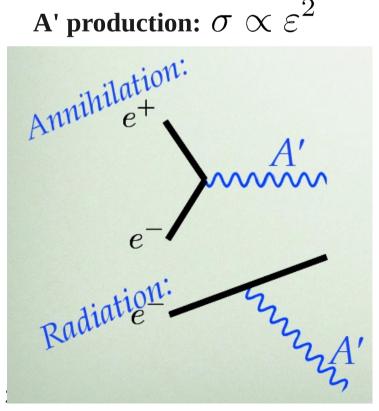

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m_A^2 A'^{\mu} A'_{\mu}$$

• Under A' interaction, ordinary charged matter acquires a new charge **ɛe**:

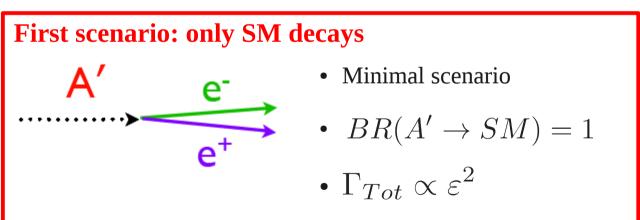
New interaction term:

 $\varepsilon A'_{\mu}J^{\mu}_{EM}$



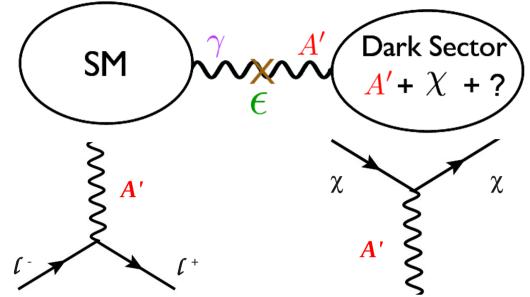

Dark photons and dark sector

Model:


- A' interacts with γ trough kinetic mixing
- Dark sector particle $\boldsymbol{\chi}$ interacts with A'

4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

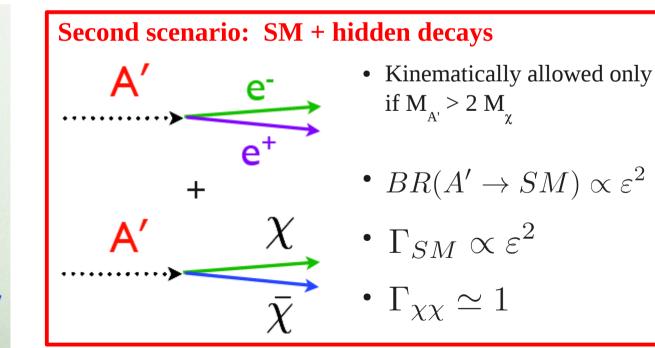
A' decay:



Dark photons and dark sector

Model:

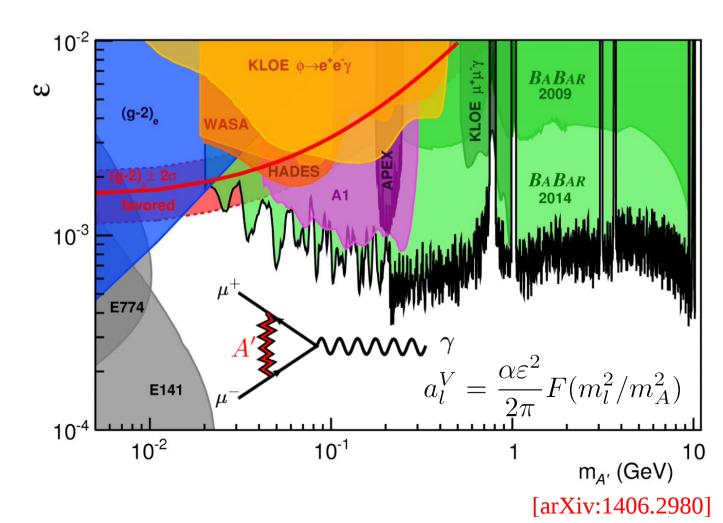
- A' interacts with γ trough kinetic mixing
- Dark sector particle $\boldsymbol{\chi}$ interacts with A'


4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

A' production:
$$\sigma \propto \varepsilon^2$$

Annihilation:
 e^+

Radiation:

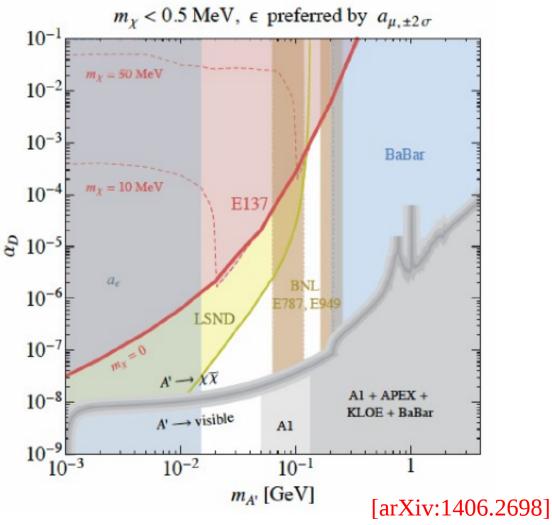

A' decay:

Dark photons invisible decay and g-2

- **Muon g-2 anomaly:** "traditional" motivation for A' search
 - New results (Phenix,Babar, KLOE) seem to exclude the g-2 preferred region in the ϵ M_A plane
 - This conclusion is model-dependent, based on BR(A' → SM) = 1
 If the invisible decay is included in the model, old limits do not hold!

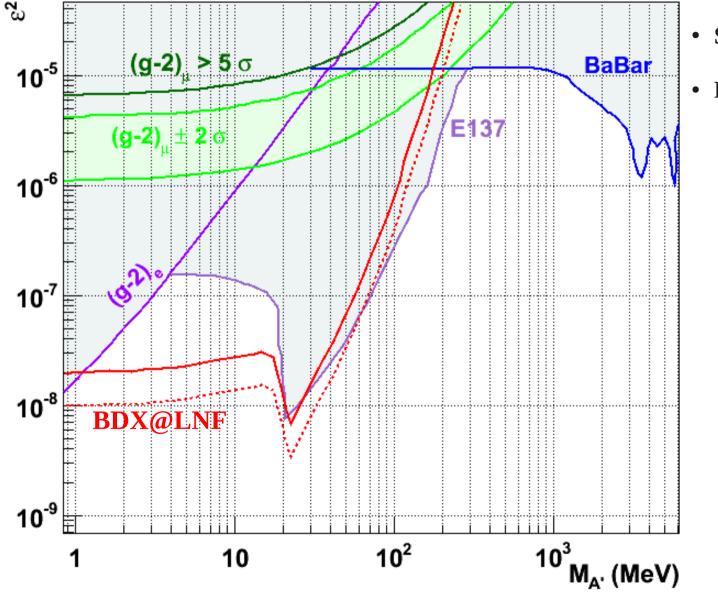
Muon g-2 anomaly has to be investigated considering visible AND invisible decay modes

Dark photons invisible decay and g-2


- **Muon g-2 anomaly:** "traditional" motivation for A' search
 - New results (Phenix,Babar, KLOE) seem to exclude the g-2 preferred region in the ϵ M_A plane
 - This conclusion is model-dependent, based on BR(A' → SM) = 1
 If the invisible decay is included in the model, old limits do not hold!

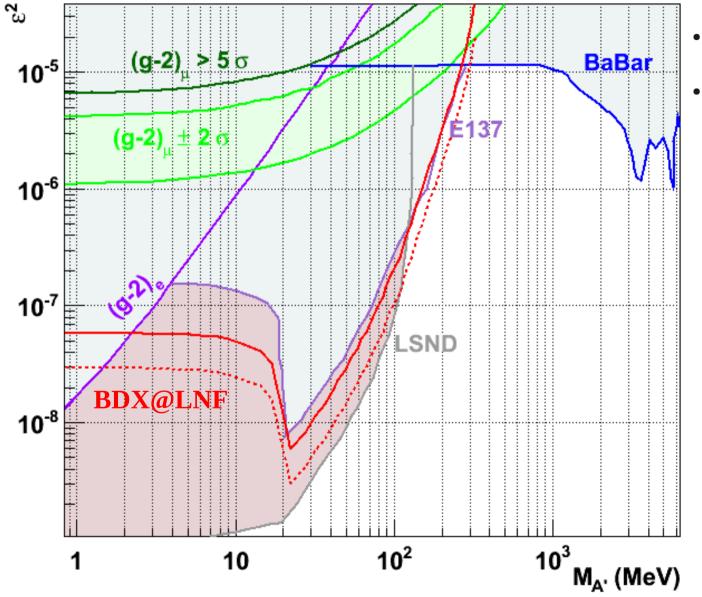
Muon g-2 anomaly has to be investigated considering visible AND invisible decay modes

A new approach:


- For a given M_A , fix ε to explain g-2
- Exclusion plot: $\alpha_{D} M_{A}$ plane
- Depending on $\epsilon(M_A)$ and α_D the decay can be visible or invisible

Both decay modes, visible and invisible, are considered to constrain the muon g-2

Experimental reach: electron scattering


Experimental reach for BDX@LNF, evaluated at m_{χ} =10 MeV, α_{D} =.1

- **Solid line:** 2.5 · 10²⁰ EOT
- **Dashed line:** 10²¹ EOT

Experimental reach: proton scattering

Experimental reach for BDX@LNF, evaluated at m_{χ} =10 MeV, α_{D} =.1

- **Solid line:** 2.5 · 10²⁰ EOT
- **Dashed line:** 10²¹ EOT