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Beam dump experiments with e­ beam
How to access the A' invisible decay: direct detection in a 
two-step process.

● Fixed-target: A' produced in the dump, decays promptly 
to invisible 

● Detector: Neutral-current scattering of  trough A' 
exchange, detect recoil. Different signals depending on the 
interaction (e- scattering, coherent nuclear, quasi-elastic,..)

[arXiv:1307.6554]

A' yield:

  cross-section:

Number of events:
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Accelerator requirements
● Beam current: critical. The experimental sensitivity scales linearly with this parameter*.

* Assuming 0 beam-related background (see later)
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Accelerator requirements
● Beam current: critical. The experimental sensitivity scales linearly with this parameter*.

● Beam energy: 

● A' production and – matter interaction cross-sections increase smoothly with the beam energy.
● At low energy (E

0 
~ m

A
), there is a further signal enhancement with E

0
 due to increased detector 

acceptance ( beam more focused forward). 
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Accelerator requirements
● Beam current: critical. The experimental sensitivity scales linearly with this parameter*.

● Beam energy: 

● A' production and – matter interaction cross-sections increase smoothly with the beam energy.
● At low energy (E

0 
~ m

A
), there is a further signal enhancement with E

0
 due to increased detector 

acceptance ( beam more focused forward). 

● Beam structure:

● A pulsed beam permits to reject uncorrelated backgrounds by making a time coincidence between 
the beam RF signal and an hit in the detector

Continuous beam: detector time resolution is a 
mandatory requirement.

 
T

Detector Time Res .          
              ~ 0.1-0.2 ns

Beam structure

Pulsed beam: detector time resolution is not critical, if 
smaller than the bunch length.

Beam structure

1/f


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x  ­ matter interaction
1) Elastic scattering on nucleons

The  scatters elastically on a nucleon (p) in the detector 
producing a visible recoil (~ MeV)

Experimental requirements:

● Sensitivity to ~ MeV nucleon recoil (low detection 
thresholds)

● Low energy backgrounds rejection capability

2) Elastic scattering on electrons

The  scatters elastically on an electron in the 
detector producing a well visible recoil ( ~ GeV)

Experimental requirements:

● Sensitivity to ~GeV electrons (EM showers)
→ Easy background rejection

2) Elastic scattering on electrons

The  scatters elastically on an electron in the 
detector producing a well visible recoil ( ~ GeV)

Experimental requirements:

● Sensitivity to ~GeV electrons (EM showers)
→ Easy background rejection
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Detector design and requirements

7

Veto for charged

Segmented 
Detector

Passive shielding

Signal detection:

● High density
● Low threshold for nucleon recoil detection (~ MeV)
● EM showers detection capability

Background rejection / suppression:

● Segmentation 
● Active veto
● Passive shielding
● Good time resolution (for continuous beams only)

Inner detector:
● Single optical module (possibly made of multiple opt. channels with 

single readout)
● Matrix of modules aligned wrt the  beam

 Beam

Scintillation-based detector
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Possible reach

[arXiv:1206.2644, 1307.6554]

40 counts

103 counts

2 ∙ 104 counts∝

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Reach for a “benchmark” beam-dump experiment at an electron machine:

● 1022 EOT, 12 GeV / 125 GeV (ILC)
● 1 year of run
● 1 m3 detector, =1 g/cm3, placed 20 m from the beam dump

(x10)

10 counts

In the low-mass region (m < 1 GeV), the reach of a beam-dump like experiment is 

O(100-1000) better than a traditional direct-search experiment.

For XENON10,


DM
 =  =  0.4 GeV/cm3 
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 A beam­dump experiment at LNF

● EOT (1 full year):

● Today: 5 ∙ 1019 (10 ns/bunch, 5 nC/bunch, 50 Hz), although legal regulations impose < ~ 1018

● “Reasonable” upgrade: 2.5 ∙ 1020 , to be tested (larger bunch length / higher gun pulse height)
● “Optimistic” scenario:  ~ 1 ∙ 1021 (if all the possible upgrades are performed) 

● Beam energy:
 
● Today: 750 MeV
● “Reasonable” upgrade: 1.1 GeV (12 m new accelerating sections @ 21 MeV/m, pushing existing 

sections)

● Beam structure:

● Today: 50 Hz @ 10 ns → Background rejection factor 2 ∙ 106

● “Reasonable” upgrade:  50 Hz @ 100 ns → Background rejection factor 2 ∙ 105

[P. Valente]

Accelerator parameters:
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Experimental setup: detector location
Use the existing ADONE beam-dump and install the detector in the DANE service room

● O(m) distance between the beam-dump and the detector: increased detector acceptance.
● Available space can fit a detector up to 5 m long.
● Minor engineering work required to prepare the hall for the detector installation (see P. Valente's talk)

[P. Valente, J. Esposito]

e-
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Experimental setup: detector location
Use the existing ADONE beam-dump and install the detector in the DANE service room

● O(m) distance between the beam-dump and the detector: increased detector acceptance.
● Available space can fit a detector up to 5 m long.
● Minor engineering work required to prepare the hall for the detector installation (see P. Valente's talk)
● Existing dump needs to be re-enginereed.

e-

ADONE beam-dump (today): 4.5 m long, ~ 3 m ground + ~ 1.5 m concrete 

New design requirements:

● Dissipated power: ~ 200 W today → < 10 kW for the best upgrade scenario
● Beam-related backgrounds shielding: ~2 m iron + ~ 2 m concrete to reduce beam-related 

backgrounds (/n) to less than few counts / year

[P. Valente, J. Esposito]
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Detector design

Technology Density Optical 
module size

N. of 
channels

Cost 

Plastic scintillator ~1 g/cm3 15x15x30 cm3 280 2 M€

BSO Crystals 6.8 g/cm3 10x10x15 cm3 90 2.6 M€

Different solutions are possible for the inner detector.

Comparison of main properties, considering a ~ 1 ton detector.

Crystal solution seems the most promising option:

● Higher density →compact detector
● Easy EM shower detection.
● Comparable cost to plastic.

Open issues to be addressed:

● Is the  scattering on a free N equivalent to a quasi-free scattering on heavy nuclei?
● Light quenching?
● Minimum proton momentum detectable?

Dedicated measurement campaign required
(see M. De Napoli talk)
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Detector design
Realistic option: build the detector using CsI crystals from a dismissed calorimeter

● Reduced costs: existing crystals, already equipped with readout and FE-electronics.
● Compact time-line: detector can be assembled and ready for measurement in O(1 year).

Hypothesis under investigation: BaBar, L3, CLEO
From preliminary contacts, the BaBar option seems the most promising one.

Technology Density Crystal-size N. of 
channels

Cost 

CsI Crystals 4.5 g/cm3 5x5x30 cm3 120 0.5 M€

Beam

(Possible) setup:

● 1 crystal: 5(6) x 5(6) x 30 cm3

● Tapered geometry is not an issue.  
● 2 crystals align face-to-face
● Matrix of 12x45 modules: ~ 1080 crystals

● If re-using BaBar readout, 1080 channels
● If using PMTs, ~ 120 channels

● Detector: ~ 60 x 60 x 225 cm3

This solution is equivalent to a 
plastic-based detector, 
10 m long (with the same front-face) 
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Reuse of BaBar crystals
Design:

● 6580 CsI(Tl) ~ 5(6) x 5(6) x 30 cm3 crystals (tapered geometry)
● 820 end cup + 5760 barrel crystals
● 2x Hamamatsu S2744-08 silicon diodes readout, thermalized
● 18-bit effective readout (dual-range output from FEE)

Properties:

● ~ 7300 phe / MeV
● Low-energy calibration point for each crystal @ 6.13 MeV
● 250 keV ENE.

[arXiv:0105.5044]

Low-energy calibration system:
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Backgrounds
Beam-related backgrounds (R. De Vita's talk):

1) Prompt backgrounds ( /fast n):
●  Can't be reject with the detector-beam RF time coincidence
● Shielding is required to reduce /fast n rate on the detector

● From preliminary simulations, 2 m iron + 2 m concrete are enough to reduce contribution 
to less than O(1 particle / year) @ 10 uA

2) Low energy / thermal n: not an issue
● Can apply detector-beam RF time coincidence
● Very low energy hits in the detector: cut with threshold. 

3) Neutrinos:
● Neutrino flux on the detector:

 ~ 1.16 10-7  / EOT, E

 < 50 MeV

(isotropic, from at-rest processes)
● Cross-section:

 ~ 10-40 cm2

● Interactions (for 2.5 1020 EOT):
N ~ 60

● Further suppression:
● Energy threshold (~50% efficieny @ 1 MeV thr) 
● Beam RF-detector signal coincidence 

(not all processes are prompt)
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Backgrounds
Beam-unrelated backgrounds (M. De Napoli's talk): all reduced by the beam RF – detector 
time coincidence

1) Cosmic neutrinos 
● Considering flux, interaction cross-sections, and thresholds the contribution is negligible. 

2) Cosmic muons
● Different background contributions (crossing/stopping/decaying/..).
● Reduced trough shielding + VETO around the detector + threshold + signal topology 

(different from -p and -e interactions).
● From preliminary estimates, 30 cm of iron around the detector, equipped with 2 VETO 

layers (5% inefficiency), are enough to reduce the contribution to O(counts)/year.

3) Cosmic neutrons 
● High-energy neutrons can penetrate the shielding and interact inside the detector, mimicking 

a -N interaction.
● Reduced trough shielding + VETO around the detector + threshold.
● From preliminary estimates, 30 cm of iron around the detector, equipped with 2 VETO 

layers (5% inefficiency), are enough to reduce the contribution to O(counts)/year.

The BDX@LNF reach is evaluated with N
s
=3, N

b
=0

mailto:BDX@LNF
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Experimental reach
Experimental reach for BDX@LNF, evaluated at m=10 MeV, 

D
=.1

● Solid line: 2.5 ∙ 1020 EOT

● Dashed line: 1021 EOT

BDX@LNF

BDX@LNF

Electron scattering

Proton scattering

mailto:BDX@LNF
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Conclusions
● The dark sector may be more complex than originally expected

● Extensive search for low mass DM
● Natural extension of the heavy photon model to include light DM via invisible A' 

decay

● Beam dump experiments with electron beams are the “ideal” way to probe 
low-mass (< 1 GeV) dark-matter
● “Benchmark” scenario: 12 GeV beam, 1022 EOT, 1 m3 detector (=1)
● Sensitivity is O(100-1000) better than  “conventional” direct-search experiments.

● Opportunity to run a beam-dump experiment at INFN-LNF
● Short time-scale, O(1-2 years)
● Reduced costs:

● Only “reasonable” Linac upgrade are required
● Build the detector with existing BaBar CsI crystals

● Foreseen reach: cover the low A' mass region ~ 1-20 MeV, down to 2 ~ 10-8 
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Back up
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Dark Photons

Boldom, Phys. Lett. B166, 1986

● Under A' interaction, ordinary charged matter acquires a new charge e:

● Consider an additional U(1) hidden symmetry in nature: this 
leads to a kinetic mixing between the photon and the new gauge 
boson A'

● General hypothesis to incorporate new physics in the SM: the A' 
acts as a “portal” between the SM and the new sector

New interaction term:

 is a huge mass scale particle 
(M~1EeV) coupling to both SM and HS
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A'

A'

l   - l  +

 

Dark photons and dark sector

4 parameters: 

Model:

● A' interacts with trough kinetic mixing
● Dark sector particle  interacts with A'

A' production: A' decay:

● Minimal scenario

●

●

First scenario: only SM decays
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A'

A'

l   - l  +

 

Dark photons and dark sector

4 parameters: 

Model:

● A' interacts with trough kinetic mixing
● Dark sector particle  interacts with A'

A' production: A' decay:

Second scenario:  SM + hidden decays

+

● Kinematically allowed only 
if M

A'
 > 2 M



●

●

●
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Dark photons invisible decay and g­2 
● Muon g-2 anomaly: “traditional” motivation for A' search

● New results (Phenix,Babar,  KLOE) seem to exclude the g-2 preferred region in the  – M
A
 plane

● This conclusion is model-dependent, based on BR(A' → SM) = 1
If the invisible decay is included in the model, old limits do not hold!

[arXiv:1406.2980]

Muon g-2 anomaly has to be investigated considering visible AND invisible decay modes
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A new approach:

● For a given M
A
, fix  to explain g-2

● Exclusion plot: 
D
 – M

A
 plane

● Depending on (M
A
) and 

D 
the

 
decay 

can be visible or invisible

Both decay modes, visible and invisible, 
are considered to constrain the muon g-2

● Muon g-2 anomaly: “traditional” motivation for A' search
● New results (Phenix,Babar,  KLOE) seem to exclude the g-2 preferred region in the  – M

A
 plane

● This conclusion is model-dependent, based on BR(A' → SM) = 1
If the invisible decay is included in the model, old limits do not hold!

Dark photons invisible decay and g­2 

Muon g-2 anomaly has to be investigated considering visible AND invisible decay modes
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Experimental reach: electron scattering
Experimental reach for BDX@LNF, evaluated at m=10 MeV, 

D
=.1

● Solid line: 2.5 ∙ 1020 EOT

● Dashed line: 1021 EOT

BDX@LNF

mailto:BDX@LNF
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Experimental reach: proton scattering
Experimental reach for BDX@LNF, evaluated at m=10 MeV, 

D
=.1

BDX@LNF

● Solid line: 2.5 ∙ 1020 EOT

● Dashed line: 1021 EOT

mailto:BDX@LNF
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