10 Nov, 2014

What next LNF: Perspectives of fundamental physics at the Frascati Laboratory @ Frascati

High-resolution hadronic atom X-ray spectroscopy with cryogenic detectors

Shinji OKADA (RIKEN)

The HEATES collaboration

- High-resolution Exotic Atom x-ray spectroscopy with TES microcalorimeter -

S. Okada¹, D.A. Bennett², C. Curceanu³, W.B. Doriese², J.W. Fowler², F. Gustafsson⁴, T. Hashimoto¹, R.S. Hayano⁵, S. Hexi³, M. Iliescu³, S. Ishimoto⁶, K. Itahashi¹, M. Iwasaki¹, K. Kuwabara⁷, J. Marton⁸, G.C. O'Neil², H. Noda¹, H. Outa¹, M. Sato¹, D.R. Schmidt², A. Scordo³, K. Suzuki⁸, T. Suzuki⁵, D.S. Swetz², H. Tatsuno^{2,6}, J. Uhlig⁴, J.N. Ullom², E. Widmann⁸, S. Yamada⁷, J. Zmeskal⁸

RIKEN¹, NIST², INFN-LNF³, Lund Univ.⁴, Univ. of Tokyo⁵, KEK⁶, Tokyo Metropolitan Univ.⁷, Stefan Meyer Institut⁸

New idea

two orders of magnitude improved resolution compared with the conventional semiconductor detector

Contents

1. Introduction - Missions at the DAFNE K-atom factory

2. Detector - Transition-Edge Sensor (TES)

3. Experiment - K-mass measurement at DAFNE

4. Test experiment - in-beam performance of TES

5. Summary

1. Introduction

Missions at the DAFNE K-atom factory

Kaonic atom

Kaon mass

the higher orbit having almost no influence on the strong interaction

Two major puzzles on K-atom

1. K - nucleus potential puzzle

Deep or Shallow? (because of insufficient K-atom data)

2. K- mass puzzle

The recent two measurements disagree by more than 5 sigma !

Two major puzzles on K-atom

1. K - nucleus potential puzzle

Deep or Shallow? (because of insufficient K-atom data)

2. K- mass puzzle

The recent two measurements disagree by more than 5 sigma !

Many measurements so far

shift & width as a function of atomic number Z

p atoms π^{-} atoms K⁻ atoms Σ^{-} atoms Repair stores 10 (0.43) (m=2) Shift [eV -Shift (eV) Child (eV) (e)) n = 10102 10 (n=1)Width [eV (n=3)10 4 10 n=7 (n=4)10 10 \$ 10 10 n = 10

Atomic number Z

Strong Interaction Physics From Hadronic Atoms C.J. Batty, E. Friedman, A. Gal, Physics Reports 287 (1997) 385 - 445

Open problem on K-atom

Different scenarios for different exotic atoms

particle	real potl.	imaginary potl.	comments
π^{-}	repulsive in bulk	moderate	excellent data
	attractive on surface		well understood
K^{-}	attractive	moderate	good data
	deep or shallow?		open problems
\bar{p}	??	very absorptive	excellent data
			understood

E. Friedman : MESON2010 conf.

Two major puzzles on K-atom

1. K - nucleus potential puzzle

Deep or Shallow? (because of insufficient K-atom data)

2. K- mass puzzle

The recent two measurements disagree by more than 5 sigma !

K- mass puzzle

K-mass : fundamental quantity

awaited for new measurement !

Requirements :

- I. high-resolution detector
- 2. K-atom with low-Z gas target

to reduce the electron screening effects which could cause an uncertainty of K-mass value

DAFNE : Unique facility for low-energy K-

DAFNE e+ e- collider :

- $\Phi \rightarrow K^{-}K^{+}(49.1\%)$
- Monochromatic low-energy K⁻ (~I27MeV/c)
- Less hadronic background due to the beam

We can efficiently stop Kaons at gas target

Missions at DAFNE K-atom factory

✓ Is level of K-p, K-d (K-He)
 ✓ other K atoms
 ✓ SIDDHARTA-2

✓ K-mass measurement
 ✓ 2p level of K-He, K-Li etc...
 ✓ other higher level of K-atom

High-resolution detectors

pionic atom exp. : D. Gotta (Trento'06)

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

→ small acceptance

WhyTES?(I)

The solid angle of a crystal spectrometer (PLB 416 (1998) 50) was converted to the equivalent effective area.

Why TES ?(2)

Compact and portable

VS.

TES system

<complex-block>

Crystal spectrometer

G. Beer et al., PLB 535 (2002) 52

X-ray microcalorimeter

a thermal detector measuring the energy of an incident x-ray photon as a temperature rise (= $E/C \sim 1 mK$)

Decay time constant $= C / G (\sim 500 \ \mu s)$

Absorber with larger "Z" (to stop the high energy x-rays)

e.g., Absorber : Bi (320 um × 300 um wide, 4 um thick) Thermometer : thin bilayer film of Mo (\sim 65nm) and Cu (\sim 175nm)

TES = Transition Edge Sensor

using the sharp transition between normal and superconducting state to sense the temperature

NIST's TES array system for x-rays

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

... a typical Silicon detector used in the previous K-atom exp.

NIST's TES for gamma-rays

for 100 - 400 keV

NIST's standard TES

- 1 pixel : 1.45 x 1.45 mm²
- 256 array : total ~ <u>5 cm²</u>
- 53 eV (FWHM) @ 97 keV

an order improved resolution

State-of-art high-purity germanium detectors

e.g., hard-X-ray spectroscopy

D. A. Bennett et al., Rev. Sci. Instrum. 83, 093113 (2012)

3. Experiment

K-mass measurement at DAFNE

Rough yield estimation : K-N 6-5 x-ray (7.6 keV) 26

Estimated based on DEAR / SIDDHARTA data (just scaled) :

- ► TES array : 240 pixel ~ 23 mm² effective area
- TES located the same position as SDD's at SIDDHARTA
- Target cell located the same position as that of SIDDHARTA
- ► Nitrogen gas density : 3.4 pstp

➡ KN 6-5 x-ray ~ 3 events / day (4.5 pb⁻¹)

assumed improvements ✓ bring TES close to target (x ~3)
✓ bring target close to interaction point (x ~3)
✓ higher Nitrogen gas density (x ~2)

Estimated stat. accuracy of K-mass

possible improvements for more yield :

- \checkmark weak magnetic lens to collect K- at small target
- ✓ polycapillary X-ray lens ...

4. Test experiment

in-beam performance of TES

Feasibility test towards K-atom expt.

- aim : studying in-beam performance of TES
 <u>the first measurement</u> of hadronic-atom x-rays with TES
- when? : 27 Oct 5 Nov, 2014 (just finished last week!)
- where? : Paul Scherrer Institute (PSI), PiMI beamline

Experimental setup

Photos

Exotic-atom x-rays with TES for the first time !

5. Summary

take-home messages

Ultra-high-resolution x-ray spectrometer "TES microcalorimeter" is now available as a powerful tool for exotic-atom research

2.

"TES x DAFNE" could provide valuable physics outputs related Kaonic atoms