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1. Introduction
Missions at the DAFNE K-atom factory



Kaonic atom
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strong-interaction study

the most tightly bound energy levels that are 

the most perturbed by the strong force

Kaon mass

the higher orbit having almost


no influence on the strong interaction
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Two major puzzles on K-atom
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1. K - nucleus potential puzzle 
‣ Deep or Shallow?  ( because of insufficient K-atom data )

2. K- mass puzzle  
‣ The recent two measurements disagree by more than 5 sigma !
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Many measurements so far
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π- atoms K- atoms p atoms Σ- atoms

Strong Interaction Physics From Hadronic Atoms 
C.J. Batty, E. Friedman, A. Gal, Physics Reports 287 (1997) 385 - 445
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Open problem on K-atom
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Different scenarios for different exotic atoms

particle real potl. imaginary potl. comments

π− repulsive in bulk moderate excellent data

attractive on surface well understood

K− attractive moderate good data

deep or shallow? open problems

p̄ ?? very absorptive excellent data

understood

3

E. Friedman : MESON2010 conf.



K-atom : theoretical approaches
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Density-dep. optical potential SU(3) chiral unitary

C.J. Batty, E. Friedman, A. Gal, 
Phys. Reports 287 (1997) 385

Hirenzaki, Okumura, Toki, Oset, Ramos, 
PRC 61 (2000) 055205.
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Fig. IT. Shift and width values for kaonic atoms. The continuous lines join points calculated with the 
potential discussed in Section 4.2. 

best-fit optical 

Ref. [44]. For ease of reference, the complete data set listed in [44] will be referred to as ALL. 
The data set with 180 and 98Mo omitted will be denoted LESS, whilst the measurements for the 
two isotope pairs 160-180 and 92Mo-98Mo will be referred to as ISO. 
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Both are well fitted and reproduced !

1.2. K−-NUCLEUS STRONG INTERACTION 3

1.2 K−-nucleus strong interaction

The measurement of the strong interaction shift and width is a unique method to
precisely determine theK−-nucleus strong interaction at low-energy limit. Therefore
many X-ray measurements have been performed to accumulate the various target
data from hydrogen to uranium.

In the 1970’s, Seki and Wiegand [16] analyzed the available kaonic atom data
with a simple optical potential which was characterized by an “effective” kaon-
nucleon scattering length. Then Batty [33] obtained an attractive phenomenological
optical potential and an “effective” kaon-nucleon scattering length by fitting the
experimental data of atomic number Z > 2. The simple optical potential is written:

V = −2π

µ

(
1 +

µ

m

)
[aeffK−pρp(r) + aeffK−nρn(r)], (1.2)

where µ is the kaon-nucleus reduced mass, m is the nucleon mass, ρp(r) and ρn(r)
are the proton and neutron density distributions, and aeffK−p, a

eff
K−n are complex “ef-

fective” scattering lengths. Assuming the same density distributions of proton and
neutron, the potential can be written:

V = −2π

µ

(
1 +

µ

m

)
āρ(r), (1.3)

where ρ(r) is the nucleon density distribution and ā is an average complex “effective”
kaon-nucleon scattering length. Figure 1.1 shows Batty’s fit of the strong-interaction
shifts and widths of kaonic atoms. Note that the minus sign of the shift and the
log scale of the vertical axis. Batty obtained ā = 0.34 + i0.84 fm, which means the
K−-nuclues optical potential is attractive.

TheK−-nucleus optical potential is attractive, while the measured strong-interaction
shifts of kaonic atoms are repulsive. (The “repulsive” shift means the atomic level
is shifted to “upward” and then the observed X-ray energy is “smaller” than the
Coulomb transition energy). In 1980, a theoretical explanation of this feature was
given by Deloff [34] in the framework of multiple scattering theory as formulated by
Watson [35] and by Kerman, McManus, and Thaler [36]. Deloff showed the depth of
the optical potential to be a nonlinear function of the free kaon-nucleon scattering
lengths as following

ā =
1

2

(
aK−p

1 + aK−p/bq
+

aK−n

1 + aK−n/bq

)

, (1.4)

where aK−p and aK−n are the K−p and K−n scattering lengths at threshold and
bq is a parameter related to the shape and range of the kaon-nucleon interaction.
Batty [33] showed Deloff’s model well reproduced the “effective” scattering length
ā with the parameter bq ∼ 1 by using Martin’s free scattering lengths [37].

Presently, the sign change of the real part of effective scattering length is un-
derstood by a density dependent interpretation. There have been two controversial
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Figure 1.1: Fit of strong interaction shifts and widths of available kaonic atoms
(Z > 2) [33]. n is the principal quantum number. Note that the minus sign of the
shift and the log scale of the vertical axis.

analyses of the K−-nucleus potential. One is a relatively “deep” density-dependent
optical potential with nuclear-matter depth ReV (ρ0) ∼ −(150−200) MeV obtained
by phenomenological fits [18, 19, 38] (ρ0 = 0.16 fm−3 is the normal nuclear mat-
ter density). The phenomenological potential is expressed by replacing a with a
density-dependent term as follows:

a → a0 + A0[ρ(r)/ρ(0)]
α, (1.5)

where a0 is the free K−-nucleon value, which is fixed to be −0.15 ± i0.62 fm, and
A0 and α are fit parameters. When α is positive, the additional term vanishes as
the density goes to zero. Thus the sign changes around the surface of the nuclear
matter while keeping the (deep) attractive optical potential inside.

The other analysis is a “shallow” potential with ReV (ρ0) ∼ −(40 − 60) MeV
obtained by a chiral unitary model [39–41]. The chiral unitary model gives a
parametrized K− self energy, which is obtained from the interaction of K− with pro-
tons and neutrons in symmetric nuclear matter at K− threshold (k0 = mK , k⃗ = 0),
as follows:

ΠK(k, ρ) = −4π(1 + µ/m)aeff (ρ)ρ, (1.6)

where aeff is effective scattering length, ρ(p⃗F ) = (2/3π2)|p⃗F |3 and p⃗F is the Fermi
momentum. Figure 1.2 shows the density-dependent aeff results of chiral unitary
model. The real part of aeff changes its sign from negative to positive (repulsive to
attractive) around the zero density. In addition, the results are similar to Batty’s
phenomenological fit results [33] at ρ ∼ ρ0/4.

Both analyses are in good agreement with the available kaonic atom data (Z >
2), except for oxygen. The deep-or-shallow problem is still an open question.

the kaonic atom data are also reproduced well by the chiral
unitary model, as we will see later on, it seems that the
strong shifts and widths of the kaonic atoms are mainly de-
termined by the optical potential strength at a certain nuclear
density, !"!0/4. This was the case of pionic atoms #15$
although the effective densities felt by the pions were differ-
ent.
We would like to mention other density dependent scat-

tering lengths obtained by the phenomenological fit of #16$.
One of their results can be written as

ae f f%!&!%"0.15#0.62i &#%1.66"0.04i &#!/!0$0.24 #fm$ .
%4&

The real part of this effective scattering length also changes
its sign and provides an attractive interaction in the nuclear
medium. However, the real part depends on the density much
more strongly than our results and gives Re ae f f(!0)
!1.51 #fm$ . On the other hand, the density dependence of
the imaginary part is rather flat and the strength is similar to
our results.

III. KAONIC ATOM STRUCTURE

We study the properties of kaonic bound states by solving
the Klein-Gordon equation

#"'! 2#(2#2(Vopt%r &$)%r! &!#E"VCoul%r &$2)%r! &.
%5&

Here, ( is the kaon-nucleus reduced mass and VCoul(r) is
the Coulomb potential with a finite nuclear size:

VCoul%r &!"e2! !p%r!&

"r!"r!!"
d3r!, %6&

where !p(r) is the proton density distribution. We take the
Woods-Saxon form for the density and keep the shapes of
neutron and proton density distributions the same:

!%r &!!n%r &#!p%r &!
!0

1#exp#%r"R &/a$
, %7&

where we use R!1.18A1/3"0.48 #fm$ and a!0.5 #fm$ with
A the nuclear mass number.
The kaon-nucleus optical potential is related to the kaon

self-energy in nuclear matter as *K!2(Vopt . We use the
optical potential in a finite nucleus. In coordinate space this
is accomplished by means of the local density approximation
%LDA&, where ! of nuclear matter is substituted by !(r) of
the nucleus. This procedure is exact for the lowest order term
in the density of the S-wave self-energy and arguments were
given in #17$ for the accuracy of the LDA in higher orders.
At the same time the translation code from nuclear matter to
finite nuclei for P waves was also given. Thus, we have

2(Vopt%r &!"4+,ae f f%!&!%r &, %8&

with the effective scattering length ae f f and , defined in
Sec. II.

We solve the Klein-Gordon equation numerically follow-
ing the method of Oset and Salcedo #18$. The applications of
the method to the pionic atom studies were reported in detail
in Ref. #19$.

IV. NUMERICAL RESULTS

We show here the numerical results on kaonic atoms with
the optical potential obtained from the local density approxi-
mation using the chiral unitary selfenergy at various nuclear
matter densities. We show in Fig. 3 the energy shifts and
widths for several kaonic atoms in comparison with data.
The calculated results agree with the experimental data well.
The quality of the agreement is as good as the phenomeno-
logical potentials. We note, here, that the theoretical model
does not contain any free parameter to reproduce the data.
The energy levels for atomic kaonic states in O and Ca

are shown in Fig. 4, where the results of the chiral model and
those of the phenomenological model #Eq. %4&$ are com-
pared. We can see that the results obtained with both poten-
tials are very similar. We find that the deep atomic states
such as 1s in 40Ca, still unobserved, appear with narrower
widths than the separation between levels and are predicted
to be quasistable states. Similar results to those of the phe-
nomenological potential shown in Fig. 4 were reported by
Friedman and Gal #21$.
In Fig. 5, we show the energy levels including the shallow

atomic and the deep nuclear kaonic states of Ca using the
chiral unitary model potential. The shallow atomic states are
shown by dashed bars. The deep nuclear ones are shown by

FIG. 3. The calculated energy shifts and widths are shown as
functions of the nucleus atomic number for 2p , 3d , and 4 f kaonic
atom states. Experimental data are also shown #20$.
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the method to the pionic atom studies were reported in detail
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We show here the numerical results on kaonic atoms with
the optical potential obtained from the local density approxi-
mation using the chiral unitary selfenergy at various nuclear
matter densities. We show in Fig. 3 the energy shifts and
widths for several kaonic atoms in comparison with data.
The calculated results agree with the experimental data well.
The quality of the agreement is as good as the phenomeno-
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are shown in Fig. 4, where the results of the chiral model and
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FIG. 3. The calculated energy shifts and widths are shown as
functions of the nucleus atomic number for 2p , 3d , and 4 f kaonic
atom states. Experimental data are also shown #20$.
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The number of the kaonic nuclear bound states 
would be different (depending on the nucleus).

“deeply-bound” K- clusters ?



deep or shallow ?
11

model

Density-dep. optical potential SU(3) chiral unitary

C.J. Batty, E. Friedman, A. Gal, 
Phys. Reports 287 (1997) 385

Hirenzaki, Okumura, Toki, Oset, Ramos, 
PRC 61 (2000) 055205.

potential 
depth

deep!
!

shallow!
!
!
!

1.2. K−-NUCLEUS STRONG INTERACTION 3

1.2 K−-nucleus strong interaction

The measurement of the strong interaction shift and width is a unique method to
precisely determine theK−-nucleus strong interaction at low-energy limit. Therefore
many X-ray measurements have been performed to accumulate the various target
data from hydrogen to uranium.

In the 1970’s, Seki and Wiegand [16] analyzed the available kaonic atom data
with a simple optical potential which was characterized by an “effective” kaon-
nucleon scattering length. Then Batty [33] obtained an attractive phenomenological
optical potential and an “effective” kaon-nucleon scattering length by fitting the
experimental data of atomic number Z > 2. The simple optical potential is written:

V = −2π

µ

(
1 +

µ

m

)
[aeffK−pρp(r) + aeffK−nρn(r)], (1.2)

where µ is the kaon-nucleus reduced mass, m is the nucleon mass, ρp(r) and ρn(r)
are the proton and neutron density distributions, and aeffK−p, a

eff
K−n are complex “ef-

fective” scattering lengths. Assuming the same density distributions of proton and
neutron, the potential can be written:

V = −2π

µ

(
1 +

µ

m

)
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its sign and provides an attractive interaction in the nuclear
medium. However, the real part depends on the density much
more strongly than our results and gives Re ae f f(!0)
!1.51 #fm$ . On the other hand, the density dependence of
the imaginary part is rather flat and the strength is similar to
our results.

III. KAONIC ATOM STRUCTURE

We study the properties of kaonic bound states by solving
the Klein-Gordon equation

#"'! 2#(2#2(Vopt%r &$)%r! &!#E"VCoul%r &$2)%r! &.
%5&

Here, ( is the kaon-nucleus reduced mass and VCoul(r) is
the Coulomb potential with a finite nuclear size:

VCoul%r &!"e2! !p%r!&

"r!"r!!"
d3r!, %6&

where !p(r) is the proton density distribution. We take the
Woods-Saxon form for the density and keep the shapes of
neutron and proton density distributions the same:

!%r &!!n%r &#!p%r &!
!0

1#exp#%r"R &/a$
, %7&

where we use R!1.18A1/3"0.48 #fm$ and a!0.5 #fm$ with
A the nuclear mass number.
The kaon-nucleus optical potential is related to the kaon

self-energy in nuclear matter as *K!2(Vopt . We use the
optical potential in a finite nucleus. In coordinate space this
is accomplished by means of the local density approximation
%LDA&, where ! of nuclear matter is substituted by !(r) of
the nucleus. This procedure is exact for the lowest order term
in the density of the S-wave self-energy and arguments were
given in #17$ for the accuracy of the LDA in higher orders.
At the same time the translation code from nuclear matter to
finite nuclei for P waves was also given. Thus, we have

2(Vopt%r &!"4+,ae f f%!&!%r &, %8&

with the effective scattering length ae f f and , defined in
Sec. II.

We solve the Klein-Gordon equation numerically follow-
ing the method of Oset and Salcedo #18$. The applications of
the method to the pionic atom studies were reported in detail
in Ref. #19$.

IV. NUMERICAL RESULTS

We show here the numerical results on kaonic atoms with
the optical potential obtained from the local density approxi-
mation using the chiral unitary selfenergy at various nuclear
matter densities. We show in Fig. 3 the energy shifts and
widths for several kaonic atoms in comparison with data.
The calculated results agree with the experimental data well.
The quality of the agreement is as good as the phenomeno-
logical potentials. We note, here, that the theoretical model
does not contain any free parameter to reproduce the data.
The energy levels for atomic kaonic states in O and Ca

are shown in Fig. 4, where the results of the chiral model and
those of the phenomenological model #Eq. %4&$ are com-
pared. We can see that the results obtained with both poten-
tials are very similar. We find that the deep atomic states
such as 1s in 40Ca, still unobserved, appear with narrower
widths than the separation between levels and are predicted
to be quasistable states. Similar results to those of the phe-
nomenological potential shown in Fig. 4 were reported by
Friedman and Gal #21$.
In Fig. 5, we show the energy levels including the shallow

atomic and the deep nuclear kaonic states of Ca using the
chiral unitary model potential. The shallow atomic states are
shown by dashed bars. The deep nuclear ones are shown by

FIG. 3. The calculated energy shifts and widths are shown as
functions of the nucleus atomic number for 2p , 3d , and 4 f kaonic
atom states. Experimental data are also shown #20$.

CHIRAL UNITARY MODEL FOR THE KAONIC ATOM PHYSICAL REVIEW C 61 055205

055205-3Open problem

D
ensity([1/fm

3]�

(-VReal = 150 ~ 200 MeV) (-VReal = 40 ~ 60 MeV)

The number of the kaonic nuclear bound states 
would be different (depending on the nucleus).

“deeply-bound” K- clusters ?

insufficient K-atom data 
results in open problem in “K - nucl.  potential”

need more high-precision K-atom  
measurements



Two major puzzles on K-atom
12

1. K - nucleus potential puzzle 
‣ Deep or Shallow?  ( because of insufficient K-atom data )

2. K- mass puzzle  
‣ The recent two measurements disagree by more than 5 sigma !



K- mass puzzle
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WEIGHTED AVERAGE
493.677±0.013 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.

BACKENSTO... 73 CNTR 0.1
CHENG 75 CNTR 1.0
BARKOV 79 EMUL 0.1
LUM 81 CNTR 0.5
GALL 88 CNTR 13.6
DENISOV 91 CNTR 7.7

χ
2

      22.9
(Confidence Level  0.001)

493.55 493.6 493.65 493.7 493.75 493.8 493.85

m
K± (MeV)

mK+ − mK−mK+ − mK−mK+ − mK−mK+ − mK−

Test of CPT.

VALUE (MeV) EVTS DOCUMENT ID TECN CHG

−0.032±0.090−0.032±0.090−0.032±0.090−0.032±0.090 1.5M 4 FORD 72 ASPK ±
4 FORD 72 uses m

π+ − m
π− = +28 ± 70 keV.

K± MEAN LIFEK± MEAN LIFEK± MEAN LIFEK± MEAN LIFE

VALUE (10−8 s) EVTS DOCUMENT ID TECN CHG COMMENT

1.2385±0.0024 OUR FIT1.2385±0.0024 OUR FIT1.2385±0.0024 OUR FIT1.2385±0.0024 OUR FIT Error includes scale factor of 2.0.
1.2385±0.0025 OUR AVERAGE1.2385±0.0025 OUR AVERAGE1.2385±0.0025 OUR AVERAGE1.2385±0.0025 OUR AVERAGE Error includes scale factor of 2.1. See the ideogram
below.
1.2451±0.0030 250k KOPTEV 95 CNTR K at rest, U tar-

get
1.2368±0.0041 150k KOPTEV 95 CNTR K at rest, Cu

target
1.2380±0.0016 3M OTT 71 CNTR + K at rest
1.2272±0.0036 LOBKOWICZ 69 CNTR + K in flight
1.2443±0.0038 FITCH 65B CNTR + K at rest

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.2415±0.0024 400k 5 KOPTEV 95 CNTR K at rest
1.221 ±0.011 FORD 67 CNTR ±
1.231 ±0.011 BOYARSKI 62 CNTR +
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Most recent  
two experiments

CPb, W

Difference 
60 keV

7 [keV] 
11 [keV]

Error :

K-mass : fundamental quantity±0.016 (Error scaled by 2.8)
13 keV

awaited for new measurement !

Requirements :"
1. high-resolution detector"
2. K-atom with low-Z gas target"
to reduce the electron screening effects which 
could cause an uncertainty of K-mass value



DAFNE : Unique facility for low-energy K-
14

• Φ → K- K+ (49.1%)"
• Monochromatic low-energy K- (~127MeV/c)"
• Less hadronic background due to the beam

DAFNE e+ e- collider :

We can efficiently stop Kaons

at gas target



Missions at DAFNE K-atom factory
15

complete K-atom data acquisition

✓1s level of K-p, K-d (K-He)"
✓ other K atoms 

‣ large width

‣ low intensity


 -> SDD etc.

‣ small width

‣ high intensity


  -> TES

✓ K-mass measurement"
✓ 2p level of K-He, K-Li etc…"
✓ other higher level of K-atom

SIDDHARTA-2



2. Detector
TES

SDD



High-resolution detectors
17

spherically bent Bragg crystal

ultimate energy resolution

position & energy resolution

� background reduction
by analysis of hit pattern

high stop density

� high    X - ray line yields

� bright X - ray source

6

1. Crystal spectrometer 2. Cryogenic detector

→ small acceptance

pionic atom exp. : D. Gotta (Trento’06) W.B. Doriese, TES Workshop 
@ ASC (Portland), Oct 8, 2012

 W.B. Doriese, TES Workshop @ ASC (Portland), October 8, 2012 
synchrotron spectroscopy    our spectrometer    results 

detector plane 
for now:  use TESs 
designed for             
5&10 keV X-rays    

 W.B. Doriese, TES Workshop @ ASC (Portland), October 8, 2012 
synchrotron spectroscopy    our spectrometer    results 

First synchrotron observations by the NIST 
microcalorimeter-spectrometer 

 

Randy Doriese, NIST (Boulder, Colorado) 

 

1) synchrotrons  and  X-ray spectroscopy 
2) NIST TES spectrometer at NSLS beamline U7A 
3) initial synchrotron spectroscopy results  1 pixel ~ 350 x 350 μm2

TES microcalorimeter



Why TES ? (1)
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Effective area [mm2]
En

er
gy

 re
so

lu
tio

n 
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0.1

0.1 1 10 100 1000

Crystal spectrometerhi
gh

low high

Silicon detectors

getting more..."
(toward mega pixel)

TES

multiplexing"
technology

TES

The solid angle of a crystal spectrometer (PLB 416 (1998) 50) was converted to the equivalent effective area.

1 pixel 240 pixel

( Wavelength-dispersive x-ray spectrometer )



Why TES ? (2)
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✓ Compact and portable

50 cm
Compact 
system

vs.

56 G. Beer et al. / Physics Letters B 535 (2002) 52–58

term in the Klein–Gordon equation, where the reduced
mass is obtained usingM(14N) = 13040.34MeV. The
results are:

(6→ 5) transition:MK− = 492.086± 2.409 MeV,

(7→ 6) transition:MK− = 495.418± 3.455 MeV.

These two results are statistically compatible and
can be averaged. The weighted average is MK− =
493.176± 1.976 MeV.

3. Proposed experimental setup for a precision
measurement of the charged kaon mass

On the basis of the results of the test measure-
ment performed with DEAR at DA!NE, a new setup
is proposed, to make a precision measurement of the
charged kaon mass. The basic experimental layout is

shown in Fig. 3. A gaseous low Z target, that can be
cooled, such as nitrogen, as in the test setup, should be
used. In fact, the determination of meson masses from
the X-ray energies of mesonic atoms requires the mea-
surement of transitions which must not be affected by
the strong interaction. The levels involved are there-
fore of lower binding energies and are influenced by
the interaction with the electrons. The status of the
electron shells is difficult to assess: the first steps of
the atomic cascade proceed via Auger emission which,
together with the electron recombination, results in an
unknown degree of ionization. A complete ionization
has been demonstrated only in a low-Z gaseous target,
such as nitrogen or oxygen [18], being not straightfor-
ward the evaluation of the electron screening in solid
state targets.
A reasonably sized target cell of about 2 dm3 vol-

ume (cylinder 14 cm height, 7 cm radius) could be as-

Fig. 3. Proposed experimental setup. 1. Interaction point, nitrogen target; 2, 7. Crystals; 3. Focal circle; 4, 6. CCD detectors; 5. Shielding;
8, 11. X-ray calibration sources; 9. Beam pipe; 10. Magnetic trap.G. Beer et al., PLB 535 (2002) 52

Shield

TES system Crystal spectrometer

CCD

CCD

DAFNE interaction point



X-ray microcalorimeter
20

a thermal detector measuring the energy of an incident 
x-ray photon as a temperature rise (= E/C ~ 1 mK )	

Decay time constant

= C / G ( ~ 500 μs )

e.g.,   Absorber : Bi (320 um × 300 um wide, 4 um thick)"
        Thermometer : thin bilayer film of Mo (~65nm) and Cu (~175nm)

T

t

τ~CG

Absorber with larger “Z” (to stop the high energy x-rays)

Absorber
Heat capacity : C

Thermal conductance : G

Low temperature heat sink

~ pJ/K

~ nW/K

Thermometer

T

X-ray energy : E



TES = Transition Edge Sensor
21

using the sharp transition between normal and 
superconducting state to sense the temperature

normal 
conducting 
sate

super- 
conducting 

sate

0 Temperature

Re
si

st
an

ce

~ 100 mK

Width of transition edge
ΔE~ a few mK

--> developed by Stanford / NIST at the beginning

Dynamic range
Emax � CTC/�

 Trade-off between dynamic range and 
energy resolution : ΔE ~ √Emax

( Johnson noise and phonon noise are
the most fundamental )

Energy resolution (σ)

�E =

�
kBT 2C

�

Thermometer sensitivity

� � d lnR

d lnT
� 102�3

applications : astrophysics (space satellite) etc.



NIST’s TES array system for x-rays
22

 W.B. Doriese, TES Workshop @ ASC (Portland), October 8, 2012 
synchrotron spectroscopy    our spectrometer    results 

installed TES spectrometer 

NSLS U7A:  
soft-X-ray (200 & 800 eV) 
spectroscopy beamline. 

installed: 
late 2011 

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

• 1 pixel : 300 x 320 μm2

• 240 array : total ~ 23 mm2

• 2~3 eV (FWHM) @ 6 keV

e.g., soft-X-ray spectroscopy @ BNL

well established system!

 NIST’s standard TES

~ 200 eV (FWHM) @ 6 keV 
... a typical Silicon detector 

used in the previous K-atom exp.

two-order 
improved 
resolution



NIST’s TES for gamma-rays
23

D. A. Bennett et al., Rev. Sci. Instrum. 83, 093113 (2012)

• 1 pixel : 1.45 x 1.45 mm2

• 256 array : total ~ 5 cm2

• 53 eV (FWHM) @ 97 keV

e.g., hard-X-ray spectroscopy  NIST’s standard TES

State-of-art high-purity 
germanium detectors

an order 
improved 
resolution

093113-4 Bennett et al. Rev. Sci. Instrum. 83, 093113 (2012)

(a) (b)

1.4 mm

SU8 posts

MoCu film

FIG. 3. (a) Photograph of a TES microcalorimeter before the absorber is
attached showing the Si3N4 membrane (darker area), TES in the middle, and
20 SU8 posts connected to the TES by the copper legs. (b) A portion of one
of the detector chips where some of the TES have been absorberized.

(Fig. 3(a)). The posts are connected to the Mo-Cu film by cop-
per traces of equal length to ensure that heat traveling through
any one of the posts has a similar thermal path to the Mo-Cu
film.

The absorbers, shown for a few of the pixels in Fig. 3(b),
are 1.45 by 1.45 mm by 0.38 mm thick pieces of polycrys-
talline Sn. Sn is chosen because it has reasonably high effi-
ciency for stopping gamma rays in the energy range of inter-
est (20 keV to 220 keV), while still having low specific heat
near 120 mK. The transition temperature of Sn is 3.7 K, well
above the operating temperature of these devices. In this case,
the phonon contribution, which scales as T3, dominates over
the electron contribution to the specific heat, which scales as
e−!/kBT . The heat capacity of the tin absorber is predicted
to be 22.5 pJ/K, using the Debye temperature of bulk tin,
195 K, and a device temperature near Tc = 120 mK. We can
estimate the energy resolution of these devices by scaling the
22 eV FWHM energy resolution result from Bacrania et al.1

up to the design values of C and Tc to predict a FWHM energy
resolution of 77 eV. On a previous array10 with Sn absorbers
2.25 mm2 by 0.25 mm thick, we achieved energy resolutions
consistent with this scaling.

B. TES array fabrication and detector hybridization

Large arrays of TES sensors are made possible by mod-
ern microfabrication techniques. The detector fabrication pro-
cess starts with 3 in. Si wafers. The wafers are 275 µm thick
and polished on both sides. We grow 120 nm of SiO2 on
the wafers by use of wet thermal oxidation. Then we deposit
1 µm of stoichiometric silicon-nitride (Si3N4) by use of low
pressure chemical vapor deposition. We etch alignment marks
into the Si3N4 on the front side of the wafers.

We then deposit a superconducting bilayer of Mo and Cu
with dc-magnetron sputtering. The Mo and Cu thicknesses
are chosen to give suitable device Tc and RN. Typically, the
Mo is 100 nm thick and the Cu 200 nm. Using two lithogra-
phy and wet etch steps, we pattern the bilayer into TESs with
Mo leads. A wide border of bilayer is left around the perime-
ter of each die. In the next step, we use lift-off lithography
and electron-beam evaporation to deposit the Cu banks on the
edge of the TESs and bars, which extend from the banks onto
the TES bilayer. The thickness of this additional Cu layer is

500 nm. We designed the pattern for this step to also place
Cu around the perimeter of the chip to aid heat-sinking. A
subsequent lift-off step is used to place 100 nm of Au on the
perimeter to facilitate heat-sink wire-bonding. The last step on
the front side is to form the posts for absorber hybridization.
We first deposit 15 nm of Ti using lift-off in the post locations
to aid post adhesion. We then use SU8, a photo-imageable
epoxy, to form posts that are 35 µm tall.

We conduct the final processing steps on the backside of
the wafer. We affix the frontside of the wafer to a similarly
sized sapphire carrier wafer using wax. The Si3N4 and SiO2

are stripped from the backside by use of reactive ion etching.
We deposit a 1 µm Au backside thermal heat sink layer by
use of a lift-off process. Then we use a Bosch-process Si deep
etch to remove the Si behind each TES to form Si3N4 mem-
branes. The deep-etch step also separates the wafer into dies.
We extract the individual die by thermally reflowing the wax
layer and sliding the die off the sapphire carrier wafer. The
die is then solvent-cleaned to remove the wax.

Absorber attachment begins with preparation of the Sn.
The 99.99+ percent pure Sn is crushed in a vise to the desired
thickness of 0.38 mm. The cold working of the Sn increases
its hardness, allowing cleaner cuts with a dicing saw. Previous
experiments have shown that the change in grain size from
this cold working does not affect the performance of Sn as a
gamma-ray absorber in microcalorimeters.11 We then dice the
Sn into 1.45 mm squares with a diamond blade.

Each Sn absorber is physically attached by glue to 20
posts made of a photo-imagable epoxy (SU8) by use of a die
bonder. The bonder has a micromanipulator with an 8:1 ratio
and contains both a tweezer used to hold the glue applica-
tor and a vacuum tool to pick up the absorber. A controlled
amount of glue is applied to all of the posts of a single de-
tector and then the absorber is placed on the posts and left
to dry. The die bonder also allows the same force to be ap-
plied to each absorber. This process consistently yields well
over 90% attachment. For a small number of microcalorime-
ters per chip, the glue used to attach the absorber can spread
too far and cause a thermal short to the silicon wafer. We are
making design changes and process improvements to elimi-
nate these glue shorts and achieve close to 100% attachment
yield.

IV. INSTRUMENT DESIGN AND EXPERIMENTAL
SETUP

A. Cryogenics

The key advantage of superconducting microcalorimeters
is derived from low-temperature operation, because energy
resolution scales as !E ∝ Tc. The NIST-LANL gamma spec-
trometer achieves low temperatures by use of a pulse-tube-
backed adiabatic demagnetization refrigeration (ADR) capa-
ble of cooling the detector package to a base temperature of
50 mK without the use of liquid cryogens. The absence of
liquid cryogens allows convenient use of the instrument by
non-experts outside of specialized cryogenic laboratories.

The cryostat is shown in Fig. 4 along with the de-
tector housing. The left side of Fig. 4 shows a schematic

Downloaded 05 Oct 2012 to 132.163.130.89. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

1.45 mm

absorbers : Sn

0.38 mm

for 100 - 400 keV



3. Experiment
K-mass measurement at DAFNE



Possible simple experimental setup
25

TES 
Cryostat 
( ADR )

Nitrogen

gas target

TES array

Lead 
shield

might possible to install them at 
bottom side (during K-d measurement)



Possible simple experimental setup
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TES 
Cryostat 
( ADR )

Nitrogen

gas target

TES array

Lead 
shield

might possible to install them at 
bottom side (during K-d measurement)

e-e+ Φ



Possible simple experimental setup
25

K+

TES 
Cryostat 
( ADR )

Nitrogen

gas target

K-

TES array

Lead 
shield

might possible to install them at 
bottom side (during K-d measurement)

e-e+ Φ

Back-to-back 
Kaon detection



Possible simple experimental setup
25

K+

TES 
Cryostat 
( ADR )

Nitrogen

gas target

X-ray

K- X-ray detection 
by TES

TES array

Lead 
shield

might possible to install them at 
bottom side (during K-d measurement)

e-e+ Φ

Back-to-back 
Kaon detection



Rough yield estimation : K-N 6-5 x-ray (7.6 keV)
26

‣ TES array : 240 pixel ~ 23 mm2 effective area 
‣ TES located the same position as SDD’s at SIDDHARTA

‣ Target cell located the same position as that of SIDDHARTA

‣ Nitrogen gas density : 3.4 ρSTP


➡  KN 6-5 x-ray ~ 3 events / day (4.5 pb-1)

Estimated based on DEAR / SIDDHARTA data (just scaled) :

✓ bring TES close to target ( x ~3 )

✓ bring target close to interaction point ( x ~3)

✓ higher Nitrogen gas density ( x ~2)

 ~ 50 events / day (4.5 pb-1)

assumed 
improvements



Estimated stat. accuracy of K-mass
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-  K-N 6-5 x-ray ~ 1500 events / month (135 pb-1)

- Energy resolution ~ 6.5 eV (FWHM) 

- No background

assuming :

Stat. accuracy : ΔE (x-ray energy) ~ ± 0.07 eV 
Δm (K-mass) = ΔE / E x m ~ ± 4.6 keV

✓ weak magnetic lens to collect K- at small target

✓ polycapillary X-ray lens …

possible improvements for more yield :



4. Test experiment
in-beam performance of TES



• aim  : studying in-beam performance of TES"
➡ the first measurement of hadronic-atom x-rays with TES"

• when? : 27 Oct - 5 Nov, 2014 (just finished last week!)"
• where?  : Paul Scherrer Institute (PSI), PiM1 beamline

Feasibility test towards K-atom expt.
29

π beam 
( ~1MHz/mA, 170 MeV/c )

moderator
stop in a target

π-atom x-ray

TES

target

x-ray tube

Pionic carbon 
4f-3d x-rays ~ 6.5 keVschematic view

-> no strong-interaction shift & width 
-> higher yield (~1200 events / hour)



Experimental setup
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π beam

TES arrays

Refrigerator (ADR) 
Adiabatic Demagnetization Refrigerator

x-ray 
tube

carbon 
moderators

for energy 
calibration

silic
on detector 

sys
tem

for monitoring π-atom x-rays 
with conventional technique

10 cm

at PSI PiM1 beamline



Photos
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TES 
system

π beam



Exotic-atom x-rays with TES for the first time !
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5. Summary



take-home messages
34

Ultra-high-resolution x-ray spectrometer 
“TES microcalorimeter” is now available 

as a powerful tool for exotic-atom research

“TES x DAFNE” could provide valuable 
physics outputs related Kaonic atoms

1. 

2. 


