PADME dump proposal

Mauro Raggi, and V. Kozhuharov

What Next LNF,

Frascati, November 11th 2014

Searching for new physics in dump

- Dump experiments are able to provide extreme sensitivity to low couplings because the whole beam charge is spent (~10²⁰ particles)
 - Sensitivity to extremely rare production processes
 - Sensitive to every long living particles which can even escape LHC experiment acceptance
- They provide general searches for new states
 - Interpretation of data by many different models is possible even 20 year after the end of the experiments (E137 E714)!
- Due to that recently new generation of dump experiments has been proposed
 - **SHIP** at CERN for heavy lepton searches and dark photons
 - **BDX** at JLAB for dark photon searches (see A. Celentano talk)
 - **PADME** dump at LNF to search for dark photon

Dump experiments concept

Very intense beam over a massive high Z target

- Produce a dark photon through bremsstrahlung into the target
- Absorb all standard model particle in huge shielding
- Dark photon traverse the dump due to his small interaction with ordinary matter
- Dark photon decays into SM particles after the dump in the decay region
- Electron or muon are detected in the far detector

Dump experiment example: E137

Beam dump limitations

Main limitations comes from decay length of the dark photon

A dump at Frascati Linac: why?

- No dedicated electron dump experiment so far to search for dark photon
- All results by dump are coming from data mining by theoreticians
- DAFNE linac is able to provide more than 10C electrons per year
 - Almost the same order of JLAB accelerator
- Possibility of tuning the parameters to access unexplored regions
 - Beam energy
 - Beam geometry
 - Dump length shape and material
 - Detector acceptance (decay region and detector geometry)

Improving BTF performance

Maximum current of BTF dump

Measured maximum energy (2014) E=725 MeV

Conservative value: Q=25 nC/bunch at 40ns duration

- Extrapolation of 8.5 nC ×3 gain using grid and gun pulse height
- N_e = $1.6 \cdot 10^{11}$ e/pulse× 49 pulse/s= $0.784 \cdot 10^{13}$ e/s
- $0.784 \cdot 10^{13} \text{ e/s} \times 3 \cdot 10^7 \text{ s} = 2.4 \cdot 10^{20} \text{ eot}$

P. Valente: LINAC and BTF: looking at the future

- Further increase by enlarging the pulse time width to >100 ns
 - Gun extraction saturation and beam loading effects to be checked

Full gain extrapolation: Q = 50 nC/bunch at >100 duration

- Single factors well measured
- $N_e = 3.2 \cdot 10^{11} \text{ e/pulse} \times 49 \text{ pulse/s} \times 3 \cdot 10^7 \text{ s} = 5 \cdot 10^{20} \text{ e/year}$
- But the combination of pulse height, length and grid voltage has to be tested
- The main limitation can come from radio-protection issues

Status of e⁻ dump experiments

Experiment	target	E_0	$N_{\rm el}$		$L_{\rm sh}$	L_{dec}	NT.	N	
		[GeV]	electrons	Coulomb	[m]	[m]	Nobs	N95%up	
E141 [47]	W	9	2×10^{15}	$0.32 \ { m mC}$	0.12	35	1126^{+1312}_{-1126}	3419	
E137 48	Al	20	$1.87{ imes}10^{20}$	30 C	179	204	0	3	
E774 49	W	275	5.2×10^{9}	0.83 nC	0.3	2	0^{+9}_{-0}	18	
KEK [39]	W	2.5	$1.69{ imes}10^{17}$	$27 \mathrm{mC}$	2.4	2.2	0	3	
Orsay 40	W	1.6	2×10^{16}	$3.2 \mathrm{~mC}$	1	2	0	3	
PADME	W	0.8	1 • 10 ¹⁶	~1.6mC	0.1	2	S. Andrea	as: arXiv:120	09.6083v2
PADME DUMP W 1.2 2 • 10 ²⁰ ~30 C 0.1-0.2 1-2 10 ⁻² E774 PADME estimate was made by S. Andreas(2013) 10 ⁻⁴ 10 ⁻⁴ 10 ⁻⁴ PADME									
Due to authorization of LNF site we cannot exceed 10-5									
• Total limit on Year at BTF = $9.8 \times 10^{17} e^{-}/Year$ 10^{-6}									
PADME DUMP (E_{e^-} 1.2 GeV) 10^{-7} KEK E137									
• $e^{Year=1.2x10^{11}x50x3.15x10^7=2x10^{20}}e^{-Year}$									
• We can get 4.5x10 ¹⁷ in 3 days at $3x10^{10} e^{-1}$ bunch $m_{\gamma'}$ [GeV]									
Mauro Ragai What Next INE Frascati 10-11 November 2014 11/11/14									

PADME early sensitivity estimate

Early study for a beam dump experiment @ LNF (Sarah Andreas)

- IE7 electrons of energy 750 MeV per bunch in 50 bunch/s over 1 year
- Total e^- on target being: $50*1x10^{7*}3.15x10^7 = 1.6x10^{16}$ (we use $1x10^{16}$)
- Study based on 0 BG events observed after the dump. (not easy to achieve)

The PADME DUMP concept

- Thin dump experiment (order 10 cm W or U dump)
 - Allow to explore region of high couplings (short lifetimes)
 - Maximize DUMP containment with very high Z materials
- In vacuum decay region (thinner dump required)
 - Allow to contain only charged component of the shower in the dump
- SM particle veto after the dump
 - Allow to veto charged remnants of the beam to reduce BG
- Kinematic to suppress background (bump hunting)
 - Use the spectrometer M²_{miss} resolution to reduce BG in each of the mass regions explored.
- Near detector to maximize acceptance
 - Use the magnet to collect almost all tracks in to the chambers

PADME dump layout

PADME DUMP location

PADME dump toymc

- Try to evaluate driving design parameters for the PADME dump
- Toymc includes:
 - Production cross section calculated by MADgraph (thanks to A. Celentano)

$$\frac{d\sigma_{\gamma'}}{dx_e \ d\cos\theta_{\gamma'}} = 8\alpha^3 \chi^2 E_e^2 x_e \ \xi(E_e, m_{\gamma'}, Z, A) \ \sqrt{1 - \frac{m_{\gamma'}^2}{E_e^2}} \\ \left[\frac{1 - x_e + \frac{x_e^2}{2}}{U^2} + \frac{(1 - x_e)^2 m_{\gamma'}^4}{U^4} - \frac{(1 - x_e) x_e m_{\gamma'}^2}{U^3}\right],$$

Evaluate the produced number of dark photons

$$N_{\gamma'} = \sigma_{\gamma'} N_e n_{\rm sh} L_{\rm sh} = \sigma_{\gamma'} N_e \frac{N_0}{A} \rho_{\rm sh} L_{\rm sh},$$

- Scale by decay length acceptance $\frac{dP(l)}{dl} = \frac{1}{l_{\gamma'}} \ e^{-l/l_{\gamma'}}$
- Scale by electron acceptance in the detector using kinematical distribution from a toy
 - Distribution have been compared with MADGraph for several M_u

U-strahlung cross section MADgraph

Cross section on tungsten for $\varepsilon^2 = 10^{-6}$

- Increasing beam energy improves cross section
 - Higher cross section up to 45% for higher masses with just 200 MeV
 - Better boost for short living particles (most massive one!)

Comparison with S. Andreas

My montecarlo doesn't implement the in depth production Bigger suppression of short lining particles

Dark photon production

... after U decay acceptance

Just cutting out what decay in the dump or too far!

Detector acceptance $E_b = 1.2 \text{ GeV}$

e⁺e⁻ in acceptance vs energy

Acceptance as function of MU

After adding e⁺e⁻ acceptance

Includes only ee acceptance Muons can provide access to mass region above 200 MeV

PADME dump MC model

A MC simulation in G4 to understand the BG has been started but 10²⁰ e⁻ will be never explored.

Only reliable estimate of the BG can be obtained with test runs 1s at BTF (7 • 10¹² electrons) is equal to 2 month of MC generation

Conclusion

- The LINAC of DAFNE is a high current source for e⁻ up to 10C/year
- There is an interesting region of the parameter space that can be explored by PADME dump experiment
- A toy simulation allowed to identify driving parameters for the dump experiment design.
 - Refinement are still needed to obtain a reliable sensitivity plot
 - Background need to be study for different dump thickness
- Limiting factor on mass achievements with current geometry is the electron acceptance
 - Can improve much by upgrading the LINAC energy
 - Is a dedicated design needed for the dump experiment?
- Limiting factor on coupling constant sensitivity is the decay region length:
 - What about a 100MeV run for long living particles?