# **STATUS OF STANDARD SOLAR MODELS**

ALDO SERENELLI (ICE/CSIC-IEEC)

BOREXINO MINI-WORKSHOP

September 5, 2014, Gran Sasso

At solar age (4.57Gyr)

SSM Solar (photon) luminosity (initial helium)

Solar radius (convection parameter – mixing length)

Relative metal to hydrogen surface abundance (initial metal abundances)

non-SSM surface rotation rate (initial angular momentum)

### SSM

Depth of convective envelope
Sound speed & density profiles
Neutrino fluxes
Frequency ratios (info on solar core)
Surface helium abundance
Surface metal abundance(s)

non-SSM

Surface lithium abundance Internal rotation profile

### **SOLAR ABUNDANCES**

### Dealing with convection



| Element | GS98   | AGSS09+met |
|---------|--------|------------|
| С       | 8.52   | 8.43       |
| Ν       | 7.92   | 7.83       |
| Ο       | 8.83   | 8.69       |
| Ne      | 8.08   | 7.93       |
| Mg      | 7.58   | 7.53       |
| Si      | 7.56   | 7.51       |
| Ar      | 6.40   | 6.40       |
| Fe      | 7.50   | 7.45       |
| Z/X     | 0.0229 | 0.0178     |

| Differences of        |
|-----------------------|
| <b>CNO(Ne)~30-40%</b> |
| refractories~10%      |
|                       |

Full revision underway: Scott et al. (2014), Grevesse et al. (2014)

Silicon same as before  $\rightarrow$  refractories (meteoritic) not modified

CNO not yet available – but small changes expected

### **STANDARD SOLAR MODELS: HELIOSEISMOLOGY**



Helioseismology --> high-Z

### **STANDARD SOLAR MODELS: NEUTRINOS**

Borexino (7Be) – SNO & SuperK (8B)



Core temperature dependence

## **STANDARD SOLAR MODELS: NEUTRINOS**

| Flux                | SFII-GS98           | SFII-AGSS09         | Solar                       |
|---------------------|---------------------|---------------------|-----------------------------|
| рр                  | $5.98(1 \pm 0.006)$ | $6.03(1\pm 0.006)$  | $6.05(1^{+0.003}_{-0.011})$ |
| pep                 | $1.44(1\pm 0.011)$  | $1.47(1 \pm 0.012)$ | $1.46(1^{+0.010}_{-0.014})$ |
| hep                 | $8.04(1 \pm 0.30)$  | $8.31(1 \pm 0.30)$  | $18(1^{+0.4}_{-0.5})$       |
| $^{7}\mathrm{Be}$   | $5.00(1 \pm 0.07)$  | $4.56(1 \pm 0.07)$  | $4.82(1^{+0.05}_{-0.04})$   |
| $^{8}\mathrm{B}$    | $5.58(1 \pm 0.14)$  | $4.59(1 \pm 0.14)$  | $5.00(1 \pm 0.03)$          |
| $^{13}N$            | $2.96(1 \pm 0.14)$  | $2.17(1 \pm 0.14)$  | $\leq 6.7$                  |
| $^{15}\mathrm{O}$   | $2.23(1 \pm 0.15)$  | $1.56(1 \pm 0.15)$  | $\leq 3.2$                  |
| $^{17}\mathrm{F}$   | $5.52(1 \pm 0.17)$  | $3.40(1 \pm 0.16)$  | $\leq 59$                   |
| $\chi^2/P^{ m agr}$ | $3.5 \ / \ 90\%$    | 3.4 / 90%           |                             |

<sup>8</sup>B @ 3% (SNO & SK) and now <sup>7</sup>Be @ 4.5% (Borexino) pp and pep are strongly bound by the "luminosity constraint" otherwise solar luminosity matched @ 15% (Maltoni et al. 2010)

**Direct measurement of pp now to 11% Borexino** 

### SOLAR COMPOSITION: WHAT DATA REALLY TELL US

#### Use sound speed radial profile, not just rms Include (as much as possible) systematic sources of errors



### SOLAR COMPOSITION: WHAT DATA REALLY TELL US





Villante et al. 2014

## SOLAR COMPOSITION: WHAT DATA REALLY TELL US

Sound speed sensitivity to composition

Lowering expectations: 2 parameters (volatile – refractories)

3 parameters (CNO – Ne – refractories)



### **SOLAR COMPOSITION: 2-PARAMETER ANALYSIS**









### **SOLAR COMPOSITION: 3-PARAMETER ANALYSIS**

#### Volatiles (CNO), Ne & Refractories



### LEARNING ON SOLAR OPACITY – NOT COMPOSITION

#### Current data constrains radiative opacity profile



few % center to 20% at convective boundary

### LEARNING ON SOLAR OPACITY - NOT COMPOSITION



Christensen Dalsgaard et al 2009

Degeneracy between metals & opacity for helioseismic probes

### **PP-CHAIN NEUTRINOS SENSITIVE TO OPACITY**

Fluxes linked to pp-chains not so sensitive to composition – indirect dependence through opacity



CN fluxes carry extra linear dependence on C+N abundance not associated with temperature



#### Relate CN and <sup>8</sup>B fluxes

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} \Big/ \left[ \frac{\phi(^{8}\text{B})}{\phi^{\text{SSM}}(^{8}\text{B})} \right]^{0.785} = x_{C}^{0.794} x_{N}^{0.212} D^{0.172} \\ \times \left[ L_{\odot}^{0.515} O^{-0.016} A^{0.308} \right] \longrightarrow \text{Temp. dep.} \\ \times \left[ S_{11}^{-0.831} S_{33}^{0.342} S_{34}^{-0.685} S_{17}^{-0.785} S_{e7}^{0.785} S_{114}^{0.995} \right] \longrightarrow \text{Nuclear rates} \\ \times \left[ x_{O}^{0.003} x_{Ne}^{-0.005} x_{Mg}^{-0.003} x_{Si}^{-0.001} x_{S}^{-0.001} x_{Ar}^{0.001} x_{Fe}^{0.003} \right] \longrightarrow \text{Temp. dep.}$$

$$\frac{\phi(^{15}\text{O})}{\phi(^{15}\text{O})^{\text{SSM}}} / \left[\frac{\phi(^{8}\text{B})}{\phi(^{8}\text{B})^{\text{SSM}}}\right]^{0.785} = \left[\frac{C+N}{C^{\text{SSM}}+N^{\text{SSM}}}\right] (1 \pm 0.4\% \text{ (env)} \pm 2.6\% \text{ (D)} \pm 10\% \text{ (nucl)})$$

Nuclear uncertainty:  $S_{11} \& S_{17}$  (~7% each)







Y (and Z) sensitive to EoS

Similar technique, same EOS, lower Y and Z values

Vorontsov et al 2013



## **UPDATE ON MICROPHYSICS: OPACITY**



### Just few percent in solar interiors

Multielectronic resonant recombination quite important (Beilmann et al. 2013) - effect not yet quantified for Rosseland mean

Rare elements contribution to opacity neglected (e.g. Ba – Pinsonneault priv.comm.)

## **BEYOND THE SSM**

SSM does not account for: rotation, magnetic fields, internal (g) waves, etc.



## **BEYOND THE SSM**

SSM does not account for: rotation, magnetic fields, internal (g) waves, etc.



## **BEYOND THE SSM**

3D-Hydro simulations for deriving realistic 1D models of physical processes Example: internal gravity waves (Brun et al. 2011)



Radial velocity in radiative (stable) zone apparent in both plots

Most complete analysis of solar data to date favors high metallicity/opacity

Sensitivity limited by type of data (degenerate with opacity) CN fluxes can break the degeneracy

Update on microphysics

EOS needs more checks

Development in opacity calcualtions/models

Beyond SSM

3D models needed to understand angular momentum transp.

## TODAY, ONLY THIS MATTERS...



 $\nu$  rates: SSM vs. Experiment SFII(GS98)