A silicon based cosmic ray telescope as an external tracker to measure detector performance

- An INFN-Pisa test bench for small tracking detector prototypes
- The facility
- Telescope set up
- Detector under test integration
- The MEGII drift chamber prototype characterisation

Luca Galli, INFN sezione di Pisa Pisa, 25 November 2014

Credits

- The INFN telescope facility working group
 - MEG II: Baldini, Bemporad, Cavallaro*,
 Cei, D'Onofrio, Dussoni, Galli, Grassi,
 Nicolò, Signorelli, Tenchini, Venturini
 - BaBar: Bettarini, Forti, Lusiani, Walsh
 - Electronics group: Avanzini, Morsani
 - High technology group: Bosi, Ceccanti, Mammini, Minuti
- I am speaking on behalf of this group
- *worked on the facility during his master thesis period

Decisive urge

- INFN took the responsibility to construct the new drift chamber for the MEG II experiment
 - single volume wire chamber
 - stereo read out
 - low mass ionising gas He:IsoButane (85:15)
 - important to study the position resolution with such a low ionising density: 1.29 cluster/mm
 - the measurement based only on the first ionisation cluster is biased
- Pisa has the leadership, Marco Grassi is the responsible
 - need for a test bench to study the single hit resolution for small prototypes

ראין The idea behind the facility אין די The idea behind the facility

- Despite it is built to serve an experiment, it has to be as general purpose as possible
 - designed to accommodate small and medium size detector under tests (DUT)
 - flexible DAQ scheme to include the DUT read out in the telescope code
- Effective test bench for tracking detectors
 - high resolution: resolution a the DUT plane of ~20-30 μm
- Cheap, "fast" and efficient solution
 - free beam line: cosmic muons!
 - make use of spare modules of the BaBar SVT stored here in Pisa
 - single hit resolution match the requirements
 - design a new version of the read out electronics to be more compact and allow a multiplexed read out
 - DAQ carried out by a CPU

BaBar Silicon Vertex Tracker: Layer 4 and 5

- Operated five years at PEP-II in the BaBar experiment
 - inner tracker: b-tagging
 - z-vertex resolution 250 μ m, same as B⁰ mean path length
 - 95-99% single hit efficiency
- Five layers from the assembly of six wafer types
 - thickness 300μm
 - double sided read out
 - Type IV-V (used in the L4-5) pitch x-z = 100-210 μ m
 - Layer 4 active area ~ 5 x 30 cm²
 - Layer 5 active area ~ 5 x 40 cm²
- Layer 4 and 5 spare modules are stored at INFN
 Pisa and ready to be used
 - what about muon tracking with L4 and L5?

- C. Bozzi, et al., "The BaBar silicon vertex tracker", NIMA, vol 453, pp 78-83, year 2000.
- B. Aubert, et al (Babar Collaboration), "The BaBar Detector", NIMA, vol 479, pp 1-116, year 2002.

Performance

- Tracking precision as a function of
 - single hit resolution
 - 29 μ m x-, 61 μ m z-view
 - tracking precision from single hit resolution (using 4 points) at DUT plane 15µm x- and 30 z-view
 - multiple scattering sources
 - telescope
 - main contribution by the SVT modules, 300 μ m Si
 - DUT
- Resolution and MS is adequate to the goal
 - but the DUT design must follow resolution requirements
- Let's assemble it!!

DUT thick (# SVT)	MS-uncert. (μm)	σ (μ m, x — z views)			
0	2	15 — 30			
1	13	20 — 32			
2	18	24 — 35			
4	26	30 — 40			

Box design

- Designed on the model of the spare module holders to host
 - a layer4 (below) and a layer5
 - custom boards
 - one each detector halves
- the box provides
 - cooling with water pipes
 - dry air
 - light tightness
 - thin window in the telescope acceptance
 - 20 μm aluminated-Mylar
- position relative to marker on the box plate with optical survey
 - ~100 μm accuracy

Original electronics

- DAQ card no usable anymore
 - generate clk and command signals and interpret the data back from AToM
 - connected to a SUN workstation
- HDI link card + Matching card no usable anymore
 - connected to the detectors with kapton tails
 - handles signal distribution
 - supply to AToM
- AToM read out chip attached to Si modules
 - A Time over threshold Machine
 - connected to 128 channels
 - given an external trigger the list of the fired channels in output
 - internal calibration circuit

Custom board

- Analog, digital and bias voltage supplier
 - connected to original HV module
- clk and serial lines translator
 - LVDS signals from lower connector converted to PECL AToM standard and vice versa
 - electric scheme partially taken from original project
- connected to AToM chips with kapton tail
 - · one custom per half a detector
 - · a tail per side
- placed inside the box close to the SVT module

p-side

n-side

Terasic board

Multisource Power Read Out chain Supply (A522)Front Cables Cables Card Supply Midplane CAN Bu **HDI Link DAQ Link** Inside Support Tube to DAQ Card (2) Card

MUMMODULE

- Educational board with Cyclonell FPGA to handle communication from DAQ PC to modules
 - expansion header for the connection to a custom board
 - ethernet to an internal network
 - network the master DAQ PC
- AToM communication protocol programmed in the FPGA
- Ethernet link with the NIOSII processor

DAQ scheme

- PC master
 - unique DAQ supervisor
 - no busy and event building issues
 - C++ code
 - server based ethernet connection
 - VME link
 - · trigger management
 - · high flexibility to accept many DUT read out
- Terasic boards
 - · client, send out data only upon request
 - linked to the detector halves/custom boards
- Trigger
 - MEG trigger VME board
 - search for coincidence between the scintillators
 - programmable selection in case of other applications
 - LVDS signal to stop AToM and DUT electronics

Tests with naked hybrid

- First implementation of PC-Terasic-custom-AToM communication chain
 - AToM answered to CLK THROUGH command
 - debugging with logic state analyser
 - great success!!!
- Firmware development
 - full calibration of the naked hybrid
 - ECN measurement
 - · discriminator linearity

Detector assembly

- Once each single module has been tested on bench we passed to detector assembly
- two major issues
 - grounding
 - suffering from ground loops
 - in the test bench configuration the ground was the HV module
 - modified the HV module ground connection configuration and defined as aluminum support structure
 - chip temperature control
 - · the original chilling system not sufficient
 - measured the hot point with thermal camera
 - at the T critical the communication with the module interrupted with severe risk of damage
 - the solution was to install a dedicated air conditioning system to maintain the laboratory temperature around 24 degrees
 - without up to 34 deg in summer...
 - the temperature is monitored continuously during DAQ
 - if it exceed the maximum value the HV system is shut down

Module calibration

- Objectives
 - dead channel list
 - set the chip discrimination threshold
- Noise and gain from the excitation curves
 - calculated for any of the 128 chip channels
 - threshold associated to a channel associated to the probability of noise induced hit < 1%
 - distribution threshold and definition of noisy channels

Hit selection

- Hit parameters
 - Time Over Threshold
 - proportional to the energy deposit
 - Time STamp
 - hit time
 - used to find coincidence with the trigger
 - TST peak used to calibrate the trigger latency
- Safe hit selection as a starting point fro track reconstruction
 - high charge and in time with the trigger
 - red region

From number to tracks...

root	t [7] rec->S	can("","tot	>4&&tst<13&&t	st>3&&nhit<10	90")					
***	******	*******	******	*******	******	******	******	*******	********	*****
*	Row * In	stance *	run *	eve *	typ *	nhit *	boa *	chi *	cha * tot	.tot *
****	*******	*******	********	*******	*******	******	*******	********	******	*****
*	0 *	20 *	3027 *	0 *	0 *	63 *	0 *	4 *	61 *	9 *
*	0 *	21 *	3027 *	0 *	0 *	63 *	0 *	4 *	61 *	9 *
*	0 *	22 *	3027 *	0 *	0 *	63 *	0 *	6 *	88 *	10 *
*	0 *	23 *	3027 *	0 *	0 *	63 *	1 *	3 *	52 *	8 *
*	0 *	24 *	3027 *	0 *	0 *	63 *	1 *	3 *	52 *	8 *
*	0 *	25 *	3027 *	0 *	0 *	63 *	1 *	3 *	53 *	5 *
*	0 *	26 *	3027 *	0 *	0 *	63 *	1 *	3 *	53 *	5 *
*	0 *	28 *	3027 *	0 *	0 *	63 *	1 *	6 *	80 *	7 *
*	0 *	53 *	3027 *	0 *	0 *	63 *	6 *	1 *	122 *	11 *
*	0 *	59 ∗	3027 *	0 *	0 *	63 ∗	6 *	7 *	4 *	9 *
*	0 *	60 ∗	3027 *	0 *	0 *	63 ∗	7 *	4 *	60 *	9 *
*	0 *	61 *	3027 *	0 *	0 *	63 *	7 *	4 *	60 ∗	9 *
*	0 *	62 *	3027 *	0 *	0 *	63 ∗	7 *	7 *	12 *	11 *
*	2 *	2 *	3027 *	2 *	0 *	57 *	0 *	3 *	5 *	11 *
*	2 *	3 *	3027 *	2 *	0 *	57 *	0 *	3 *	5 *	11 *
*	2 *	14 *	3027 *	2 *	0 *	57 *	0 *	8 *	75 *	7 *
*	2 *	15 *	3027 *	2 *	0 *	57 *	0 *	8 *	76 ∗	6 *
	_			-	-			-		_

- The first tracks...
 - hit on 4 different boards
 - 4 SVT modules
 - both p- and n-side
 - by looking at chip number

- We always require for a 8-hit track to push at the best the tracking performance
- Local coordinates to telescope with rotations and translations

A track!

HW ambiguity, 1 AToM channel associated to 2 different strips

Telescope alignment

- Optical survey accuracy 100 μm
 - need of software alignment
- Track selection with rather relaxed chi2 cut
 - we expect "large" residuals
 - we do see up to $\sim 100 \mu m$ shifts
- alignment by
 - shift in x-z directions
- After SW alignment
 - all residual centered at 0
 - gaussian distribution and sigma ~hit resolution: ~20µm

Relative tracking efficiency

- Reconstruction code training with clean events
 - very low noise-hit contamination
 - looks for the best chi-square combination
 - not sophisticated but adequate to this system
- aim at highest efficiency
 - relax hit selection condition
 - looking for saturation of the relative tracking efficiency
 - no performance degradation looking at residuals and chi-square

Rate and acceptance

- Numbers computed with 50cm gap between the box
- Small telescope acceptance
 - max angle = 0.1 rad in the x-y view
 - 0.6 rad in the z-y
- expected (and measured) rate ~0.3Hz
- 30% relative scintillator telescope acceptance
 - order of 130 reconstructed tracks/run
 - we can extract each plane efficiency to be larger than 90%
- At the DUT plane
 - ~3 tracks/hour/cm^2
 - ~500 tracks/week/cm^2

ראין The DUT in the telescope אישט אין דייין

- Small size detector
 - the telescope active area 5x20 cm²
 - take care about thickness
 - it can degrade the performance
 - largest box distance allowed: ~50 cm
- Read out
 - ideally linkable to master PC
 - busy and event building not an issue...
 - VME
 - ethernet
 - USB
 - if not possible, solution tailored on needs
 - hardware and software modifications

DUT thick (# SVT)	MS-uncert. (μm)	σ (μ m, x — z views)		
0	2	15 — 30		
1	13	20 — 32		
2	18	24 — 35		
4	26	30 — 40		

The MEG II prototype

- squared cells, 7x7 mm², drift tube length ~20cm
- staggered cells for self tracking capability
- light gas admixture: He-Isobutane 85:15: 12.9 cluster/cm
- HV 1600-1700 V, max drift time ~150 ns
- MEG II fast pre-amplifier, BW ~1GHz for cluster identification
- Gas tight plexiglas box with 1mm window in the active region

Read out

- Read out with VME CAEN V1729
 - 12 bit
 - 2 GSPS
 - 300 MHz BW
 - differential input
- configuration and data transfer code into telescope C++ DAQ
 - upper scintillator PMT digitised for track T0

Telescope - DUT coincidence

- The cell position in the y coordinate can be identified by looking at the distribution of the tracks having an hit on the cells (1 2 3)
 - shift in y visible by eye
 - it has to be with a properly working telescope!
 - x-stagger not visible (only 500 μm...)
 - this is not the right way to look at it

Time offset calibration

- Time offset calibration w.r.t. PMT reference
 - time from SW double threshold discriminator
 - noise rejection looking at charge
 - we present a set of run with high noise (grounding lost), it is usually much better

DUT alignment

- wire equation in the telescope reference system to compute the impact parameter b
 - top view: wire imaging
 - front view: strabismus effect

יאַש DUT alignment: x-z plane איזיין

- event with small drift time: t<5ns
 - wire imaging
- outliers from noise in the DUT
 - less than 1%

28

Strabismus effect

- use of tracks with $\phi = +-100$ mrad
 - use of different nominal y planes and fit the x-t relation
 - the parabola vertex is the wire position
 - the predictions do not agree if the y plane used in the projection is not the real wire position
 - wire y position estimation by crossing point

ראַאין Reconstructed wire positions אַזאין

- 7 mm wire distance
 - and 500 µm stagger
- now we are confident to measure
 - x-t relations
 - position resolution

x-t relation

- used to convert time information in position
 - agreement with garfield++ simulations
 - evidence of small cell asymmetries
 - related to wiring procedure

PCB hole: 500 µm Sense wire: 20 µm Field wires: 80 µm (not in scale)

Resolution

- Use of only first ionisation cluster
 - evidence of bias for small impact parameters
 - resolution of ~110 μm as expected
 - master thesis by A. D'Onofrio to study the resolution improvement by using the information of the other clusters ongoing

Resolution

- Use of only first ionisation cluster
 - evidence of bias for small impact parameters
 - resolution of ~110 μm as expected
 - master thesis by A. D'Onofrio to study the resolution improvement by using the information of the other clusters ongoing

Configurations

The measurement was repeated in three configurations

- resolution cross check
- x-t relation scan

Acquisition time and history

- DAQ kick off in November 2013
- each config ~ 500 runs, 1000 events each
 - 12 MB per run, 600 MB per config
 - ~10000 events per cell
- vertical run
 - 10 Nov 17 Dec
- horizontal run
 - 17 Jan 11 Feb
 - 20 Feb 4 Apr
 - stopped for problems with the telescope, see next slide
- oblique run
 - 25 Jul 18 Sept
 - longer run to check the cell corners
- ~ 3000 runs in total
- $\bullet \sim 9$ months of operation

Future plans

- The facility is operative
 - · in one year of operation no sign of performance degradation, but
 - Suddenly lost of few chips in April
 - 4 chips on a L4 p-side (the whole side) and 2 chips on a L5 n-side (2/5 a side)
 - reason unknown
 - · no temperature variation
 - · no loss of dry air
 - · voltage spike?
 - · L4 substituted, L5 still there
- We have few spares for L5 and L4 (~ 4 modules per type)
 - can be used if needed
 - · less chips lower acceptance
 - but telescope usable
 - · we could use 3 hits instead of four with a moderate performance loss
- New run with MEG II prototype
 - use of GHz electronics for refined cluster timing studies
- Lifetime ~ 10 years
 - · responsible: Luca Galli

Track Distribution at DUT plane

Reduced acceptance

Conclusions

- A Si-based cosmic ray telescope as an INFN sezione di Pisa facility
- New TDAQ and electronics to substitute the original from BaBar experiment
 - no longer usable
- A MEG II prototype characterised in many configurations
 - both telescope and DUT resolutions as expected
- New runs with fast electronics foreseen with MEG II prototypes
 - the facility is available for any requirements from the groups of this section
 - Avanzini, Spinella: micro-megas detector?