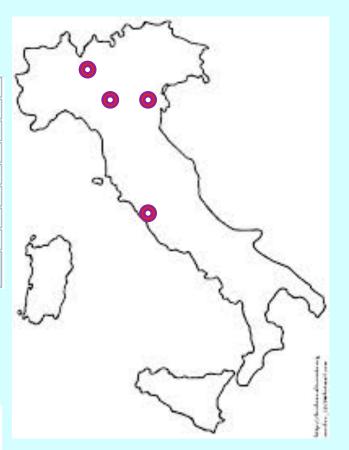

ATTIVITA' DI QCDLAT NEL CALCOLO AD ALTE PRESTAZIONI

MICHELE PEPE


INFN Sez. Milano-Bicocca
Milan (Italy)

1	Butera Paolo Domenico	0
2	Cè Marco	50
3	Destri Claudio	90
4	Engel Georg	50
5	Giusti Leonardo	100
6	Pepe Michele	90
7	Pernici Mario	100
8	Rapuano Federico	90
		FTE:
		5.7

Parma

1	Brambilla Michele	0
2	Di Renzo Francesco	70
3	Eruzzi Giovanni	100
4	Onofri Enrico	50
		FTE: 2.2

Ferrara

1	Calore Enrico	20
2	Schifano Sebastiano Fabio	20
3	Tripiccione Raffaele	50
		FTE: 0.9

Roma I

1 Papinutto Mauro Lucio	90
	FTE: 0.9

Roma II

1 Guerrieri Andrea Leonardo	50
2 Vladikas Anastassios	90
	FTE:

20 partecipanti, 11.1 FTE

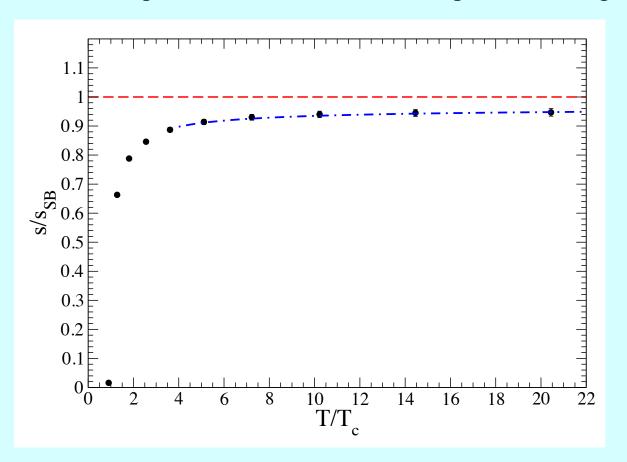
6 dottorandi, post-doc

QCDLAT

Studio della QCD su reticolo con metodi Monte Carlo, Flavour Physics Modelli di spin, Proprietà dei vetri di spin, QFT fuori equilibrio

pesante uso e necessità futura di grandi risorse di calcolo (parallelo)

- Tema 1: QCD e fisica del sapore (Bicocca, Roma I, Roma II)


 Seminario di Mauro Papinutto
- Tema 2: QCD a temperatura finita e diagramma di fase (μ,T) (Bicocca, Parma)
- Tema 3: sviluppi teorici (Bicocca, Parma, Roma I, Roma II)
- <u>Tema 4</u>: strategie computazionali (Bicocca, Ferrara, Parma)

Tema 2: QCD a temperatura finita e diagramma di fase (μ,T)

• Equazione di stato di SU(3) Yang-Mills

Nuovo metodo, molto efficiente, di studiare la termodinamica di una QFT: sistema statico sistema in moto

Misure di quantità termodinamiche independenti ad ogni temperatura

L. Giusti e M. Pepe, Phys. Rev. Lett. 113 (2014) 031601

Tema 2: QCD a temperatura finita e diagramma di fase (μ,T)

Nuovo approccio allo studio di teorie di campo con potenziale chimico

Potenziale chimico: problema del segno. Nuovo approccio basato su Lefschetz thimble para fase immaginaria costante, rilevante risparmio computazionale

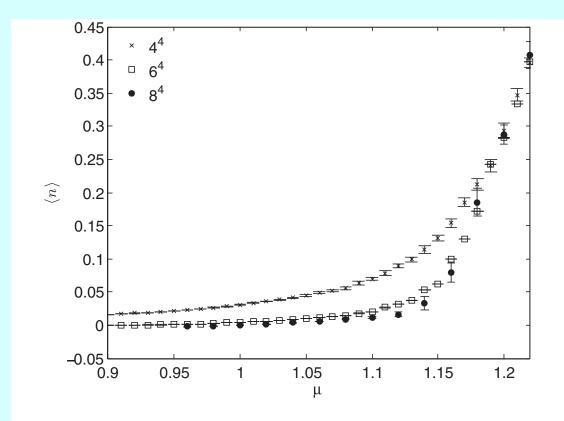


FIG. 1. Average density $\langle n \rangle$ in the critical region for the lattices $V = 4^4$, 6^4 , 8^4 .

M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. Mukherjee, C. Schmidt, L. Scorzato, C. Torrero
Phys.Rev. D89 (2014) 114505

Modello $|\phi|^4$ con potenziale chimico

Tema 3: sviluppi teorici

• Calcolo perturbativo di costanti di rinormalizzazione per QCD su reticolo

Usando la tecnica della teoria perturbativa in quantizzazione stocastica si sono calcolate costanti di rinormalizzazione a 3 loop in QCD

Table 3 Quark bilinears renormalization constants for tree-level Symanzik improved gauge action and $n_f = 2$ Wilson fermions, at $\beta = 4.05$, summed in different couplings. Non-perturbative results from Ref. [8] are reported for comparison

	Expansion in $x_0 = \beta^{-1}$	Expansion in $x_1 \equiv \frac{\beta^{-1}}{\sqrt{P}}$	Expansion in $x_2 \equiv \frac{1}{P^{(1)}} \log(P)$	Expansion in $x_3 \equiv \frac{\beta^{-1}}{P}$	Ref. [8] (M1)	Ref. [8] (M2)
Z_V	0.710 (2)(28)	0.686 (21)	0.688 (17)	0.661 (55)	0.659 (4)	0.662 (3)
Z_A	0.788 (2)(18)	0.773 (12)	0.775 (9)	0.763 (26)	0.772 (6)	0.758 (4)
Z_S	0.753 (4)(30)	0.727 (29)	0.726 (27)	0.705 (49)	0.645 (6)	0.678 (4)
Z_P	0.601 (5)(48)	0.558 (45)	0.558 (41)	0.526 (73)	0.440(6)	0.480 (4)

M.Brambilla e F. Di Renzo, Eur.Phys.J. C73 (2013) 2666

M. Brambilla, F. Di Renzo, M. Hasegawa Eur.Phys.J. C74 (2014) 2944

• Misura delle correzioni irrilevanti da passo reticolare finito

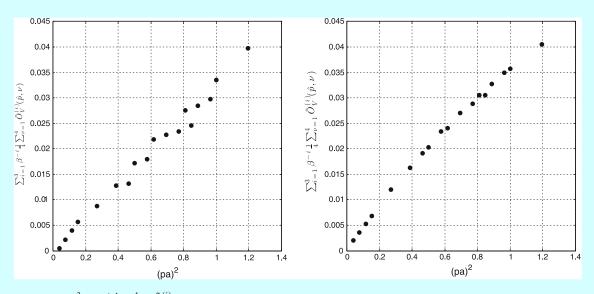


Fig. 3 The quantity $\sum_{i=1}^{3} \beta^{-i} \frac{1}{4} \sum_{\nu=1}^{4} \tilde{O}_{V}^{(i)}(\hat{p}, \nu)$ for the cases of Iwasaki (*left*; $\beta = 2.10$) and the Symanzik (*right*; $\beta = 4.05$) case. *Black points* quantify the impact of irrelevant (finite lattice spacing) effects on a determination of Z_V

Tema 4: strategie computazionali

- Rinormalizzazione non-perturbativa del tensore energia-impulso in SU(3) YM
 Nuovo e semplice metodo basato su una identità di Ward ottenuta per una QFT in un sistema di riferimento in moto.
 L. Giusti e M. Pepe, work in progress
- Costruzione non-perturbativa di nuove azioni migliorate su reticolo

M. Pepe et al., work in progress

• Sviluppo e approfondimento delle potenzialita' del Lefschetz thimble

F. Di Renzo e gruppo di Parma, work in progress

• Messa a punto di un ambiente per NSPT nella formulazione Schroedinger Functional della LQCD. Possibili applicazioni al Wilson Flow.

F. Di Renzo e gruppo di Parma, work in progress

• Calcolo a 2 loop per C_{sw} + costanti di rinormalizzazione Clover a 3 loop

F. Di Renzo e gruppo di Parma, work in progress

Assegnazioni ed uso di tempo di calcolo per QCDLAT

• BG/Q

INFN	2014/02/01 - 2015/01/31	24.500.000	12.724.554	51.9%
LISA (Bicocca)	2013/11/11 - 2014/11/11	3.000.000	1.128.147	37.6%
PRACE (CLS)	2013/09/03 - 2014/09/02	70.000.000	70.211.722	100.3%
ISCRA (Bicocca)	2013/11/04 - 2014/11/04	6.000.000	4.881.041	81.4%

• HPC Cluster Zefiro

INFN	2014/04/01 -	2014/06/30	500.000	632.073	126%

INFN 2014/09/01 - 2014/12/31 1.000.000

INFN Contribution To The Project In Terms Of Manpower And Financial Support

Manpower 2013: 1.17 % of the CSN 4 experiments total FTE (including technologists)

Budget 2013: 1.26 % of the CSN 4 experiments total budget

Total FTE: 11.00

Total Researchers: 16.00

* by Scientific Committee Secretariat

- Publications in refereed journals: (16 publications)
- Conference talks: (11 talks)
- Number of undergraduate and doctoral thesis on the Project: (6 theses)

Pubblicazioni

Entro le fine del 2014 una decina di lavori di calcolo nell'ambito di QCDLAT

Conclusioni e prospettive

- L'IS QCDLAT e' molto attiva e produttiva grazie anche alle importanti risorse di calcolo avute a disposizione: 100 Mh su BG/Q e 1.5 Mh su Zefiro.
- Per essere competitivi con il resto della comunita' scientifica e' cruciale che le rilevanti risorse di calcolo di BG/Q e del Large prototype siano incrementate dal possibile nuovo stanziamento INFN per il calcolo.
- Sul medio-lungo periodo e' importante che l'INFN ricominci a sostenere in modo regolare le necessita' del calcolo italiano.
- E' essenziale per la vitalita' e la competitivita' della comunita' di calcolo italiana il sostegno di R&D algoritmico/software con finanziamenti certi e regolari.
- <u>Proposta</u>: assumendo un esito favorevole della richiesta di fondi per il calcolo, sarebbe utile creare una commissione INFN che coinvolga rappresentanti dei gruppi/IS che piu' necessitano di risorse di calcolo, per decidere la migliore tecnologia, configurazione e gestione della nuova macchina.