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QCDLAT 

� Tema 1: QCD e fisica del sapore (Bicocca, Roma I, Roma II) 

Studio della QCD su reticolo con metodi Monte Carlo, Flavour Physics 
Modelli di spin, Proprietà dei vetri di spin, QFT fuori equilibrio  

pesante uso e necessità futura di grandi risorse di calcolo (parallelo) 

� Tema 2: QCD a temperatura finita e diagramma di fase (µ,T) (Bicocca, Parma) 

� Tema 3: sviluppi teorici (Bicocca, Parma, Roma I, Roma II) 

� Tema 4: strategie computazionali (Bicocca, Ferrara, Parma) 

Seminario di Mauro 
Papinutto 



Tema 2: QCD a temperatura finita e diagramma di fase (µ,T) 

� Equazione di stato di SU(3) Yang-Mills  

Nuovo metodo, molto efficiente, di studiare la termodinamica di una QFT:  
sistema statico             sistema in moto  

Misure di quantità termodinamiche independenti ad ogni temperatura  
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L. Giusti e M. Pepe, 
Phys. Rev. Lett. 113 (2014) 031601 



Tema 2: QCD a temperatura finita e diagramma di fase (µ,T) 

� Nuovo approccio allo studio di teorie di campo con potenziale chimico 

Potenziale chimico: problema del segno. Nuovo approccio basato su Lefschetz 
thimble        fase immaginaria costante, rilevante risparmio computazionale  

M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. 
Mukherjee, C. Schmidt, L. Scorzato, C. 
Torrero 
Phys.Rev. D89 (2014) 114505 

This ensures that the noise remains tangent to J 0.
Fourth, we use the evolved noise !0ð0Þ to generate a new
configuration as
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In the limit !t ! 0 this simulates Langevin dynamics on
the thimble. For !t > 0, "0ð0Þ will move away from the
thimble of order ð!tÞ2. To correct this, the fifth step con-
sists in following the path of SD from "0ð0Þ for a length $
leading to the configuration "0ð$Þ. Assuming that the
action at "0ð$Þ can be approximated with its quadratic
part (otherwise, we extend $), we ensure that"0ð$Þ belongs
to the thimble by projecting it as "ð$ÞðnewÞ ¼ P"0ð$Þ.
Finally, we follow the path of SA from "ð$ÞðnewÞ for a
length $. The resulting "ð0ÞðnewÞ is the new configuration.1

The computation of the projector P is done, once for all,
at the beginning of the simulation. However, it must be
applied at every iteration. This can be done most efficiently
in Fourier space, whereH and P are diagonal, although, for
this first exploratory study on small lattices, we did not take
advantage of this possibility.

The cost of the algorithm depends significantly on the
length $, that should be large enough to stretch out to the
region where the quadratic approximation of the action is
good. But how good is good enough? We certainly do not
need to constrain the system on the thimble exactly, but
only to the extent that the domain of integration preserves
the homology class of the thimble and the reweighting with
the phase eiSI is feasible.

It is then natural to askwhether$ ¼ 0 is already sufficient.
This corresponds to integrating the system on the vector
space G0 defined above. In general, G0 does not belong to
the same homology class as J 0, because the directions of
steepest ascent for the quadratic part of the action may not,
in general, be directions of convergence for the full action.

However, in our simulations we observed that such
divergences, although they do occur as expected, are very
rare (see below). This suggests that the integration on G0,
regularized, say, with a mild cutoff, might already provide
a good approximation. Of course, such a regulator intro-
duces an unknown bias, and the procedure is meaningful
only if the regulator is eventually removed, by approaching
the true thimble further. Next, we present our results onG0,
following which we show how the true thimble can be
systematically approached.

IV. NUMERICAL RESULTS ON G0

As discussed above, the simulations onG0 are meaningful
only with a regulator. Instead of introducing an explicit cut

of the domain, we regularized by discarding those simula-
tions that divergedwithin the observedhistories (i.e.,4( 106

trajectories for V ¼ 44, 106 trajectories for V ¼ 64 and
8( 105 trajectories for V ¼ 84). This procedure introduces
an unknown bias, that can only be removed by approaching
the thimble further. However, the fact that the divergences
are very rare makes the regularization rather unambiguous.
If we consider a common span of the first 8( 105 trajecto-
ries, a divergence occurred with probability )1:8% on the
latticesV ¼ 44, with probability)0:8% onV ¼ 64, and less
than 0.7% on V ¼ 84 (h ¼ 5( 10$3). The results obtained
in this way agree perfectly (within the rather small errors)
with the results obtained with the algorithm of [14,15].2

In particular, they show the correct scaling with the volume.
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FIG. 1. Average density hni in the critical region for the
lattices V ¼ 44, 64, 84.
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FIG. 2. The same as in Fig. 1 for the observable hj"j2i.

1Note that this procedure is not inherently stable, as the one in
[10], but relies on the (verifiable) fact that the integration in $
always brings sufficiently close to the saddle point.

2We thank Gert Aarts, Christof Gattringer and Thomas Kloiber
for sharing their partially unpublished results with us.

MONTE CARLO SIMULATIONS ON THE LEFSCHETZ . . . PHYSICAL REVIEW D 88, 051501(R) (2013)

RAPID COMMUNICATIONS

051501-3

Modello |ϕ|4 con 
potenziale chimico 



Tema 3: sviluppi teorici
� Calcolo perturbativo di costanti di rinormalizzazione per QCD su reticolo 

Usando la tecnica della teoria perturbativa in quantizzazione stocastica si sono 
calcolate costanti di rinormalizzazione a 3 loop in QCD 

� Misura delle correzioni irrilevanti da passo reticolare finito  

M. Brambilla, F. Di Renzo, M. Hasegawa 
Eur.Phys.J. C74 (2014) 2944 
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Table 3 Quark bilinears renormalization constants for tree-level Symanzik improved gauge action and n f = 2 Wilson fermions, at β = 4.05,
summed in different couplings. Non-perturbative results from Ref. [8] are reported for comparison

Expansion in x0 = β−1 Expansion in x1 ≡ β−1
√

P
Expansion in x2 ≡ 1

P(1) log(P) Expansion in x3 ≡ β−1

P Ref. [8] (M1) Ref. [8] (M2)

ZV 0.710 (2)(28) 0.686 (21) 0.688 (17) 0.661 (55) 0.659 (4) 0.662 (3)

Z A 0.788 (2)(18) 0.773 (12) 0.775 (9) 0.763 (26) 0.772 (6) 0.758 (4)

ZS 0.753 (4)(30) 0.727 (29) 0.726 (27) 0.705 (49) 0.645 (6) 0.678 (4)

Z P 0.601 (5)(48) 0.558 (45) 0.558 (41) 0.526 (73) 0.440 (6) 0.480 (4)

on the optimal choice of coupling and scale that are really
relevant for the computation at hand. Actually this choice has
to be regarded as so good that one loop captures essentially
the complete result. This does not need to hold true and can
be strictly speaking only assessed a posteriori. Only having
at least a two-loop result available one can inspect how the
series actually reshuffle and one can hope to learn something
more on the convergence properties. Our question is: can a
three-loop computation be reliable enough to gain solid, new
pieces of information?

We here compare results obtained as expansions in the
couplings which were also used in [3], i.e.

x0 = β−1 x1 ≡ β−1
√

P
x2 ≡ 1

P(1)
log(P) x3 ≡ β−1

P
.

P is the basic 1 × 1 plaquette, for which we do have an
expansion in β−1. In the Symanzik, n f = 2 case, the latter
reads

P(TLS,n f =2) = 1 − 1.4649(12)β−1 − 0.2730(7)β−2

−0.6536(18)β−3 + · · · .

For the Iwasaki, n f = 4 case, we have6

P(Iwa,n f =4) = 1 − 0.8410(1)β−1 + 0.1328(63)β−2

−0.2014(4)β−3 + · · · .

We can thus work out the expansions we are interested in. x2
and x3 are quite popular as boosted couplings. In the end, we
want to see whether results coming from summing series in
different couplings do or do not all approach the same result.
The definition of x1 can be useful with this respect. Con-
vergence properties in the Iwasaki computations are fairly
good in the original coupling; we will focus the case of
Symanzik action, looking for better convergence. There is
an overall ambiguity we have to live with: we do not have
non-perturbative simulations in the same setting we are deal-
ing with (Symanzik action and n f = 2 Wilson fermions). In
view of this limitation, we have no non-perturbative value
for the different couplings. We have indeed estimates which
come in turn from summing perturbative expansions of the

6 By a mere numerical accident, in this case the error on the three-loop
coefficient is actually smaller than that on the two-loop coefficient.

plaquette (actually even at higher orders than three loops):
these are the values we plug in. On the other side, one could
even take in first approximation the values of the plaque-
tte for the different regularization of [3]. This ambiguity
is admittedly a limitation. Still, if we take into account the
order of magnitude of the error one can attach to the value
of the coupling, it turns out that this is dominated by the
other errors, typically the truncation errors which are still
the dominant ones. The latter are estimated as done previ-
ously (i.e., as the highest-order contribution) and will be the
only ones reported in the following. Table 3 summarizes our
results.

Let us start from looking at ZV . Notice that switching
from x0 to x1 and then to x2, the value of the couplings are
getting larger and larger as we proceed. Results for the x1
and x2 expansions are quite close to each other and they
both approach the results of [8]. We get even closer when we
switch to x3. While the central value is now literally on top
of the non-perturbative result, the error has become pretty
large. This is simply the effect of the fact that the series has
started oscillating: already at one loop one gets essentially
the result 0.66, and then two- and three-loop contributions
basically cancel each other.

We proceed to Z A. Once again, in the case of the x3 expan-
sion the series has already started oscillating. All in all, it is
fair to say that results for finite constants display a tendency to
get closer to the non-perturbative ones. Actually, ZV changed
more than Z A, which is good, since the former was deviating
more than the latter from non-perturbative results.

We proceed to the logarithmically divergent renormaliza-
tion constants. If one takes the values of ZS and Z P after the
(various, different) boosting procedures and compare them
to the results in [8], one can still see quite important discrep-
ancies. So, there is still quite a gap for divergent renormal-
ization constants, which did not hold true in the case of finite
constants. It could well be that one simply needs more terms
to definitely assess the convergence properties, but there is
another issue which could be considered. We have already
noticed that “M1” and “M2” results in [8] differ much more
in the case of ZS and Z P than in the case of Z A and ZV .
One method tries to gain more information from the lower
momenta region than the other. To be more precise, one sim-

123

M.Brambilla e F. Di Renzo, 
Eur.Phys.J. C73 (2013) 2666 
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Fig. 3 The quantity
∑3

i=1 β
−i 1

4
∑4
ν=1 Õ(i)

V ( p̂, ν) for the cases of Iwasaki (left; β = 2.10) and the Symanzik (right; β = 4.05) case. Black points
quantify the impact of irrelevant (finite lattice spacing) effects on a determination of ZV

ZV (β = 4.05) = 0.710(2)(28),

while

Z A(β = 4.05) = 0.788(2)(18).

Moving to logarithmically divergent renormalization con-
stants, we get

ZS(β = 4.05) = 0.753(4)(30)

and4

Z P (β = 4.05) = 0.601(5)(48).

Conventions with errors are the same as before. In this case
deviations are manifest, in particular for ZS and Z P . This in
the end does not come as a surprise, given the observations we
have already made: convergence properties are strongly con-
trolled by the relative weight of one-loop and higher-order
contributions. This is the reason for not attempting to sum the
series at values of β smaller than the largest one. While there
is a tendency to converge for finite quantities, logarithmically
divergent constants are fairly far away from each other in the
perturbative and non-perturbative computations. This clearly
motivates the step forward of summing the series in different
couplings, which will be addressed in the following section.
Before we move to that issue, we present a first discussion of
how we can assess the impact of irrelevant effects once we
sum the series.

The results we have just reported holds in the continuum
and infinite volume limits, i.e. they are free from irrelevant
and finite-size effects. To be definite: in the prototypal form
of Eq. (17) this corresponds to retaining only c1. On the

4 We regret a typo in the value of Z P reported in [4].

other side, to assess the irrelevant effects we can discard the
continuum limit and finite-size contributions. Again, in the
prototypal form of Eq. (17) this corresponds to discarding
c1 (the continuum limit result) and #Ô$(pL) (the finite-
size effects). This defines a new quantity, which we denote
Õ$( p̂, ν). At the same (very) moderate order of Eq. (17) a
prototypal form for this quantity reads

Õ$( p̂, ν) = c2
∑

σ

p̂2
σ + c3

∑
σ p̂4

σ∑
ρ p̂2

ρ

+ c4 p̂2
ν + O(a4). (18)

All in all: in Õ$( p̂, ν) everything depends on (powers of) p̂
and thus does not survive the continuum limit; on the other
side, there is no pL dependence because that has been elimi-
nated by subtracting the#ÔV (pL). Obviously, for divergent
constants we compute the finite parts only (i.e. these are log-
subtracted quantities).

In Fig. 3 we plot the quantity

3∑

i=1

β−i 1
4

4∑

ν=1

Õ(i)
V ( p̂, ν)

for the Iwasaki (left panel) and the Symanzik (right panel)
case (values of the coupling are once again β = 2.10 and
β = 4.05 respectively). These can be regarded as the irrel-
evant contributions to ZV (computed in infinite volume at
three-loop accuracy). Notice that in abscissa we report values
of momentum in dimensionless units (in other terms, there is
no value for the lattice spacing involved). Notice also that in
Fig. 3 we average on directions, which is the common prac-
tice. When computed in this way, irrelevant effects come out
of our fit, which is necessarily an effective one: we have to
stop at a given order in the lattice spacing. We stress neverthe-
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Tema 4: strategie computazionali

� Rinormalizzazione non-perturbativa del tensore energia-impulso in SU(3) YM 

Nuovo e semplice metodo basato su una identità di Ward ottenuta per una QFT 
in un sistema di riferimento in moto.  L. Giusti e M. Pepe, work in progress 

� Costruzione non-perturbativa di nuove azioni migliorate su reticolo 
M. Pepe et al., work in progress 

� Sviluppo e approfondimento delle potenzialita’ del Lefschetz thimble  
F. Di Renzo e gruppo di Parma, 
work in progress 

� Messa a punto di un ambiente per NSPT nella formulazione Schroedinger 
Functional della LQCD. Possibili applicazioni al Wilson Flow. 

F. Di Renzo e gruppo di Parma, 
work in progress 

� Calcolo a 2 loop per Csw + costanti di rinormalizzazione Clover a 3 loop 
F. Di Renzo e gruppo di Parma, 
work in progress 



Assegnazioni ed uso di tempo di calcolo per QCDLAT

� BG/Q  

INFN                        2014/02/01  -  2015/01/31         24.500.000            12.724.554        51.9%  

LISA (Bicocca)        2013/11/11   -  2014/11/11          3.000.000              1.128.147        37.6%  

PRACE (CLS)         2013/09/03  -  2014/09/02          70.000.000           70.211.722       100.3%  

ISCRA (Bicocca)     2013/11/04   -  2014/11/04           6.000.000               4.881.041       81.4% 

� HPC Cluster Zefiro  

 INFN                       2014/04/01  -  2014/06/30             500.000                 632.073        126%  

 INFN                      2014/09/01   -  2014/12/31           1.000.000                  

Pubblicazioni
Entro le fine del 2014  una decina di lavori di calcolo 
nell’ambito di QCDLAT 



Conclusioni e prospettive

� L’IS QCDLAT e’ molto attiva e produttiva grazie anche alle importanti risorse 
di calcolo avute a disposizione: 100 Mh su BG/Q e 1.5 Mh su Zefiro. 

� Per essere competitivi con il resto della comunita’ scientifica e’ cruciale che le 
rilevanti risorse di calcolo di BG/Q e del Large prototype siano incrementate dal 
possibile nuovo stanziamento INFN per il calcolo. 

� Sul medio-lungo periodo e’ importante che l’INFN ricominci a sostenere in 
modo regolare le necessita’ del calcolo italiano.  

� Proposta: assumendo un esito favorevole della richiesta di fondi per il calcolo, 
sarebbe utile creare una commissione INFN che coinvolga rappresentanti dei 
gruppi/IS che piu’ necessitano di risorse di calcolo, per decidere la migliore 
tecnologia, configurazione e gestione della nuova macchina.  

� E’ essenziale per la vitalita’ e la competitivita’ della comunita’ di calcolo italiana 
il sostegno di R&D algoritmico/software con finanziamenti certi e regolari.  


