Experiments relevant to the astrophysical p-process nucleosynthesis

> Gy. Gyürky Institute for Nuclear Research (ATOMKI) Debrecen, Hungary

Seminar of the National Laboratories of Gran Sasso, 10 Sept 2014

In Gran Sasso

Around Debrecen...

A Commentation of the state and and the state of the state

Under Alle & Under

The LUNA collaboration

- **Nuclear astrophysics in Gran Sasso**
- The only underground accelerator in the world
- **Studying (mostly) hydrogen burning reactions** of stars
- I am proud to be part of it since 2000

Composition of the Solar System

Synthesis of elements heavier than Iron

- **No energy generation above Iron**
- **Increasing Coulomb barrier** \Rightarrow **low charged** particle induced cross section
- **High Coulomb barrier cannot be overcome by** increasing temperature (γ -induced reactions become faster) 8.5
- \Rightarrow Charged particle induced reactions cannot play the key role

Heavy element nucleosynthesis

Heavy element nucleosynthesis

Heavy element nucleosynthesis

p-nuclei (p-nuts)

Abundance information only from the Solar System

$\mathcal{L}_{\mathcal{A}}$ ⁷⁴Se

- $\mathcal{L}_{\mathcal{A}}$ ⁷⁸Kr
- \mathcal{L} ⁸⁴Sr
- $\mathcal{L}_{\mathcal{A}}$ ⁹²Nb
- \mathcal{L} 92,94Mo
- \mathcal{L} 96,98Ru
- $\mathcal{L}_{\mathcal{A}}$ ¹⁰²Pd
- \mathcal{L} 106,108_{Cd}
- \mathcal{L} 113ln
- \mathcal{L} 112,114Sn
- \mathcal{L} 120 Te
- $\mathcal{L}_{\mathcal{A}}$ 124,126Xe
- \mathcal{L} $130,132$ Ba
- \mathcal{L} 138 _a
- $\mathcal{L}_{\mathcal{A}}$ 136,138Ce
- \mathcal{L} 144,146Sm 156,158Dy
- $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L}_{\mathcal{A}}$ 162 Fr
- \mathcal{L} ¹⁶⁸Yb
- $\mathcal{L}_{\mathcal{A}}$ ¹⁷⁴Hf
- \mathcal{L} 180 Ta
- $\mathcal{L}_{\mathcal{A}}$ ¹⁸⁰W
- $\mathcal{L}_{\mathcal{A}}$ ¹⁸⁴Os ¹⁹⁰Pt
- \mathcal{L} $\mathcal{L}_{\mathcal{A}}$ ¹⁹⁶Hg

mainly even-even nuclei 0.1-1% isotopic abundance

The synthesis of p-nuclei REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

Остовек, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

. The reactions which must be involved in synthesizing these isotopes are (p, γ) and possibly (γ, n) reactions on material which has already been synthe \rightarrow by the s and the, pro $\delta vS.$ 10 CCCSS

Problems with the rp-process

- Definite endpoint around the alpha emitter Te isotopes 105 Te 107 Te 106 Te
- The created isotopes are trapped on the surface of the

neutron star

 106 Sl $107Sb$ Sb 105 Sn 104 Sn 103_C 106_C 103 In 102 In 105 In 104 In H. Schatz et al.

SnSbTe cycle Phys. Rev. Lett. 86, 3471 (2001)

The gamma-process

Gamma-induced /mainly (y,n) reactions on sand r-process seed isotopes

gamma-process reaction network

- \sim 2000 isotopes \sim 20000 reactions
- Mainly (y,n) , (y,α) , (y,p) reactions and beta decays
- ORM. OVERPRODUCTION FACTOR **The models are** not able to reproduce the 믑 observed 0.1 **Mo-Ru** p-isotope prev. library (Rapp 2006) upd. library (Dillmann 2006) 25 M_{sin} (Rayet 1995) abundances 80 120 200 140 160 180 **MASS NUMBER A**

T. Rauscher et al. Rep. Prog. Phys. **76** (2013) 066201.

Possible explanations

Other processes may contribute: ρ rp-process **>v-process** $\rho_{\rm v}$ p-process pn-process

…

Problems with nuclear physics input

Problems with astrophysical input

Astrophysics input: site and conditions

- \blacksquare γ -induced reactions with Planck photons: high temperature needed (GK range)
- \blacksquare Time scale: not too short, not too long (~1s)
- Necessary seed nuclei must be available

Nuclear physics input

Experimental determination of the relevant cross sections is necessary

- **Nuclear masses (rather well known)**
- Decay properties
- Reaction rates (obtained from cross sections)
	- □ Thousands of reactions
	- Mainly gamma-induced
	- □ Typically taken from theory: Hauser-Feshbach statistical model
	- □ Calculated p-isotope abundances are (very) sensitive to (some) reaction rates

Gamma-induced reactions

- **Experimental investigation is challenging (fast** progress, though: bremsstrahlung, inverse Compton scattering, Coulomb dissociation)
- **Effect of thermally excited states on the** reaction rate is more important for γ -induced reactions
- Detailed balance: direct relation between (x,y) and (y,x) reaction rate

 \Rightarrow capture reactions should be studied

Capture reaction cross section

measurement

- **Large database for** (n,y) **reaction**
- \blacksquare Very few data for (α,γ) and (p,γ)

Experimental challenges

- Relevant energy range (Gamow window):
- (p,y) : 1-4 MeV (Coulomb barrier: 7-12 MeV)
- (α, γ) : 5-15 MeV (Coulomb barrier: 10-20 MeV)
- \Rightarrow low cross section
- Compound nucleus with overlapping levels
- \Rightarrow complicated decay scheme (many transitions)

The conventional in-beam gamma-spectroscopy is difficult

Activation method

Cons:

- **The final nucleus must** be radioactive (and the half-life must be appropriate)
- Some radiation with sufficient intensity is needed

Pros:

- Much cleaner γ -spectra
- **In Isotropic angular** distribution
- **Nore isotopes studied** simultaneously

Activation: underground location may help

 144 Sm (α, γ) ¹⁴⁸Gd

> $T_{1/2}$ = 74.6 y alpha-counting in Gran Sasso

... thank you, Matthias (Junker)

 \blacksquare ¹⁶⁹Tm(α , γ)¹⁷³Lu

 $T_{1/2}$ = 500 d gamma-counting in Gran Sasso

... thank you, Matthias (Laubenstein)

Activation: adopted by LUNA

- \mathbb{R}^2 $^3\mathsf{He}(\alpha,\gamma)^7\mathsf{Be},\ ^{17}\mathsf{O}(\mathsf{p},\gamma)^{18}\mathsf{F}$
- very useful alternative technique
- increases the credibility of the results

Experiments at ATOMKI

- **Alpha-induced reactions:** Proton-induced 5-15 MeV
	- \Rightarrow Cyclotron

reactions: 1-4 MeV

 \Rightarrow Van de Graaff

http://www.atomki.hu/

Capture reaction cross section measurements

Results

- Cross section measured at energies as low as possible
	- \Box (p, γ) reaction: in the Gamow window
	- σ (α , γ) reaction: above the Gamow window
- Comparison with statistical model calculations
- **Reaction rates, astrophysical consequences**

Comparison with theory

Input for statistical models

The statistical model uses input parameters

- **□ Reaction Q values (masses)**
- □ Ground and exited state properties
- **<u>n</u>** Level densities
- **□ Gamma-ray strength functions**
- □ Optical model potentials
- **The resulting cross sections strongly depend** on them

32

Fine tuning of parameters

Fine tuning of parameters

G.G. Kiss *et al.,* Phys. Rev. Lett. **101** (2008) 191101

Alpha-nucleus optical potential

Direct determination of alpha-nucleus optical potential

- **High precision elastic scattering experiments**
- **Low energies (around Coulomb-barrier)**
- Comparison with global optical potentials
- Construction of local potentials
- **Experiments:**

cyclotron of ATOMKI

Capture and scattering experiments

Measured complete angular distributions

Dependence on proton or neutron number

Construction of local potentials

Direct influence on γ -process networks

secondary paths

 $T = 2.0 \cdot 10^9$ K

Novel methods

- Activation experiments: limited to radioactive product isotopes, short half-lives and measurable decay signatures
- **Extension of the activation method (AMS)**
- **Extension to in-beam measurements**
- **Extension to radioactive isotopes (RIB** facilities)

Accelerator mass spectrometry (AMS)

- **For long half-life reaction products**
- high sensitivity
- **E** experimentally challenging

In-beam γ -spectroscopy

- Suitable for all stable targets
- **typically very high beam-induced background**

Radioactive ion beam: storage ring experiment

96 Ru(p, γ)⁹⁷Rh reaction in inverse kinematics at ESR, GSI

Where does this come from?

Courtesy: Tommy Rauscher

Summary and conclusions

- **p**-isotope production: one of the least understood processes of nucleosynthesis
- **Experiments are necessary:**
	- □ Gamma-induced reactions
	- **Q** Capture reactions
	- □ Elastic scattering
- **New experimental techniques are also** necessary

Thank you for your attention!

