Experiments relevant to the astrophysical p-process nucleosynthesis

Gy. Gyürky Institute for Nuclear Research (ATOMKI) Debrecen, Hungary

Seminar of the National Laboratories of Gran Sasso, 10 Sept 2014

In Gran Sasso

Around Debrecen...

Standard and and a second and a second and a second a second a second a second and a second and a second and a

Lindian Ballin an Astronom

The LUNA collaboration

- Nuclear astrophysics in Gran Sasso
- The only underground accelerator in the world
- Studying (mostly) hydrogen burning reactions of stars
- I am proud to be part of it since 2000

Composition of the Solar System

Synthesis of elements heavier than Iron

- No energy generation above Iron
- Increasing Coulomb barrier ⇒ low charged particle induced cross section
- High Coulomb barrier cannot be overcome by increasing temperature (γ-induced reactions become faster)
- ⇒ Charged particle induced reactions cannot play the key role

Heavy element nucleosynthesis

Fe

Heavy element nucleosynthesis

Heavy element nucleosynthesis

p-nuclei (p-nuts)

Abundance information only from the Solar System

⁷⁴Se

- ⁷⁸Kr
- 84Sr
- ⁹²Nb
- ^{92,94}Mo
- ^{96,98}Ru
- ¹⁰²Pd
- ^{106,108}Cd
- ¹¹³ln
- ^{112,114}Sn
- ¹²⁰Te
- ^{124,126}Xe
- ^{130,132}Ba
- ¹³⁸La
- ^{136,138}Ce
- ^{144,146}Sm
- ^{156,158}Dy
- ¹⁶²Er
- ¹⁶⁸Yb
- ¹⁷⁴Hf
- ¹⁸⁰Ta
- ¹⁸⁰W
- ¹⁸⁴Os
 ¹⁹⁰Pt
- ¹⁹⁶Hg

mainly even-even nuclei

0.1-1% isotopic abundance

The synthesis of p-nuclei REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

October, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

The reactions which must be involved in synthesizing these isotopes are (p,γ) and possibly (γ,n) reactions on material which has already been synthed by the s and the process.

Problems with the rp-process

- Definite endpoint around the alpha emitter Te isotopes
 105Te 106Te 107Te
- The created isotopes are trapped on the surface of the

neutron star

¹⁰⁷Sb 106 S Sb ¹⁰⁵Sr ¹⁰⁴Sn 1030 106C 103In 102In ¹⁰⁴In ¹⁰⁵In H. Schatz et al. Phys. Rev. Lett. 86, 3471 (2001)

SnSbTe cycle

The gamma-process

 Gamma-induced /mainly (γ,n)/ reactions on sand r-process seed isotopes

gamma-process reaction network

- ~ 2000 isotopes ~ 20000 reactions
- Mainly (γ,n), (γ,α), (γ,p) reactions and beta decays
 g ⁷/₁
- **JRM. OVERPRODUCTION FACTOR** The models are not able to reproduce the observed 0.1 Mo-Ru p-isotope prev. library (Rapp 2006) upd. library (Dillmann 2006) abundances 25 M_{sun} (Rayet 1995) 120 80 140 160 180 200 MASS NUMBER A

T. Rauscher et al. Rep. Prog. Phys. 76 (2013) 066201.

Possible explanations

≻...

Problems with nuclear physics input

Problems with astrophysical input

Astrophysics input: site and conditions

- γ-induced reactions with Planck photons: high temperature needed (GK range)
- Time scale: not too short, not too long (~1s)
- Necessary seed nuclei must be available

Nuclear physics input

Experimental determination of the relevant cross sections is necessary

- Nuclear masses (rather well known)
- Decay properties
- Reaction rates (obtained from cross sections)
 - Thousands of reactions
 - Mainly gamma-induced
 - Typically taken from theory: Hauser-Feshbach statistical model
 - Calculated p-isotope abundances are (very) sensitive to (some) reaction rates

Gamma-induced reactions

- Experimental investigation is challenging (fast progress, though: bremsstrahlung, inverse Compton scattering, Coulomb dissociation)
- Effect of thermally excited states on the reaction rate is more important for γ-induced reactions
- Detailed balance: direct relation between (x,γ) and (γ,x) reaction rate

 \Rightarrow capture reactions should be studied

Capture reaction cross section

measurement

- Large database for (n,γ) reaction
- Very few data for (α,γ) and (p,γ)

Experimental challenges

- Relevant energy range (Gamow window):
- (p,γ): 1-4 MeV (Coulomb barrier: 7-12 MeV)
- (α , γ): 5-15 MeV (Coulomb barrier: 10-20 MeV)
- \Rightarrow low cross section
- Compound nucleus with overlapping levels
- \Rightarrow complicated decay scheme (many transitions)

The conventional in-beam gamma-spectroscopy is difficult

Activation method

Cons:

- The final nucleus must be radioactive (and the half-life must be appropriate)
- Some radiation with sufficient intensity is needed

Pros:

- Much cleaner γ-spectra
- Isotropic angular distribution

activity

 More isotopes studied simultaneously

Activation: underground location may help

¹⁴⁴Sm(α,γ)¹⁴⁸Gd

 $T_{1/2} = 74.6 \text{ y}$ alpha-counting in Gran Sasso

... thank you, Matthias (Junker)

¹⁶⁹Tm(α,γ)¹⁷³Lu

 $T_{1/2} = 500 d$ gamma-counting in Gran Sasso

... thank you, Matthias (Laubenstein)

Activation: adopted by LUNA

- ³He(α,γ)⁷Be, ¹⁷O(p,γ)¹⁸F
- very useful alternative technique
- increases the credibility of the results

Experiments at ATOMKI

- Alpha-induced reactions: Proton-induced 5-15 MeV
 - \Rightarrow Cyclotron

reactions: 1-4 MeV

 \Rightarrow Van de Graaff

http://www.atomki.hu/

Capture reaction cross section measurements

Results

- Cross section measured at energies as low as possible
 - \Box (p, γ) reaction: in the Gamow window
 - \square (α , γ) reaction: above the Gamow window
- Comparison with statistical model calculations
- Reaction rates, astrophysical consequences

Comparison with theory

Input for statistical models

The statistical model uses input parameters

- Reaction Q values (masses)
- Ground and exited state properties
- Level densities
- Gamma-ray strength functions
- Optical model potentials
- The resulting cross sections strongly depend on them

Fine tuning of parameters

Fine tuning of parameters

G.G. Kiss et al., Phys. Rev. Lett. 101 (2008) 191101

Alpha-nucleus optical potential

Direct determination of alpha-nucleus optical potential

- High precision elastic scattering experiments
- Low energies (around Coulomb-barrier)
- Comparison with global optical potentials
- Construction of local potentials
- Experiments:
 cyclotron of ATOMKI

Capture and scattering experiments

Measured complete angular distributions

Dependence on proton or neutron number

Construction of local potentials

Direct influence on γ -process networks

secondary paths

 $T = 2.0 \cdot 10^9 K$

Novel methods

- Activation experiments: limited to radioactive product isotopes, short half-lives and measurable decay signatures
- Extension of the activation method (AMS)
- Extension to in-beam measurements
- Extension to radioactive isotopes (RIB facilities)

Accelerator mass spectrometry (AMS)

- for long half-life reaction products
- high sensitivity
- experimentally challenging

In-beam γ-spectroscopy

- Suitable for all stable targets
- typically very high beam-induced background

Radioactive ion beam: storage ring experiment

⁹⁶Ru(p,γ)⁹⁷Rh reaction in inverse kinematics at ESR, GSI

Where does this come from?

Courtesy: Tommy Rauscher

Summary and conclusions

- p-isotope production: one of the least understood processes of nucleosynthesis
- Experiments are necessary:
 - Gamma-induced reactions
 - Capture reactions
 - Elastic scattering
- New experimental techniques are also necessary

Thank you for your attention!

