

Study of ²⁵Mg+n reactions: Towards a deeper understanding of the s process

<u>C. Massimi</u> University of Bologna and INFN

- Motivations
- New measurements:
 - $-^{25}Mg(n, \gamma)$ @ n_TOF
 - ²⁵Mg(n, tot) @ GELINA
- Preliminary results
- An idea for the future

 $-{}^{25}Mg(n, \alpha){}^{22}Ne @ EAR2 - n_TOF$

The s process

Identified neutron sources: ${}^{13}C(\alpha, n){}^{16}O$ and ${}^{22}Ne(\alpha, n){}^{25}Mg$ and 2 different components:

Main component

 → AGB stars
 ²²Ne(α, n)²⁵Mg partially activated

Weak component → Massive stars ²²Ne(α, n)²⁵Mg main source

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki, Rev. Mod. Phys. **83** (2011) 157

M. Pignatari, R. Gallino, M. Heil, M. Wiescher, F. Käppeler, F. Herwig, S. Bisterzo, ApJ. **710** (2010) 155

1. NEUTRON POISON:

^{25,26}Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes in competition with neutron capture on ⁵⁶Fe (the basic s-process seed for the production of heavy isotopes).

2. CONSTRAINTS for ²²Ne(α , n)²⁵Mg:

It is one of the most important **neutron source in Red Giant stars.** Its **reaction rate** is very **uncertain** because of the **poorly known property of the states in** ²⁶Mg. From neutron measurements the J^{π} of ²⁶Mg states can be deduced.

Motivation 1

^{25,26}Mg isotopes: neutron poison of the s process

Main component - AGB stars

- kT = 8 keV (t = 10⁴ years)
 - Mg density = 0
 - Neutron density ≈ 10⁷ / cm³
- kT = 23 keV (t < 10 years)
 - Mg density $\approx 10^{9 \div 10}$ / cm³
 - Neutron density ≈ 10⁹⁺¹⁰ / cm³

Weak component - Massive stars

- kT = 25 keV
 - Mg density $\approx 10^7$ / cm³
 - Neutron density ≈ 10⁷ / cm³
- kT=90 keV
 - Mg density $\approx 10^{11+12}$ / cm³
 - Neutron density $\approx 10^{11+12}$ / cm³

Motivation 1

^{25,26}Mg isotopes: neutron poison of the s process

Main component - AGB stars

- kT = 8 keV (t = 10⁴ years)
 - Mg density = 0
 - Neutron density ≈ 10⁷ / cm³
- kT = 23 keV (t < 10 years)
 - Mg density $\approx 10^{9 \div 10}$ / cm³
 - Neutron density ≈ 10^{9÷10} / cm³

Weak component - Massive stars

- kT = 25 keV
 - Mg density $\approx 10^7$ / cm³
 - Neutron density ≈ 10⁷ / cm³
- kT=90 keV
 - Mg density $\approx 10^{11\div12}$ / cm³
 - Neutron density ≈ 10^{11÷12} / cm³

From neutron TOF measurements: $\rightarrow {}^{25}Mg(n, \gamma)$ cross section

Constraints for the ²²Ne(α, n)²⁵Mg reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

Only **natural-parity states in ²⁶Mg** can participate in the ²²Ne(α ,n)²⁵Mg reaction

Constraints for the ²²Ne(α , n)²⁵Mg reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

Only natural-parity states in ²⁶Mg can participate in the ²²Ne(α ,n)²⁵Mg reaction

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell} \qquad \pi = (-1)^{\ell}$$
$$\vec{J} = \vec{0} + \vec{\ell}$$
$$J^{\pi} = 0^{+}, 1^{-}, 2^{+}, 3^{-}, 4^{+} \dots$$

, π

²⁶Mg

States in ²⁶Mg populated by ²⁵Mg+n reaction

Results from previous (2003) measurement:

PHYSICAL REVIEW C 85, 044615 (2012)

Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications

C. Massimi,^{1,2,*} P. Koehler,³ S. Bisterzo,⁴ N. Colonna,⁵ R. Gallino,⁴ F. Gunsing,⁶ F. Käppeler,⁷ G. Lorusso,⁵ A. Mengoni,^{8,9} M. Pignatari,¹⁰ G. Vannini,^{1,2} U. Abbondanno,¹¹ G. Aerts,⁶ H. Álvarez,¹² F. Álvarez-Velarde,¹³ S. Andriamonie,⁶ J. Andrzejewski,¹⁴ P. Assimakopoulos,^{15,†} L. Audouin,¹⁶ G. Badurek,¹⁷ M. Barbagallo,⁵ P. Baumann,¹⁸ F. Bečvář,¹⁹ F. Belloni,¹¹ M. Bennett,²⁰ E. Berthoumieux,⁶ M. Calviani,⁹ F. Calviño,²¹ D. Cano-Ott,¹³ R. Capote,^{8,22} C. Carrapico,^{23,6} A. Carrillo de Albornoz,²³ P. Cennini,⁹ V. Chepel,²⁴ E. Chiaveri,⁹ G. Cortes,²⁵ A. Couture,²⁶ J. Cox,²⁶ M. Dahlfors,⁹ S. David,¹⁶ I. Dillmann,⁷ R. Dolfini,²⁷ C. Domingo-Pardo,²⁸ W. Dridi,⁶ I. Duran,¹² C. Eleftheriadis,²⁹ M. Embid-Segura,¹³ L. Ferrant,^{16,†} A. Ferrari,⁹ R. Ferreira-Margues,²⁴ L. Fitzpatrick,⁹ H. Frais-Koelbl,⁸ K. Fujii,¹¹ W. Furman,³⁰ I. Goncalves,²³ E. González-Romero,¹³ A. Goverdovski,³¹ F. Gramegna,³² E. Griesmayer,⁸ C. Guerrero,¹³ B. Haas,³³ R. Haight,³⁴ M. Heil,³⁵ A. Herrera-Martinez,⁹ F. Herwig,³⁶ R. Hirschi,²⁰ M. Igashira,³⁷ S. Isaev,¹⁶ E. Jericha,¹⁷ Y. Kadi,⁹ D. Karadimos,¹⁵ D. Karamanis,¹⁵ M. Kerveno,¹⁸ V. Ketlerov,³⁰ V. Konovalov,²⁹ S. Kopecky,³⁸ E. Kossionides,³⁹ M. Krtička,¹⁹ C. Lampoudis.^{29,6} H. Leeb,¹⁷ C. Lederer,⁴⁰ A. Lindote,²⁴ I. Lopes,²⁴ R. Losito,⁹ M. Lozano,²² S. Lukic,¹⁸ J. Marganiec, ¹⁴ L. Marques, ²³ S. Marrone, ⁵ T. Martínez, ¹³ P. Mastinu, ³² E. Mendoza, ¹³ P. M. Milazzo, ¹¹ C. Moreau, ¹¹ M. Mosconi,⁷ F. Neves,²⁴ H. Oberhummer,¹⁷ S. O'Brien,²⁶ M. Oshima,⁴¹ J. Pancin,⁶ C. Papachristodoulou,¹⁵ C. Papadopoulos,⁴² C. Paradela,¹² N. Patronis,¹⁵ A. Pavlik,⁴⁰ P. Pavlopoulos,⁴³ L. Perrot,⁶ M. T. Pigni,¹⁷ R. Plag,⁷ A. Plompen,³⁸ A. Plukis,⁶ A. Poch,²⁵ J. Praena,²² C. Pretel,²⁵ J. Quesada,²² T. Rauscher,¹⁰ R. Reifarth,³⁴ G. Rockefeller,³⁴ M. Rosetti,⁴⁴ C. Rubbia,²⁷ G. Rudolf,¹⁸ J. Salgado,²³ C. Santos,²³ L. Sarchiapone,⁹ R. Sarmento,²³ I. Savvidis,²⁹ C. Stephan,¹⁶ G. Tagliente,⁵ J. L. Tain²⁸ D. Tarrío,¹² L. Tassan-Got,¹⁶ L. Tavora,²³ R. Terlizzi,⁵ P. Vaz,²³ A. Ventura,⁴⁴ D. Villamarin,¹³ V. Vlachoudis,⁹ R. Vlastou,⁴² F. Voss,⁷ S. Walter,⁷ H. Wendler,⁹ M. Wiescher,²⁶ and K. Wisshak⁷

Results from previous (2003) measurement:

PHYSICAL REVIEW C 85, 044615 (2012)

Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications

C. Massimi,^{1,2,*} P. Koehler,³ S. Bisterzo,⁴ N. Colonna,⁵ R. Gallino,⁴ F. Gunsing,⁶ F. Käppeler,⁷ G. Lorusso,⁵ A. Mengoni,^{8,9} M. Pignatari,¹⁰ G. Vannini,^{1,2} U. Abbondanno,¹¹ G. Aerts,⁶ H. Álvarez,¹² F. Álvarez-Velarde,¹³ S. Andriamonie,⁶ J. Andrzejewski,¹⁴ P. Assimakopoulos,^{15,†} L. Audouin,¹⁶ G. Badurek,¹⁷ M. Barbagallo,⁵ P. Baumann,¹⁸ F. Bečvář,¹⁹ F. Belloni,¹¹ M. Bennett,²⁰ E. Berthoumieux,⁶ M. Calviani,⁹ F. Calviño,²¹ D. Cano-Ott,¹³ R. Capote,^{8,22} C. Carrapico,^{23,6} A. Carrillo de Albornoz,²³ P. Cennini,⁹ V. Chepel,²⁴ E. Chiaveri,⁹ G. Cortes,²⁵ A. Couture,²⁶ J. Cox,²⁶ M. Dahlfors,⁹ S. David,¹⁶ I. Dillmann.⁷ R. Dolfini.²⁷ C. Domingo-Pardo.²⁸ W. Dridi.⁶ I. Duran.¹² C. Eleftheriadis.²⁹ M. Embid-Segura.¹³ L. Ferrant,^{16,†} A. Ferrari,⁹ R. Ferreira-Marques,²⁴ L. Fitzpatrick,⁹ H. Frais-Koelbl,⁸ K. Fujii,¹¹ W. Furman,³⁰ I. Goncalves,²³ E. González-Romero,¹³ A. Goverdovski,³¹ F. Gramegna,³² E. Griesmayer,⁸ C. Guerrero,¹³ B. Haas,³³ R. Haight,³⁴ M. Heil,³⁵ A. Herrera-Martinez,⁹ F. Herwig,³⁶ R. Hirschi,²⁰ M. Igashira,³⁷ S. Isaev,¹⁶ E. Jericha,¹⁷ Y. Kadi,⁹ D. Karadimos,¹⁵ D. Karamanis,¹⁵ M. Kerveno,¹⁸ V. Ketlerov,³⁰ V. Konovalov,²⁹ S. Kopecky,³⁸ E. Kossionides,³⁹ M. Krtička,¹⁹ C. Lampoudis,^{29,6} H. Leeb,¹⁷ C. Lederer,⁴⁰ A. Lindote,²⁴ I. Lopes,²⁴ R. Losito,⁹ M. Lozano,²² S. Lukic,¹⁸ J. Marganiec, ¹⁴ L. Marques, ²³ S. Marrone, ⁵ T. Martínez, ¹³ P. Mastinu, ³² E. Mendoza, ¹³ P. M. Milazzo, ¹¹ C. Moreau, ¹¹ M. Mosconi,⁷ F. Neves,²⁴ H. Oberhummer,¹⁷ S. O'Brien,²⁶ M. Oshima,⁴¹ J. Pancin,⁶ C. Papachristodoulou,¹⁵ C. Papadopoulos,⁴² C. Paradela,¹² N. Patronis,¹⁵ A. Pavlik,⁴⁰ P. Pavlopoulos,⁴³ L. Perrot,⁶ M. T. Pigni,¹⁷ R. Plag,⁷ A. Plompen,³⁸ A. Plukis,⁶ A. Poch,²⁵ J. Praena,²² C. Pretel,²⁵ J. Ouesada,²² T. Rauscher,¹⁰ R. Reifarth,³⁴ G. Rockefeller,³⁴ M. Rosetti,⁴⁴ C. Rubbia,²⁷ G. Rudolf,¹⁸ J. Salgado,²³ C. Santos,²³ L. Sarchiapone,⁹ R. Sarmento,²³ I. Savvidis,²⁹ C. Stephan,¹⁶ G. Tagliente,⁵ J. L. Tain²⁸ D. Tarrío,¹² L. Tassan-Got,¹⁶ L. Tavora,²³ R. Terlizzi,⁵ P. Vaz,²³ A. Ventura,⁴⁴ D. Villamarin,¹³ V. Vlachoudis,⁹ R. Vlastou,⁴² F. Voss,⁷ S. Walter,⁷ H. Wendler,⁹ M. Wiescher,²⁶ and K. Wisshak⁷

New measurement: improvements

- 1. Sample
 - <u>Capture</u> on a metal ²⁵Mg-enriched sample → no data in literature
 - <u>Transmission</u> on the ²⁵Mg-enriched sample → no data in literature

- 2. n_TOF facility Phase-II:
 - Borated water as neutron moderator → γ-ray background reduced

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator --ToF Neutrons Time Of Flight

@n_TOF New Measurement /NFN

di Fisica Nucleare

TT10 n_TOF is a neutron spallation source based on 20 GeV/c protons from the CERN PS hitting a Pb **block** (~360 neutrons per proton). Experimental area at 200 m. **JSR** 20 GeV Proton beam Experimental Area TT2 <u>Farge</u>t BOOSTER PS Neutron-Beam **Neutron flux** 10⁵ n/cm²/pulse Detector Neutron energy 30 meV – 1 GeV Neutron source **Energy resolution** DE/E ~ 10-4 Proton Beam Lead Repetition rate ~ 0.8 Hz Spallation 20 GeV 7 x 10¹² ppp Target LINAC Neutron-Beam 10 production angle

2003 OLD sample (powder)

Science-Technical Centre "Stable Isotopes" (Obninsk, Russia)

Property	Value
Mass MgO	3.19 g
Diameter	22 mm
Thickness	2.3 mm
Areal density	1.234x10 ⁻² at/b

Enrichment 95.75% ²⁴Mg ~ 3%, ²⁶Mg ~ 1.2%

Neutrons ≈ 1.1x10¹⁰ 1 eV < E_n < 1 MeV

2012 New sample (metal)

National Isotope Development Center (ORNL, USA)

Property	Value
Mass Mg	3.94 g
Diameter	20 mm
Thickness	7 mm
Areal density	3.00x 10 ⁻² at/b

Enrichment 97.86 % ²⁴Mg ~ 1.83 % ²⁶Mg ~ 0.31 %

Neutrons ≈ 1.9x10¹⁰ 0.03 eV < E_n < 1 MeV

Mew Measurement INFN **Istituto Nazionale** di Fisica Nucleare

Typical capture set-up:

- 2 C₆D₆ liquid scintillators
- "Total Energy Detection System"

Data Analysis

Preliminary Results **INFN** Istituto Nazionale di Fisica Nucleare

²⁵Mg(n, γ)²⁶Mg resonances \longrightarrow R-matrix parameterization of the cross section

$E_n \; (\text{keV})$	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^{+}$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	[3+]	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	Ò	$(2)^{+}$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	1 ^b	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Convoluted with **neutron** stellar **flux**

@ n_TOF Preliminary Results / NFN

Istituto Nazionale di Fisica Nucleare

Stellar site	Temperature keV	MACS (this work)	MACS (KADoNiS)
He - AGB	8	4.9±0.6 mb	4.9 mb
He - AGB	23	3.2±0.2 mb	6.1 mb
30	30	4.1±0.6 mb	6.4±0.4 mb
He – Massive	25	3.4±0.2 mb	6.2 mb
C - Massive	90	2.6±0.3 mb	4.0 mb

s-process abundances

^{23MIG(n, y)} @ n_TOF Preliminary Results /NFN

Istituto Nazionale di Fisica Nucleare

	Stellar site	Temperature keV	MACS (this work)	MACS (KADoNiS)	
	He - AGB	8	4.9±0.6 mb	4.9 mb	
	He - AGB	23	3.2±0.2 mb	6.1 mb	
	30	30	4.1±0.6 mb	6.4±0.4 mb	
	He – Massive	25	3.4±0.2 mb	6.2 mb	N
	C - Massive	90	2.6±0.3 mb	4.0 mb	
		2.0 	م موجر م	(b)	
s- at	process oundances	1.0 Fotobic ra	A A A A A A A A A A A A A A A A A A A	effect	ed poisoning t in Massive Stars
		0.5	60 70 80 90 Mass number	100 110	

²⁵Mg(n, γ)²⁶Mg resonances

E_n (keV)	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^+$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	$[3^+]$	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	0	$(2)^+$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	1^{b}	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Constraints for the 22 Ne(α , n) 25 Mg reaction

			10 ⁻⁷		NZJNA -	10 ⁻⁷
J^{π}	$E_n \; (\text{keV})$	Γ_{γ} (eV) Γ	n (eV)	1995 Drouen	i) wig	
2^{+}	-154.25	6.5	30000		\$	
2^{+}	19.86 ± 0.05	1.7 ± 0.2 23	10 ± 30			10 ⁻⁸
1 ⁺ (62.727 ± 0.003	4.1 ± 0.7	28 ± 5			
2^{+}	72.66 ± 0.03	2.5 ± 0.4 50)80 ± 80 흘			
3^{+}	79.29 ± 0.03	3.3 ± 0.4 15	560 ± 80			10-9
' (2) [⊣]	81.117 ± 0.001	3 ± 2 0.	$.8 \pm 0.7$ 3^{10}		Ϋ́ Ϋ́	10 -
) (1-	93.60 ± 0.02	2.3 ± 2 0.	$.6 \pm 0.2$ g		, Å , ⋳ ┍ ┍ <mark>┍</mark> , _Å Å	
3+	100.03 ± 0.02	1.0 ± 0.1 52	240±40 ਠੈ			10
$[2^{-}]$	$[101.997 \pm 0.009]$	$[0.2 \pm 0.1]$	[4 ±			10 ⁻¹⁰
$]^{b}$ [3 ⁺]	$[107.60 \pm 0.02]$	$[0.3 \pm 0.1]$	[2 ± Neu	tron		
) (2^{-})	156.34 ± 0.02	6.1 ± 0.4 55	520			
(2)	188.347 ± 0.009	1.7 ± 0.2 59	_{90 =} energy i			10 ⁻¹¹
$4^{(-)}$	194.482 ± 0.009	0.2 ± 0.1 17	730 ± 20	Incident Energy (MeV))	
1-	200.20 ± 0.03	0.3 ± 0.3 14	10 ± 60			/
(2^+)	200.944 ± 0.006	3.0 ± 0.3 0.	$.7 \pm 0.7$	0 30	294 En	(keV)
) (2^{-})	203.878 ± 0.001	0.8 ± 0.3	2 ± 1			. ,
) (1-	208.27 ± 0.01	1.2 ± 0.5 23	30 ± 20			
) (2-	211.14 ± 0.05	3.1 ± 0.7 124	400 ± 100	Constraints	for the	
) (1-	226.255 ± 0.001	4 ± 3 0.	$.4 \pm 0.2$			
.) (1-	242.47 ± 0.02	6 ± 4 0.	$.3 \pm 0.2$	²² Ne(α, n) ²⁵ Ma	reaction	
1- 4	244.60 ± 0.03	3.5 ± 0.6 5	50 ± 20			
) (1-	245.552 ± 0.002	2.3 ± 2 0.	$.5 \pm 0.2$			
) (1-	253.63 ± 0.01	3.1 ± 2.7 0.	$.1 \pm 0.1$	Observed ~	~ 30	
.) 4 ⁽⁻⁾	261.84 ± 0.03	2.6 ± 0.4 34	490 ± 60			
) (2^+)	279.6 ± 0.2	1.9 ± 0.7 32	290 ± 50	resonances	in the	
(5^+)	311.57 ± 0.01	(0.84 ± 0.09) (24)	$40 \pm 10)$	onoray rogion of	f intoract	
				energy region of	merest	

Example of sensitivity to J^{π}

Example of sensitivity to J^{π}

Conclusion

- ²⁵Mg(n, γ) reaction cross-section was measured at n_TOF in 2003 and in 2012 with an improved measurement set up.
- The ²⁵Mg(n, tot) measurement was performed at the GELINA facility in 2013.
- Final analysis simultaneous resonance shape analysis of capture and transmission is ongoing:
 - accurate ${}^{25}Mg(n,\gamma)$ cross section \approx confirms previous n_TOF data;
 - − J^π information on ²⁶Mg → evidence for more natural states than previously thought →**HIGHER** ²²Ne(α , n) reaction rate;
- An idea for the future: ²⁵Mg(n, α)²²Ne at n_TOF EAR2, to complete the study of the key isotope ²⁵Mg

An idea for the future

lstituto Nazionale di Fisica Nucleare

Complete the study of the most important neutron source in Red Giants by measuring ${}^{25}Mg(n, \alpha){}^{22}Ne$ reaction cross-section

An idea for the future

Complete the study of the most important neutron source in Red Giants by measuring ${}^{25}Mg(n, \alpha){}^{22}Ne$ reaction cross-section

C h a l l e n g e :

A. Cross section very small B. Q-value 480 keV (→ thin sample)

A. + B. = Extremely low count rate expected

An idea for the future

lstituto Nazionale di Fisica Nucleare

Complete the study of the most important neutron source in Red Giants by **measuring** ${}^{25}Mg(n, \alpha){}^{22}Ne$ reaction **cross-section**

C h a l l e n g e :

A. Cross section very small B. Q-value 480 keV (→ thin sample)

A. + B. = Extremely low count rate expected

Solution:

a) High neutron fluxb) Flux delivered in a short time interval

a) + b) = n_TOF new experimental area (EAR2)

- EC-JRC-IRMM, GELINA team
- The n_TOF Collaboration
- Paul Koehler (partially funded the experiment when he was at ORNL)
- Italian Institute of Nuclear Physics INFN: partially funded the experiment.

Cristian Massimi Dipartimento di Fisica e Astronomia INFN – Sezione di Bologna massimi@bo.infn.it

www.unibo.it

SPIN & PARITY

²⁵Mg(n,g)²⁶Mg

E_n (keV)	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	(2^+)	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^+ a$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3+	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^+$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3+	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	[3+]	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	0	$(2)^{+}$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	1^{b}	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

SPIN & PARITY

INFN Istituto Nazionale di Fisica Nucleare

 3290 ± 50

 (240 ± 10)

 279.6 ± 0.2

 311.57 ± 0.01

²⁵Mg(n,g)²⁶Mg

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

(0)

(2)

 (2^+)

 (5^{+})

 1.9 ± 0.7

 (0.84 ± 0.09)

Principles

Transmission : σ(n,tot)

T : transmission Fraction of the neutron beam traversing the sample without any interaction

Fraction of the neutron beam creating a (n,r) reaction in the sample

Time reversal invariance

Relation between the ²⁵Mg(n,a)²²Ne and the ²²Ne(a,n)²⁵Mg cross-section by "detailed balance technique"

Energy region of interest: $0 < E_n < \text{few MeV}$

 Istituto Nazionale di Fisica Nucleare

Preliminary Results

Istituto Nazionale di Fisica Nucleare

2012 data

First s-wave resonance at ~ 20 keV

Other resonances at ~ 150 keV

Energies relevant to s process

n_TOF EAR2

