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The simplest interactions between light and matter : 
the basics of QED

Bethe-Heitler	

pair production

Compton scattering Bremsstrahlung

Dirac	

annihilation

Single photon	

annihilation

Breit-Wheeler	

pair production

Photoelectric effect
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Breit-Wheeler pair production as a fundamental process	

in high-energy astrophysics

Cut-off in high-energy 
gamma-rays

Radiation fields of compact 
objects

‘Compactness problem’ of 
gamma-ray bursts

Gould and Schréder, PRL16, 252 (1966)

• Cut-off of high-energy 
gamma-rays above 1013 eV 
due to pair production with 
the cosmic microwave 
background.

Bonometto and Rees, MNRAS 152, 21 (1971)

• Breit-Wheeler pair 
production important for 
determining electron and 
photon spectra around 
compact objects.

• Opacity due to pair 
production important 
consideration in models for 
gamma-ray burst emission.

Piran, Rev Mod Phys 76, 1194 (2004) 

ESO/M. Kornmesser NASANASA
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The simplest interactions between light and matter : 
earliest results of QED

Bethe-Heitler	

pair production

Compton scattering Bremsstrahlung

Dirac	

annihilation

Single photon	

annihilation

Breit-Wheeler	

pair production

1934	

Klemperer, Proc Camb Phil 

Soc 30, 347

1932	

Anderson, Science 76, 

238

1906	

Thomson, Conduction of 
Electricity through Gases

1895	

Röntgen, Ann Phys 

(Leipzig) 300, 1

1933	

Blackett & Occhialini, Proc 

R Soc Lond A 139, 699

Photoelectric effect

1887	

Hertz, Ann Phys	

(Leipzig) 31, 983
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Why is the Breit-Wheeler process so elusive?

Breit and Wheeler, Phys Rev 46, 1087 (1934)	

Jauch and Rohrlich, The Theory of Photons and Electrons (1959)

• The Breit-Wheeler cross-section	

!
!
!
!
is, at its peak, of the same order as that of 
Compton scattering and Dirac annihilation.	


• However, to create matter from a massless 
state, the centre-of-mass energy must be at 
least 2m.	


• It has previously not been possible to promote 
enough photons above threshold for the 
process to be observable and Breit-Wheeler 
pair production has eluded any direct 
detection.
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Breit-Wheeler and Klein-Nishina cross-sections
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SLAC E-144 experiment:	

first sign of positron production in light-by-light scattering

46.6 GeV electrons

1018 Wcm-2 laser

e+

e–

Non-linear QED	


• Energy threshold required the absorption of n > 4 
laser photons. (Not sufficient energy for two-photon 
interaction.)	


• Recently shown that, on average, n = 6.44 laser 
photons were absorbed.

Approx. 100 positrons 
detected in 20,000 shots.

9

Burke et al., PRL 79, 1626 (1997)	

Hu & Müller, PRL 107, 090402 (2010)

e + n�0 ! e0 + �
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Non-linear	

Compton scattering

Multi-photon	

Breit-Wheeler process
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On searching for Breit-Wheeler pair production:	

three different approaches

Gamma-ray (100 GeV) Optical laser photon (eV)

Beam 
+  

Laser

Threshold for Breit-Wheeler : product of two photon energies > 5112 keV2
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On searching for Breit-Wheeler pair production:	

three different approaches

Gamma-ray (MeV) Gamma-ray (MeV)

Gamma-ray (100 GeV) Optical laser photon (eV)

Beam 
+  

Laser

Beam 
+  

Beam

Threshold for Breit-Wheeler : product of two photon energies > 5112 keV2
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On searching for Breit-Wheeler pair production:	

three different approaches

Gamma-ray (MeV) Gamma-ray (MeV)

Gamma-ray (100 GeV) Optical laser photon (eV)

Gamma-ray (GeV) Thermal x-ray field (100 eV)

Beam 
+  

Laser

Beam 
+  

Beam

Beam 
+  

Target

Threshold for Breit-Wheeler : product of two photon energies > 5112 keV2
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High temperature radiation fields are 	

produceable at large optical laser facilities

Laser Megajoule (France)

P. Labeguerie / CEA

National Ignition Facility (USA)

LLNL

Orion Laser (UK)

© British Crown Owned Copyright / AWE

OMEGA EP (USA)

University of Rochester

Long-pulse: 1.4 MJ in 176 beamsLong-pulse: 2 MJ in 192 beams

Long-pulse: 5 kJ in 10 beams Long-pulse: 40 kJ in 60 beams
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In inertial fusion, X-ray radiation produced inside a laser-
heated hohlraum is used to heat and compress the target

Hohlraum

Fuel 
pellet

Re-radiated X-rays at 
temperatures of	

Tr = 300 eV

Long-pulse (ns) 
radiation

LLNL

• Hohlraum — gold cylinder used to 
house fuel pellet in indirect-drive ICF. 
Laser beams strike hohlraum’s inner 
surface, which re-radiates X-rays that 
irradiate the target.	


• Provides more uniform drive than 
direct laser irradiance of capsule. 
(Asymmetries remain one of the 
primary barriers to ignition in ICF.)

LLNL

Lengths of up to	

l = 1 cm	


13

Lindl et al., PoP 11, 339 (2004) 	

Glenzer et al., PRL 106, 085004 (2011)



A photon-photon collider in a vacuum hohlraum:	

a new HEP experiment using HEDP facilities

Ultra-relativistic	

electrons

e+

e-

HohlraumGold target

e+

e-

Gamma-ray	

beam

Thermal x-ray field

14

Pike et al., Nature Photonics 8, 434 (2014)
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High conversion of electrons into gamma-rays can be 
achieved using bremsstrahlung in a gold target

• Ultra-relativistic electrons lose energy in gold 
almost solely by bremsstrahlung. (Other loss 
mechanisms such as ionisation and Compton 
scattering are suppressed at GeV energies.)	


• Cross-section well known:	

!
!
!
!

• Emitted photons pair produce, resulting in 
cascades of low energy particles	


• For maximum conversion to ultra high-energy 
photons, optimal target width a few mm

Number of photons emitted over 100 MeV
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Pike et al., Nature Photonics 8, 434 (2014)



The distribution of gamma-rays leaving target is broad, but a 
significant number of them have very high energies
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Distribution of photons leaving back surface of gold converter (3 mm thick)



Significant Breit-Wheeler pair production expected over 
wide range of beam energies and hohlraum temperatures

100 150 200 250 300 350 400
Hohlraum temperature (eV)

100
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Number of positrons formed in hohlraum (length 1 cm)

• Number of Breit-Wheeler positrons 
formed in hohlraum given by	

!
where	

!
!
!
!
for a hohlraum of temperature 400 eV, 
leading to up to	

!
events per shot

~ 109

~ 1027 m-3

~ 10-2 m
~ 10-29 m2

Length of hohlraum
Breit-Wheeler cross-section

X-ray number density 
Gamma-ray number

~ 105

~
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Pike et al., Nature Photonics 8, 434 (2014)
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For more info see:	


O. J. Pike, F. Mackenroth, E. G. Hill and S. J Rose,	

A photon-photon collider in a vacuum hohlraum. 	

Nature Photonics 8, 434-436 (2014). 	


doi:10.1038/nphoton.2014.95
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The scheme can be applied to a range of	

current-generation optical laser facilities

Coupled short- and 	

long-pulse facilities

Ultra-short pulse 	

laser facilities

• Astra Gemini (UK)	

• Texas Petawatt (USA)	

• Berkeley Lab Laser Accelerator (USA)	

• FLAME (Italy)

103-104 0.1-1

Examples of 
facilities

Gamma-ray beam

X-ray field

Yield (per shot)

• Direct laser acceleration / self-
modulated laser wakefield

• Laser wakefield acceleration

• Hohlraum • Burn-through foil

~ /hour ~ /min or /secRep rate

• National Ignition Facility (USA)	

• Orion laser (UK)	

• Laser Megajoule (France)	

• OMEGA EP (USA)
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e+

e-

e–
e–

e+

3.  Optimisation of design 
and material used for 

hohlraum, and configuration 
of long-pulse beams

1.  Acceleration of ultra-
relativistic electrons using 

short-pulse (ps) laser

2.  Removal of electrons 
and positrons from 

back of target

Hohlraum

Detector

Low-density	

gas cell

4.  Detection of signal 
and suppression of 

background

Gamma-ray	

beamGold target

Short-pulse	

laser

There are various considerations when implementing 	

this experimental scheme in the laboratory
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Picosecond pulses have previously accelerated electrons in a 
thermal distribution extending to 100s of MeV

22

Short-pulse lasers Ultra-short pulse lasers

Pulse length

Acceleration 
mechanism

Divergence

• Direct laser acceleration	

• Self-modulated laser wakefield

• Few degrees

Focusing • Fast (e.g., f/3)

Energies • Up to a few 100 MeV	

• Thermal distribution

• Up to 1 GeV	

• Quasi-monoenergetic

• Laser wakefield acceleration

• Slow (e.g., f/20)

• Few mrad

Mangles et al., PRL 94, 245001 (2005)	

Kneip et al., PRL 103, 035002 (2009)

• Of order ps	

• Longer than plasma wavelength

• Of order 10 fs	

• Matched to plasma wavelength



Picosecond pulses have previously accelerated electrons in a 
thermal distribution extending to 100s of MeV

22

Short-pulse lasers Ultra-short pulse lasers

Pulse length

Acceleration 
mechanism

Divergence

• Direct laser acceleration	

• Self-modulated laser wakefield

• Few degrees

Focusing • Fast (e.g., f/3)

Energies • Up to a few 100 MeV	

• Thermal distribution

• Up to 1 GeV	

• Quasi-monoenergetic

• Laser wakefield acceleration

• Slow (e.g., f/20)

• Few mrad

Mangles et al., PRL 94, 245001 (2005)	

Kneip et al., PRL 103, 035002 (2009)

• Of order ps	

• Longer than plasma wavelength

• Of order 10 fs	

• Matched to plasma wavelength



0 50 100 150 200 250 300 350 400
x (µm)

�100

�50

0

50

100

y
(µ

m
)

ne

0 50 100 150 200 250 300 350 400
x (µm)

0

500

1000

1500

p x
(M

eV
)

px vs x

Preliminary 2D PIC results suggest that acceleration to 	

GeV energies may be possible with longer pulses

Electron acceleration with short-pulse laser
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Pike et al., in preparation (2014)
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Electrons and positrons can be effectively removed 	

from the beam line using an 8 T electromagnet

24

• Electrons and positrons emerging from the 
back of the gold converter must be removed 
from the beam line to prevent them from 
entering the hohlraum.	


• This can be effectively achieved using an 8 T 
electromagnet, with minimal divergence of 
the gamma-ray beam.	


• Permanent magnets (approx. 1 T) unlikely to 
be sufficient.

Photons

Electrons

Minimum electron 
divergence

Number of particles within 1 mm of beam axis



Optimising hohlraum for maximum radiation temperature 
with minimum blow-off and self-generated E/M fields

Burn-through foil

Burn-through 
hohlraum

Hohlraum

Halfraum

25



Material of X-ray generator is also an important 
consideration for maximum yield

• Radiation produced inside gold 
hohlraum / using gold burn-through 
foil is well described as a thermal 
distribution with temperature ~100 
eV.	


• Non-thermal radiation — produced 
from emission in the l-shell and M-
band, for example — can have higher 
energies (~ 1-10 keV).	


• This can relax the constraints on the 
gamma-ray energies, if required.

X-ray spectrum for Al at 100 eV and a tenth solid density
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Hill, private communication (2014)



e+

e-

e–
e–

e+ Hohlraum

Detector

Low-density	

gas cell

Gamma-ray	

beamGold target

Short-pulse	

laser

There are various sources of background that need to be 
considered in this experiment

27

• Expected background:	

• Primary electron beam	

• Pairs produced in gold converter	

• Pairs produced as gamma-ray interacts with plasma blow-off in 

hohlraum	

• Compton up-scattered electrons	

• etc.
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Removal of high-energy background using high-Z shielding

Photons

Electrons

Given significant background expected below 100 MeV, 
detector needs to effectively screen low-energy particles
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Predicted Breit-Wheeler positron spectrum
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Detector considerations

• Tuneable energy threshold	

• Energy distribution data	

• Narrow gating and line of sight	

• Coincidence measurement for positrons 

and electrons

Photons

Removal of high-energy background using high-Z shieldingPredicted Breit-Wheeler positron spectrum
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Summary

• Demonstrated the feasibility of performing a new HEP experiment using HEDP 
facilities.	


- Experiment would provide first direct observation of the Breit-Wheeler process.	

- Would also demonstrate interaction of light in vacuum for the first time. 	


• For more info see:	

O. J. Pike et al., A photon-photon collider in a vacuum hohlraum. Nature Photonics 
8, 434-436 (2014). doi:10.1038/nphoton.2014.95	


• Currently developing experimental design for specific facilities, including detailed 
study of electron acceleration, X-ray field generation, shielding of background and 
detection.	


• We hope to perform this experiment in the near future.
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