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Intro

What is Quantum Communication?

» Quantum Communications is the
ability of faithful transmit quantum

w < ’1)?,.)
states between two distant locations

» Ground QC have progressed up to
commercial stage using fiber-cables

» Quantum Communications on
planetary scale require

complementary channels including
ground and satellite links
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Motivation

Why free-space quantum communications?
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Why free-space quantum communications?

» Creation of a worldwide quantum

network: overcome fiber-loss
limitations
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Intro

Motivation

Why free-space quantum communications?

» Creation of a worldwide quantum
network: overcome fiber-loss
limitations

» Explore the limits of Quantum
Mechanics and quantum
correlations over very long
distances
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Intro

Context

» On May 24, 2014 Japan’s NICT launched SOTA on
Socrates satellite.

» Ongoing programs for QC on satellite in China and
Canada as well as in Singapore and USA.
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Summary

Quantum communication in space
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University of Padova operated at Matera Laser Ranging Observatory, owned by the

Italian Space Agency and directed by Dr. Giuseppe "Pippo" Bianco.
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QC

Objectives

» To simulate a quantum source in
Space using orbiting retroreflectors

» To demonstrate the measurement
of quantum states in the downlink

» To address the mitigation of the
background noise

» To demonstrate quantum [Laser Ranging| [StateAIyzer] .
communication of a generic qubits
from Space to ground

(Qubit Laser’

100 ms
10ns

» To envisage the exploitation of this
type of link
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QC

MLRO facility

Matera Laser Ranging Observatory (MLRO):
1.5 m telescope with millimeter resolution in SLR
research hub for Space QC since 2003
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making of the qubits

CCR:
Corner-Cube

Source on satellite simulated by a CCR Retroreflector

L ‘—-
Source (Alice) need to be at the single
photon level

Downlink attenuation from ~ 3 ¢m LEO
sources in the range of 55-70 dB.

Short pulses necessary for background
rejection

Not too short to prevent bandwidth
opening and noise increasing
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QC

The making of the qubits

» MLRO master laser provided the solution
100 MHz, 100 ps, 300 mW, 1064 nm

» Second harmonics needed for qubits

» First order (6.2 um) PPLN

» MgO doped Congruent Lithium Niobate -
50 mm — thermally stabilized.
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MLRO

Telescope 1.5 m Legend
P Second harmonic
NPBS = PBS generation
- / Mirror == Shutter H Rotator waveplate
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Divergence control
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G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]




QC

Coudeé path of in-and-out

» Characterization of
the polarization
transformation

» Assessment of
total transmission
efficiency

» Mutual alignement
of SLR and Qubit
beams

Pag. 14 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]



QC

Measuring the qubits

» The Coudé path is used in both
directions for both the SLR beam
and the qubits

» The upward and inward beams are
combined using a non polarizing
beam splitter (BS)

» Two large ares SPADs mounted to
the exit ports, designed to address
the velocity-aberration

» 81 ps timetagging of 8 channels

Pag. 15 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]
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Results
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Results

Single passage of LARETS

Orbit height 690 km - spherical brass body
24 cm in diameter, 23 kg mass,

60 Metallic coated Corner-Cube Retroreflectors

Apr 10th, 2014, start 4:40 am CEST

Time (s)
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Detection of four polarization states received from satellite
10 s windows: arrival time within 0.5xs from predictions

G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]



Results

Link Budget and photon return rate
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Radar equation for the prediction of 10° =
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Results

QBER: Quantum Bit Error Rate

Ajisai
Non polarization maintaining CCR:
Polarization Q-Comm not possible

Jason-2, Larets, Starlette, Stella
Polarization maintaining CCR:

» QBER compatible with applications

» Demonstration of stable QBER over
extended link duration
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QKD scheme
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QKD

QKD: quantum key distribution

» A novel approach towards unconditionally secure
communications

» Exploit quantum mechanics laws for establishing secure
keys

» Single photon transmission for create keys and classical
channel for send encrypted message

Eavesdropper

Crypt. Alg. Decrypt. Alg.
Untrusted channel

Quantum [ Quantum

transmitter receiver

Ql:l-amum channel

Pag. 21 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]



QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:

Pag. 22 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]



QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:

» In the ground station, a linearly polarized train of pulses
is injected in the Coudé path
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QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:
» In the ground station, a linearly polarized train of pulses
is injected in the Coudé path
» The beam is directed toward a satellite with CCRs having
a Faraday Rotator (or equivalent), that rotate the returning
polarization by 6, according to QKD protocol
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QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:
» In the ground station, a linearly polarized train of pulses
is injected in the Coudé path
» The beam is directed toward a satellite with CCRs having
a Faraday Rotator (or equivalent), that rotate the returning
polarization by 6, according to QKD protocol
» A measure of the intensity of the incoming beam avoid
Trojan horse attack
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QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:
» In the ground station, a linearly polarized train of pulses
is injected in the Coudé path
» The beam is directed toward a satellite with CCRs having
a Faraday Rotator (or equivalent), that rotate the returning
polarization by 6, according to QKD protocol
» A measure of the intensity of the incoming beam avoid
Trojan horse attack
» In the CCR a suitable attenuator lowers the mean photon
number to the single photon level
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QKD

New QKD satellite protocol using retroreflectors

On the base of this experiment, we propose a two-way QKD
protocol for space channels:

» In the ground station, a linearly polarized train of pulses
is injected in the Coudé path

» The beam is directed toward a satellite with CCRs having
a Faraday Rotator (or equivalent), that rotate the returning
polarization by 6, according to QKD protocol

» A measure of the intensity of the incoming beam avoid
Trojan horse attack

» In the CCR a suitable attenuator lowers the mean photon
number to the single photon level

» The state measure is done as in present experiment

Pag. 22 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]



QKD

New QKD satellite protocol using retroreflectors

The two-way QKD protocol:

» By this scheme, a decoy state BB84 protocol can be
realised between satellite and ground

» Such protocol is currently realizable using few centimeter
retroreflector as optical part in orbit

Pag. 23 G. Vallone et al., Experimental Satellite Quantum Communications, [arXiv:1406.4051]
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Perspectives

Long term opportunities

Unique opportunity of Quantum Physics in Space

Possibility of testing quantum physics in new environment and
probing the laws of nature at very large distance
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Long term opportunities

Perspectives

Unique opportunity of Quantum Physics in Space
Possibility of testing quantum physics in new environment and

probing the laws of nature at very large distance

» Distribution of entanglement from Earth to Space

» Test of Bell's Inequalities with unprecedented conditions:
LEO or GEO-orbit, moving terminals, gravitational field
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Perspectives

Long term opportunities

Unique opportunity of Quantum Physics in Space

Possibility of testing quantum physics in new environment and
probing the laws of nature at very large distance

v

Distribution of entanglement from Earth to Space

v

Test of Bell's Inequalities with unprecedented conditions:
LEO or GEO-orbit, moving terminals, gravitational field

v

Teleportation from Earth to Space

v

Quantum technologies in long distance applications
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Perspectives

Long term opportunities

Unique opportunity of Quantum Physics in Space

Possibility of testing quantum physics in new environment and
probing the laws of nature at very large distance

v

Distribution of entanglement from Earth to Space

v

Test of Bell's Inequalities with unprecedented conditions:
LEO or GEO-orbit, moving terminals, gravitational field

v

Teleportation from Earth to Space

v

Quantum technologies in long distance applications

v

Test of foundations of quantum field theory and general
relativity

Pag. 25 «O> «F» «E>» « >

it
S
ye)
Q



Entanglement distribution

[V)ag # |6)a @ |X)B
» Quantum Entanglement is, according to

Erwin Schrodinger, the “characteristic trait
of quantum mechanics”

» Entanglement is a unique resource for
Quantum Information applications
(teleportation, dense coding, etc..)
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Entanglement distribution

[V)ag # |6)a @ |X)B
» Quantum Entanglement is, according to

Erwin Schrodinger, the “characteristic trait
of quantum mechanics”

» Entanglement is a unique resource for
Quantum Information applications
(teleportation, dense coding, etc..)

» Limits on the distance between two entangled systems?

» |Is entanglement limited to certain mass and length scales

or altered under specific gravitational circumstances?
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Entanglement distribution

Photons are the ideal candidate for distributing entanglement
» Easy to generate entangled photons

~ Entangled

photons
\/ V-cone

» Photons can travel over long distances without
decoherence
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Bell’s test

Perspectives

If a set of correlation do not satisfy the Bell’'s inequality S < 2,
the correlations cannot be explained by a local realistic theory
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Bell’s test

Perspectives

If a set of correlation do not satisfy the Bell’'s inequality S < 2,
the correlations cannot be explained by a local realistic theory.

» Bell'inequality violated between fixed location: "spooky
action at distance" at speed greater than 10%c.
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Bell’s test

Perspectives

If a set of correlation do not satisfy the Bell’'s inequality S < 2,
the correlations cannot be explained by a local realistic theory.

» Bell'inequality violated between fixed location: "spooky
action at distance" at speed greater than 10%c.

» Bell’s test with moving terminals
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Conclusions

» We have experimentally demonstrated Quantum

Communication from several satellites acting as quantum
transmitter and with MLRO as the receiver
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Conclusions

» We have experimentally demonstrated Quantum
Communication from several satellites acting as quantum
transmitter and with MLRO as the receiver

» QBER was found low enough to demonstrate the feasibility
of quantum information protocols such as QKD along a
Space channel

Pag. 30 «O» «F» «E» «=>» = A



Conclusions

» We have experimentally demonstrated Quantum
Communication from several satellites acting as quantum
transmitter and with MLRO as the receiver

» QBER was found low enough to demonstrate the feasibility
of quantum information protocols such as QKD along a
Space channel

» The ability of propagating quantum correlation over large
distance will have a great impact for fundamental physics
and quantum information applications
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Conclusions
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