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Known dynamical mechanisms to soften the quadratic 
sensitivity of the weak scale to heavy field theory thresholds.
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NO compelling dynamical mechanisms to soften this quartic 
dependence.
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The Weinberg prediction for the Cosmological Constant
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Structures  below horizon mass at equality grow by the same 
amount during matter domination
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start to form
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What’s the physical meaning of changing the CC

Runaways if the primordial contrast or the DM density are changed

Not a quantitatively accurate prediction

Eternally inflating Landscape
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dP (⇤|obs) = f(⇤)n(⇤)d ln⇤

Prior probability distribution: depends on UV details (string theory, 
eternal inflation) and is affected by the measure problem.

Anthropic factor: depends on IR physics, but it’s definition cannot be 
precise. It is also affected by the measure problem.
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What’s the physical meaning of changing the CC

Not a quantitatively accurate prediction

Eternally inflating Landscape

Bousso, Freivogel, Leichenauer, Rosenhaus (’07)

Runaways if the primordial contrast or the DM density are changed



Easy: observers diluted exponentially after CC domination

Bousso, Freivogel, Leichenauer, Rosenhaus (’07)
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Refs. [3, 12] anticipated the answer reached in the present
paper but not its derivation. Less general derivations
have been proposed for small subsets of the landscape
(vacua that di↵er from ours only in a few parame-
ters) [13, 14], or under the assumption that observers
arise in proportion to the entropy produced [15, 16]. A
direct antecedent [16] of our arguments employed the
causal diamond, a measure that is somewhat less well-
defined than the causal patch, and which suppresses the
subtle role played by curvature in the present analysis.

Because the three timescales are well-defined across
the entire landscape and no specific anthropic assump-
tions are made, our results apply to arbitrary observers
in arbitrary vacua. Other parameters like the masses of
leptons [17] or the timescales of structure formation [13],
may be correlated with t

obs

, but they are defined only in
small portions of the landscape and will not be consid-
ered here. In a separate publication, we will study other
measures, and we will argue that currently no measure
is viable in the domain of dependence of a spacelike sin-
gularity, such as regions with negative vacuum energy.
Here, we restrict to vacua with ⇤ > 0.

Our arguments di↵er significantly from those of
Refs. [18, 19], which appeal to the discreteness of the
string landscape to cut o↵ a probability distribution that
favors small values of the cosmological constant expo-

nentially in ⇤�1, regardless of t
obs

. These approaches
appear to conflict with observation because small ⇤ is
selected too strongly. (Vacua in which observers arise
by dynamical evolution from a low-entropy initial state
are extremely rare in a realistic landscape, compared to
vacua in which observers can be formed only by quantum
fluctuations but with probability greater than e�1/⇤. So
the vacuum with smallest ⇤ is likely in the latter class,
and one predicts observations that are incompatible with
a long semiclassical history.)

Derivation The relative probability for two outcomes
of a cosmological measurement is given by p

1

/p
2

=
N

1

/N
2

, where NI is the expected number of times each
outcome occurs in the universe. Thus, the NI play the
role of an unnormalized probability distribution. A dis-
tribution dp/dx over a continuous parameter x can be
computed as the number dN of outcomes occurring in
the range (x, x+ dx).

The landscape of string theory contains long-lived
de Sitter vacua which give rise to eternal inflation [9].
Globally, every experiment and every possible outcome
occurs infinitely many times: NI = 1. To obtain well-
defined relative probabilities, these divergences must be
regulated: this is the measure problem of eternal infla-
tion. Here we consider the causal patch measure [12, 20],
which restricts to the causal past of a point on the fu-
ture boundary of spacetime (see Fig. 1), in which NI

is to be computed. (Because geometric cuto↵s such as
the causal patch disrupt the worldlines of some particles,
they require a justification in terms of a physical mech-

space
tim
e

FIG. 1. Conformal diagram of a portion of the multiverse.
The dashed line shows an infinite hyperbolic surface of con-
stant FRW time t

obs

. The causal patch (shaded) restricts
attention to the finite portion that lies within the event hori-
zon.

anism [21]. This remains an important open problem
which we do not address here.)
Consider an arbitrary observer who lives at an FRW

time of order t
obs

. What order of magnitude for t
⇤

and
t
c

is he likely to observe? This is described by the prob-
ability distribution over log t

⇤

and log t
c

at fixed log t
obs

,
which can be written as

dp

d log t
⇤

d log t
c

=
dp̃

d log t
⇤

d log t
c

n
obs

(log t
c

, log t
⇤

; log t
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) .

(3)
We will begin by computing this distribution; later we
will allow t

obs

to vary as well.
The first factor in Eq. (3) is the “prior probability”; it

corresponds to the expected number of times a vacuum
with specified values of log t

⇤

and log t
c

is nucleated in
the causal patch [22]. This is proportional to the number
of vacua in the landscape with specified values of log t

⇤

and log t
c

, multiplied by the rate at which such vacua are
produced cosmologically from specified initial conditions.
But this rate will be independent of t

⇤

and t
c

in the
regime of interest (t

⇤

� 1). In the string landscape,
a decay changes ⇤ enormously compared to the energy
scales associated with t

⇤

and t
c

in the daughter vacuum.
Thus, the decay chains leading to vacua of interest have
no information about the eventual values of t

⇤

and t
c

.
The cosmological constant in a metastable vacuum in-

cludes large nongravitational contributions, so zero is not
a special value for the sum. Hence, the density of vacua,
dN/d⇤, can be Taylor-expanded around ⇤ = 0. Vacua
with ⇤ ⇠ 1 contain only a few bits of causally connected
information [23], and hence no complex systems of any
kind. Thus, we may restrict attention to vacua with
⇤ ⌧ 1 and keep only the leading order in the expan-
sion, dN/d⇤ = const [7]. With t

⇤

⇠ ⇤�1/2, this implies

dp̃

d log t
⇤

d log t
c

= t�2

⇤

g(log t
c

) . (4)

Here g encodes the prior probability distribution over the
time of curvature domination.
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Scanning the weak scale (and just the weak scale) in the multiverse

v0

No heavy elementsNo stable hydrogen

0.4 v0 1.6 v0

Agrawal, Barr, Donoghue, Seckel (’97)
Damour, Donoghue (’07)

The EW vev is subject to the anthtopic requirement of the 
existence of complex chemistry.

H ! n⌫̄e |B/A| < mn �mp �me

Notice that these are constraints on the fermion masses NOT on v

Weakless universe?
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Figure 3: Anthropic requirements in the (m
u

,m
d

) plane for the stability of complex nuclei
(upper, green) and hydrogen (lower, purple) for several values of the electron mass. The shading
corresponds to the excluded regions for m

e

= m0

e

. For other values of m
e

/m0

e

, the allowed region
in (m

u

,m
d

) is the wedge between like-numbered green and purple contours. For m
e

& 15m0

e

,
there are no values of the up and down quark masses satisfying the anthropic requirements.

measured value of m
n

�m
p

⇡ 1.293 MeV. Once the neutron-proton mass di↵erence drops below
the electron mass, hydrogen becomes unstable to electron capture by the proton. This is the
purple-shaded region in Figures 1, 3, and 4, with light purple denoting the 1� excluded region.

In the orthogonal direction, the square of the pion mass increases linearly with the sum of
the up and down masses, decreasing nuclear binding energies. If the binding energy per nucleon,
B/A, is su�ciently small,

|B/A| < m
n

�m
p

�m
e

, (7)

then neutrons bound in the nucleus will decay [2]. We take the pion mass dependence of nuclear
binding energies from [4], but it should be noted that our boundary, (7), is parametrically
stronger than the one used in that paper (the complete absence of heavy nuclear bound states,
B/A > 0). The green-shaded region in Figures 1, 3, and 4 corresponds to the limit from stability
of 16O, but the location of the boundary is roughly independent of atomic number. We show
the 1� uncertainty shaded in light green in Figures 1, 3, and 4, in which the dominant error
arises from the extrapolation of nuclear binding energies away from the SM value of the pion
mass [4].
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Hall, Pinner, Ruderman (’14)



Is it possible to constrain BOTH light quark masses and v?

Hall, Pinner, Ruderman (’14)

helium boundary that prevents the runaway of the weak scale to large values. The weak scale
is indeed fine-tuned, but no more than is typically necessary in the multiverse for observers to
exist.
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Figure 2: The fraction of baryonic mass processed to 4He during BBN as a function of the weak
scale, with other physically relevant parameters, including m

u,d,e

,⇤
QCD

and M
pl

, held fixed. The
red dot shows our universe, and appears on the steeply rising portion of the curve. The blue
shading shows regions with more than (85, 90, 95)% of baryons in helium. The yellow region
has freeze-out for u $ d conversion occurring before the QCD phase transition while, in the
region of overlapping blue/yellow shading, the ordering of the freeze-out and phase transition is
uncertain.

Given that (y
u

, y
d

) and v could vary over many orders of magnitude, the extreme closeness of
the observed values to the catastrophic boundaries in each of Figures 1 and 2 provides evidence
for environmental selection in a multiverse. Our purpose in this paper is to study and assess
this evidence.

In Sections 2 – 5 we restrict our attention to variations of v up to 30�100 times the observed
value of the weak scale, v

0

, so that the relevant weak interaction freezeout occurs after the QCD
phase transition. We also keep the second and third generation Yukawa couplings fixed so
that heavy flavors are not relevant for BBN in this range of v. As we vary an increasing set
of parameters away from the observed values, we explore the form of the observer boundary,
beyond which observers are either absent, or severely constrained. In the next section we discuss
the relevant multiverse distribution functions, and in Section 3 we study selection of m

u,d,e

at
the atomic boundaries. We then address the BBN helium boundary:

• With v/v
0

< 30� 100 the nuclear abundances resulting from BBN depend on the masses
m

u,d,e

as well the weak scale v, and in Section 4 we investigate whether the BBN un-
derstanding of v persists when the Yukawa couplings also scan. The helium boundary

6
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As v gets large the universe become He dominated

Likely (?) catastrophic



DM density from anthropic selection
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and the reduction in ⇤ to achieve this costs ⇠ 10�6 in probability. Halo and star formation is
entirely di↵erent in a top-down scheme, so that the corresponding observer weighting factors
will be very di↵erent and are unknown.

3 An E↵ective Distribution for ⇠D

For the rest of the paper it is convenient to perform an approximate integral of the probability
distribution over ⇤ so that we can focus our discussion on the remaining e↵ective probability
distribution for ⇠D. We define the observer region to be where the exponentials in nvir(1012M�)
and n⇤

meas, shown in (11) and (12), are larger than ⇠ 50%. Thus the observer region is similar
but slightly smaller than the unshaded region in Figure 1, where the boundaries were defined
by these exponentials reaching 1%. We define the observer dilution and virialization boundaries
of the observer region to be

⇤ < ⇤c, ⇠D > ⇠c

✓
⇤

⇤c

◆
1/4

(14)

so that they intersect at (⇠c,⇤c) ⇠ (0.5 ⇠D0

,⇤
0

). Approximating nvir and n⇤

meas as ✓ functions
at the boundaries (14), in the observer region the probability distribution of (4, 5, 6) becomes

dP = p(⇠D)
⇠B0

⇠B0

+ ⇠D
d ln ⇠D d⇤. (15)

Here we use the value of ⇠B observed in our universe as we are not scanning over the baryon
density.

Integrating over ⇤ gives an e↵ective distribution for the single parameter ⇠D

dP = p(⇠D)
⇠B0

⇠B0

+ ⇠D
d ln ⇠D

(
⇤c ⇠D > ⇠c

⇤c(⇠D/⇠c)4 ⇠D < ⇠c
(16)

where the last factor arises because the maximum value of ⇤ in the observer region depends on
⇠D. We assume that the (⇠D/⇠c)4 factor makes the region ⇠D < ⇠c su�ciently improbable that
there is little error in taking the 1d observer region to be

⇠D > ⇠c. (17)

This assumption would only fail if the distribution p(⇠D) favored low ⇠D so strongly that it
overcompensates the (⇠D/⇠c)4 factor. However, this would cause runaway along the virialization
boundary in Figure 1 to both low ⇠D and low ⇤, destroying the successful understanding of the
Why Now problem. For less extreme p(⇠D) distributions, the Why Now problem is solved, since
the typical value of ⇤ is ⇤c ⇠ ⇤

0

. In the rest of the paper we fix ⇤ = ⇤
0

and perform a 1d scan
over ⇠D with distribution (16) subject to (17).
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Probability distribution in the xi Lambda plane

Marginalizing over the CC
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overcompensates the (⇠D/⇠c)4 factor. However, this would cause runaway along the virialization
boundary in Figure 1 to both low ⇠D and low ⇤, destroying the successful understanding of the
Why Now problem. For less extreme p(⇠D) distributions, the Why Now problem is solved, since
the typical value of ⇤ is ⇤c ⇠ ⇤

0

. In the rest of the paper we fix ⇤ = ⇤
0

and perform a 1d scan
over ⇠D with distribution (16) subject to (17).
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Assume they arise after equality
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independent of the DM to baryon ratio, then

Nb /
⇠b

⇠b + ⇠m



Assumption: 	

the vicinity of the LSS boundary is determined by environmental 

selection
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Figure 3: Typical runaway behavior at the virialization boundary for two independently scanning
contributions to DM, ⇠

1

and ⇠
2

. Virialization fails in the shaded region, where ⇠
1

+ ⇠
2

< ⇠c.
The blue arrows represent one choice for rPi which leads to runaway along the virialization
boundary to small ⇠

1

, as shown by the blue star, and the red arrows represent another choice
that leads to runaway to small ⇠

2

and the red star.

example, for |ni| = N and ⇠
min i = 10�3⇠c, multi-component DM is less probable than single

component by a factor of 103N .
Consider applying these general arguments to supersymmetric theories that contain a QCD

axion, and assume a cosmology that leads to both misalignment axion DM, ⇠a, and thermal
LSP freezeout DM, ⇠LSP . Further assume that the multiverse distribution functions for the
axion decay constant, f , and the scale of supersymmetry breaking, m̃, favor low values, so
that the size of ⇠D = ⇠a + ⇠LSP will be explained by proximity to the virialization boundary
(since ⇠a / f and ⇠LSP / m̃2). The relative strengths of the distributions for f and m̃ are
unknown, so we do not know which is the dominant component with density near ⇠c and which
the sub-dominant component with density at least a few orders of magnitude below ⇠c. If axions
are dominant f ⇠ 1011 GeV, while if LSPs are dominant m̃ ⇠ TeV, (these are rough order
of magnitude estimates, which have theoretical uncertainties and model dependencies, but are
su�cient for our purposes). This then implies that if axions are dominant m̃ is at least a few
orders of magnitude below the TeV scale, while if LSPs are dominant f is at least a few orders
of magnitude below 1011 GeV. Both cases are observationally excluded – they do not describe
our universe. Hence, in our scheme, with the abundance of DM explained by closeness to the
virialization boundary, conventional TeV-scale LSP freezeout DM is inconsistent with the axion
solution to the strong CP problem. To avoid this conclusion, ⇠

min a,LSP must both be accidentally
close to ⇠c, implying that the observed DM abundance is close to the peak of the 2d probability
distribution.

12

4 Single Component Dark Matter

The arguments of previous sections are independent of the nature of DM. In this section we
show that if the abundance of DM is explained by the virialization boundary it is dominantly
composed of a single component. Suppose that there are many components, ⇠D = ⌃i⇠i, with
su�ciently many scanning parameters that the energy densities, ⇠i, scan independently with
prior dP = ⇧i Pi(⇠i) d ln ⇠i. In our universe, if some species has ⇠i � ⇠c density perturbations
are easily able to go non-linear, and we are far from the virialization boundary. Hence, for the
abundance of DM to be explained by proximity to the virialization boundary, all ⇠i should be of
order ⇠c or smaller. Is it possible that more than one component has ⇠i ⇠ ⇠c, with distributions
favoring low ⇠i? In general this possibility is extremely unlikely. The component with the
weakest distribution towards the boundary will have an abundance close to ⇠c, while the other
components will typically have much smaller abundances, as illustrated in Figure 3. Hence, if the
virialization boundary is the correct explanation for the DM density, DM is strongly dominated

by a single component.4

How small might we expect the sub-dominant components to be? In generic theories of DM,
⇠i can vary over many orders of magnitude. A sub-dominant species must have the gradient
dPi/d⇠i negative at ⇠i = ⇠c so that ⇠i will runaway to low some low value ⇠

min i where the sign of
dPi/d⇠i changes. It would be accidental for this to happen anywhere near ⇠c, which is determined
by the physics of virialization and is independent of the prior distribution. Hence, we expect
⇠
min i to be less than ⇠c by at least a few orders of magnitude, as illustrated by the stars in Figure
3.

How improbable is multi-component DM? Consider a two-component model with densities
⇠
1,2 scanning independently with an e↵ective distribution

dP

d log ⇠
1

d log ⇠
2

= C ✓ (⇠
1

+ ⇠
2

� ⇠c)
1

1 + ⇠1+⇠2
⇠B

⇠n1
1

⇠n2
2

(18)

with n
1,2 < 0 and C a normalization constant. We take (18) to be valid over a wide range of ⇠

1,2,
including the region of the virialization boundary near ⇠

1

⇠ ⇠
2

, and down to near ⇠
min 1,2, where

it breaks down and the gradient of the distribution changes sign. Let P
multi

be the probability
for ⇠

1,2 ⇠ ⇠c integrated over a region with �⇠
1,2 ⇠ ⇠

1,2. Similarly let P
single 1

be the probability
for (⇠

1

, ⇠
2

) ⇠ (⇠c, ⇠min 2

) integrated over a region with �⇠
1,2 ⇠ ⇠

1,2. We find

P
multi

P
single 1

⇠
✓
⇠
min 2

⇠c

◆|n2|

. (19)

In going from single component DM with (⇠
1

, ⇠
2

) ⇠ (⇠c, ⇠min 2

) to multi-component DM with
(⇠

1

, ⇠
2

) ⇠ (⇠c, ⇠c) one loses in probability from the ⇠n2
2

factor of (18) by changing ⇠
2

from its
minimal value to ⇠c. The result for P

multi

/P
single 2

is obtained by interchanging 1 $ 2. For

4This is very di↵erent from an anthropic boundary that places an upper limit on ⇠D = ⌃i⇠i, such as close
stellar encounters. In this case, if several species have distributions that favor large values of ⇠i then these
components are all expected to have densities close to the boundary value [12].
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example, for |ni| = N and ⇠
min i = 10�3⇠c, multi-component DM is less probable than single

component by a factor of 103N .
Consider applying these general arguments to supersymmetric theories that contain a QCD

axion, and assume a cosmology that leads to both misalignment axion DM, ⇠a, and thermal
LSP freezeout DM, ⇠LSP . Further assume that the multiverse distribution functions for the
axion decay constant, f , and the scale of supersymmetry breaking, m̃, favor low values, so
that the size of ⇠D = ⇠a + ⇠LSP will be explained by proximity to the virialization boundary
(since ⇠a / f and ⇠LSP / m̃2). The relative strengths of the distributions for f and m̃ are
unknown, so we do not know which is the dominant component with density near ⇠c and which
the sub-dominant component with density at least a few orders of magnitude below ⇠c. If axions
are dominant f ⇠ 1011 GeV, while if LSPs are dominant m̃ ⇠ TeV, (these are rough order
of magnitude estimates, which have theoretical uncertainties and model dependencies, but are
su�cient for our purposes). This then implies that if axions are dominant m̃ is at least a few
orders of magnitude below the TeV scale, while if LSPs are dominant f is at least a few orders
of magnitude below 1011 GeV. Both cases are observationally excluded – they do not describe
our universe. Hence, in our scheme, with the abundance of DM explained by closeness to the
virialization boundary, conventional TeV-scale LSP freezeout DM is inconsistent with the axion
solution to the strong CP problem. To avoid this conclusion, ⇠

min a,LSP must both be accidentally
close to ⇠c, implying that the observed DM abundance is close to the peak of the 2d probability
distribution.
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component by a factor of 103N .
Consider applying these general arguments to supersymmetric theories that contain a QCD

axion, and assume a cosmology that leads to both misalignment axion DM, ⇠a, and thermal
LSP freezeout DM, ⇠LSP . Further assume that the multiverse distribution functions for the
axion decay constant, f , and the scale of supersymmetry breaking, m̃, favor low values, so
that the size of ⇠D = ⇠a + ⇠LSP will be explained by proximity to the virialization boundary
(since ⇠a / f and ⇠LSP / m̃2). The relative strengths of the distributions for f and m̃ are
unknown, so we do not know which is the dominant component with density near ⇠c and which
the sub-dominant component with density at least a few orders of magnitude below ⇠c. If axions
are dominant f ⇠ 1011 GeV, while if LSPs are dominant m̃ ⇠ TeV, (these are rough order
of magnitude estimates, which have theoretical uncertainties and model dependencies, but are
su�cient for our purposes). This then implies that if axions are dominant m̃ is at least a few
orders of magnitude below the TeV scale, while if LSPs are dominant f is at least a few orders
of magnitude below 1011 GeV. Both cases are observationally excluded – they do not describe
our universe. Hence, in our scheme, with the abundance of DM explained by closeness to the
virialization boundary, conventional TeV-scale LSP freezeout DM is inconsistent with the axion
solution to the strong CP problem. To avoid this conclusion, ⇠

min a,LSP must both be accidentally
close to ⇠c, implying that the observed DM abundance is close to the peak of the 2d probability
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4 Single Component Dark Matter

The arguments of previous sections are independent of the nature of DM. In this section we
show that if the abundance of DM is explained by the virialization boundary it is dominantly
composed of a single component. Suppose that there are many components, ⇠D = ⌃i⇠i, with
su�ciently many scanning parameters that the energy densities, ⇠i, scan independently with
prior dP = ⇧i Pi(⇠i) d ln ⇠i. In our universe, if some species has ⇠i � ⇠c density perturbations
are easily able to go non-linear, and we are far from the virialization boundary. Hence, for the
abundance of DM to be explained by proximity to the virialization boundary, all ⇠i should be of
order ⇠c or smaller. Is it possible that more than one component has ⇠i ⇠ ⇠c, with distributions
favoring low ⇠i? In general this possibility is extremely unlikely. The component with the
weakest distribution towards the boundary will have an abundance close to ⇠c, while the other
components will typically have much smaller abundances, as illustrated in Figure 3. Hence, if the
virialization boundary is the correct explanation for the DM density, DM is strongly dominated

by a single component.4

How small might we expect the sub-dominant components to be? In generic theories of DM,
⇠i can vary over many orders of magnitude. A sub-dominant species must have the gradient
dPi/d⇠i negative at ⇠i = ⇠c so that ⇠i will runaway to low some low value ⇠

min i where the sign of
dPi/d⇠i changes. It would be accidental for this to happen anywhere near ⇠c, which is determined
by the physics of virialization and is independent of the prior distribution. Hence, we expect
⇠
min i to be less than ⇠c by at least a few orders of magnitude, as illustrated by the stars in Figure
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Single component DM: 	

WIMPs



Consider a SUSY spectrum defined by a fundamental SUSY breaking parameter 
m, in which the ratios between sparticle masses are roughly fixed

dP (m̃) ⇠ m̃n

1 + m̃2/v2
d ln m̃ m̃ > v : ⇠D ⇠ m̃2

MPl

...

NO LSS

TeV

EW fine tuning

Predicts a little SUSY hierarchy
see also Nomura, Shirai (’14)



Single component DM: 	

QCD axion



Axion DM: misalignment mechanism
At high temperature (T < f) the axion field is stuck at some location in its potential

a = ✓if

ma(Tosc

) ⇠ H(T
osc

)At                              the axion starts to oscillate around its minimum and the 
energy density in the oscillations redshift like non-relativistic matter

⇠a =
ma

ma(Tosc

)

⇢a(Tosc

)

s(T
osc

)
⇡ 1.7 ⇠D0

✓2
✓

f

102 GeV

◆
1.18

ma(T ) ⇠ ma(⇤QCD/T )5.5 ) T
osc

⇠ 1GeV



If the PQ is broken during inflation and is not restored after reheating θ takes a 
random value in our Hubble patch between 0 and π. On the other hand θ is 

averaged over the patch and ✓e↵ = ⇡/
p
3

Kim et al (’08)

Axion production from decay of topological defects should be included. This can 
lower f by an order of magnitude.
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Figure 5: The gray and red shaded regions are excluded by the virialization requirement (17)
for Pre- and Post-Inflation axion cosmologies respectively, with light shading corresponding to
the theoretical uncertainties of (24) and (27).

within a Hubble patch the PQ phase transition has to have occurred already while the universe
is inflating and the PQ symmetry must not be restored during reheating. These two facts require
both TI ⌘ HI/2⇡, the Gibbons-Hawking temperature of inflating de Sitter space, and T

max

, the
maximal temperature reached by the universe during reheating, to be smaller than f . If

f > max(TI , Tmax

) (28)

inflation will insure that ai is constant within our Hubble patch. This possibility allows the so
called “anthropic axion window”6 with larger values of f but a small angle ✓.7

In Figure 5 the shaded region in the (f, ✓) plane is excluded by the virialization boundary
(17). In gray we plot the exclusion for the Pre-Inflation case in which the initial misalignment
angle is constant in our Hubble patch. The thickness of the boundary of the excluded region
shows the uncertainty from non-perturbative QCD corresponding to (24). The red shading
corresponds to the exclusion for the Post-Inflation regime in which the misalignment angle is
averaged over our Hubble patch. The theoretical uncertainty in this case (shown by the thick

6The anthropic axion window [32] does not require a multiverse, but follows from conventional inflation
leading to large regions having di↵erent ✓ when the PQ phase transition occurs before inflation. At large f an
anthropic requirement that ⇠D not be too large selects for small ✓. This anthropic requirement is much less well
understood than the requirement of virialization used in this paper.

7An additional source of small scale fluctuation of the axion field are the quantum fluctuation which are
imprinted on it during inflation. They determine a minimal value of the e↵ective ✓ angle [33, 34]

✓min =
HI

2⇡f
⇡ 1.6⇥ 10�4

✓
HI

1012 GeV

◆✓
1015 GeV

f

◆
(29)

and in turn a minimal contribution to ⇢a in the Pre-Inflation case.
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Axion DM parameter space
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streaming of LSS by axion hot dark matter,  large rate of axion emission by stars.
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Figure 8: Probability distributions for f in the Pre-Inflation scenario: (a) average (solid black
line) and 1� range (green band) of ⇠D as a function of n; (b) probability for f imposing ⇠D = ⇠D0

.

one observed today. The probability distribution for f thus reads

dP (f) = N(n) fn d ln f

Z ⇡

�⇡

�(⇠D � ⇠D0

)n
obs

(⇠D) d✓ (35)

where N(n) is the normalization factor. The delta function and the finite integration range over
✓ restrict the allowed values of f , which the probability distribution support is bounded from
below

f > f
min

= 3.2⇥ 1010 GeV . (36)

The resulting distributions are shown in Figure 8b for three di↵erent values of n. Given (35)
we can now calculate the probability for f to fall within the reach of ADMX. The results are
shown in Figure 9 as a function of n.

6.3 The Thermal Axion Window

The observed dark matter abundance can be understood if the multiverse favors low values of f .
If this is the case, we live close to the catastrophic boundary coming from requiring su�cient dark
matter for density perturbations to go non-linear and halos to form by virialization. However,
the argument presented in this Section is not quite complete because, for low enough f , su�cient
axions are produced from thermal scattering for the axion dark matter density to rise above the
virialization bound. This low f region is observationally excluded, for example from limits on
axion emission from supernovae and from white dwarfs; we argue now that it is also anthropically
disfavored.
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Figure 7: Post-Inflation axion dark matter. Left panel: Probability distributions for f̃ = f/f
0

for three di↵erent values of n. Right panel: average (solid black line) and 1� range (green band)
of ⇠D as a function of n.

universe is ‘1�-typical’ for �2.97  n  0.62. We checked that also in this case the range is not
sensitive to the detailed choice of ⇠

max

.
One interesting question to ask is how well an experiment like ADMX would perform in

discovering the axion assuming it is the DM. The answer to this question depends on whether
we live in the Pre- or Post-Inflation scenario and on the value of n. According to the experimental
collaboration, the ADMX and ADMX-II experiments are going to be sensitive to the following
ranges of f

ADMX: 1.7⇥ 1012 GeV . f . 3⇥ 1012 GeV ,

ADMX-II: 3.4⇥ 1011 GeV . f . 3⇥ 1012 GeV ,
(34)

Unfortunately none of the two phases of the experiment is expected to cover a Post-Inflation
axion, where 1.6⇥ 1010 GeV. f . 1.6⇥ 1011GeV depending on whether the contribution from
the decay of topological defects is taken into account or not.7

The situation is di↵erent in the Pre-Inflation case, where a larger value of f can be accom-
modated by a small initial misalignment angle ✓. Knowing the probability distribution for ✓
and fixing the one for f we are then able to calculate the probability of ADMX to observe the
QCD axion under the assumption that it is the DM in our universe.

We thus proceed to integrate out ✓ from (30) imposing that the total axion density is the

7See however the recent proposal by Arvanitaki and Geraci [20].
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In order to obtain the posterior probability distribution for f we have to take into account
measure and anthropic selection e↵ects which modify the above simple power law behavior, and
recall that our overall scheme includes the scanning of ⇤. Following the discussion in section 3
that led to (17) and (18), after marginalizing over ⇤ the e↵ective probability distribution for f
and ✓ becomes

dP / ✓(⇠D � ⇠c)
1

1 + ⇠D/⇠B0

fn d ln f (d✓) (30)

where the virialization boundary is approximated by a ✓ function at ⇠c = 0.5 ⇠D0

. The integral
(d✓) is present only for the Pre-Inflation case.

For the Post-Inflation cosmology, we parametrize

⇠D/⇠B0

= 6.0 f̃ 1.2 with f̃ = f/f
0

, (31)

where f
0

is the value for which the observed DM abundance is reproduced and has a theoret-
ical uncertainty from the contribution of axion topological defects. Using the variable f̃ the
probability distribution reads

dP / ✓(f̃ � f̃c)
1

1 + 6.0f̃ 1.2
f̃ n d ln f̃ (32)

where f̃c ' 0.56 is the value of f̃ corresponding to ⇠D = ⇠c. In order to get a normalizable
distribution for n > 1.2 we cut o↵ the range of f̃ at f̃

max

= 2.15 ⇥ 103, correspondent to
⇠D = ⇠

max

= 104 ⇠D0

. This can be interpreted as an additional anthropic boundary at large ⇠D
related for instance to close stellar encounters. Using this distribution we discuss the range of
n that makes the observed abundance of DM in our universe typical.

In Figure 7a we plot the probability distribution for three di↵erent values of n. In Figure 7b
we show the average value of ⇠D as a function of n, as well as its 1� confidence interval. In order
to reproduce the observed relic density we need of course f = f

0

and we find that our universe
is ‘1�-typical’ for �2.42  n  0.88. It is worth emphasizing that this range is not sensitive to
the detailed choice of ⇠

max

, and it stays una↵ected for ⇠
max

= (103 ÷ 106) ⇠D0

.
Turning to the Pre-Inflation scenario, the probability distribution is doubly di↵erential, with

also the initial misalignment angle scanning uniformly between �⇡ and ⇡. Hence d✓ is included
in (30) and the axion abundance in this case is given by (23). The 2-dimensional distribution
in the (✓, f) plane is not particularly illuminating. An important question to answer is about
the support of the distribution in this case. We trade the variable f for ⇠D, and we scan the
variables (✓, ⇠D) over the following domain

✓
min

= 10�2 < ✓ < ⇡ , ⇠c < ⇠D < ⇠
max

= 104 . (33)

The minimum value ✓ is obtained by requiring that we never scan over values of f greater than
the Planck mass, which translates into the condition ⇠D(✓min

, f = M
Pl

) = ⇠
max

. The maximum
value of ⇠D comes again from an anthropic boundary at large values of the dark matter density.
We use this double di↵erential distribution to compute the average value of ⇠D as well as the
1� confidence interval. The result is shown in Fig. (8a), and we find that in this scenario our
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New ideas are needed to probe low f axions!

see for instance Arvanitaki, Geraci (’14)



A model & the Higgs mass



Ingredients

Axion
The multiverse motivates the existence of a solution to the strong CP 
problem. If we live close to the LSS boundary for a dynamical reason 
then the axion is likely to be DM.

Supersymmetry
Ameliorate the fine tuning of both the EW and CC hierarchies.

Provides a zeroth-order understanding of why the Higgs quartic 
coupling is small.



aMSSM

To the matter content of the MSSM add a singlet chiral superfield, 
coupled through

W = ⇠SH1H2 V
soft

= ⇠A⇠SH1

H
2

+m2

S |S|2

The model has an exact global PQ symmetry which has a color anomaly.	

Simplest supersymmetric DFSZ model. The model has domain wall number 3.

m2
S > 0

At tree level both the PQ and EW symmetry are unbroken.



1 NMSSM PQ-axion

We consider the NMSSM Higgs sector, described by the following superpotential

W = �SH1H2 (1)

and the following soft potential

V = m2
1|H1|2 +m2

1|H1|2 +m2
S|S|2 + (�A�SH1H2 + h.c.). (2)

In the following we neglect all other interactions, gauge and yukawa ones. This allows to
obtain analytical results. The relevant RG equations are (t = log µ/M�)

16⇥2d�

dt
= 4�3

8⇥2dm
2
1,2

dt
= �2(m2

1 +m2
2 +m2

S + A2
�)

8⇥2dm
2
S

dt
= 2�2(m2

1 +m2
2 +m2

S + A2
�) (3)

8⇥2dA�

dt
= 4�2A�

This equations are solved in terms of a boundary condition defined at a scale M�.

�(t) =
�̃⌥

1� �̃2

2⇥2 t
(4)

and

A�(t) = Ã�
�(t)2

�̃2
. (5)

The running of the soft masses is only slightly more involved. We define the three combina-
tions ⇤

⇧
C1

C2

C3

⌅

⌃ =

⇤

⇧
�1 1 0
0 �2 1
1 1 1

⌅

⌃

⇤

⇧
m2

1

m2
2

m2
S

⌅

⌃ (6)

which satisfy
C1(t) = C̃, C2(t) = C̃2 (7)

and

C3(t) = C̃3
�(t)2

�̃2
+ Ã2

�

�(t)2

�̃2

�
�(t)2

�̃2
� 1

⇥
. (8)

At 1-loop order the e⇥ective potential for S is composed by two parts

V (S) = V (0)(S;µ) + V (1)(S;µ) + . . . , (9)

where V (0) and V (1) are respectively the tree level and 1-loop e⇥ective potential. The µ de-
pendence of the all-order e⇥ective potential is unphysical and V follows the Callan-Symanzik
equation. We have

V (0)(S;µ) = �(µ) +m2
S(µ)|S(µ)|2. (10)

2

+O(y2t )

+O(y2t )

+O(⇠y2t )

M⇤µC

m2
S

µC ⇠ ⇠hSi ⇠ M⇤e
�4⇡2/⇠2

PQ is broken spontaneously and radiatively. The dynamically generated scale is a 
priori independent of the absolute normalization of the soft masses.

⇠ = O(1) ) µC � vLSS boundary:
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Figure 1: Left panel: phase diagram of our model for m̃ = 1011 GeV, showing regions of PQ
breaking (blue), EW symmetry breaking (red) and no symmetry breaking (gray). Right panel:
running of the soft parameters m2

Hu
and m2

S for the two benchmark points A and B.

the gray region neither electroweak or PQ symmetry breaks, while in the red region electroweak
symmetry breaks at a scale µC

>⇠ m̃. Hence it is the blue region, with PQ symmetry breaking
at the dimensional transmutation scale µC

>⇠ m̃, that we study in this paper. The right panel
shows running of m2

S and m2

2

for the benchmark points A and B defined in the right panel.
The vev of S is computed by minimizing the full e↵ective potential for S, which at 1-loop

leading-log order is
V (S) = ⇤(µ) + m2

S(µ)|S(µ)|2 + V (1)(S, µ) (5)

where V (1) is the 1-loop Coleman-Weinberg [26] potential

V (1)(S, µ) =
X

i

(�1)2si
m4

i (S)

64⇡2

✓
log

m2

i (S)

µ2

� 3

2

◆
(6)

where the sum extends over all particles i in the model with mi(S) being their field dependent
masses and si their spins. Given the leading-log accuracy at which we are working, all the various
parameters appearing in V (1) should be evaluated at a reference scale µ

0

such that log µ/µ
0

is
not much larger than 1. The running parameters in eq. (5) are evaluated at the running scale
µ according to their RG equation. The potential V is µ independent at the order at which we
are working. This can be explicitly checked using

16⇡2

d⇤

d log µ
= 2m4

1

+ 2m4

2

+ m4

S, 16⇡2

d log S

d log µ
= �⇠2

2
(7)

The running cosmological constant is included to cancel the µ dependence of the field indepen-
dent part of V .

5



M2
H ⇡

✓
µ2
C +m2

2 A⇠µC

A⇠µC µ2
C +m2

1

◆

EWSB with high scale SUSY: det M2
H ⇠ �m2

Zm̃
2

µC � m̃ :

µC ⌧ m̃ :

det M2
H ⇠ µ4

C

det M2
H ⇠ ±m̃4

EWSB forces: µC ⇠ m̃

A very concrete manifestation of the μ problem in this setup. 	

It has an anthropic solution.

NO EWSB

NO EWSB



V (S) = ⇤(µ) +m2
S |S(µ)|2 + V (1)(S;µ) + . . .

Expand around the point μC where the S soft mass vanishes. The leading log 
expansion of  V then works fine.

A running Cosmological Constant has to be included to allow the whole potential to be µ
independent. It’s RG equation in our model is

d�

dt
=

1

16⇥2
(m4

S + 2m4
1 + 2m4

2). (11)

The wave-function renormalization of S is controlled by

8⇥2dS

dt
= ��2S. (12)

No bare quartic coupling has to be introduced due to softly-broken supersymmetry. The
1-loop potential V (1) can be written as

V (1)(S;µ) =
1

64⇥2

⇤
4m4

H

�
log

m2
H

µ2
� 3

2

⇥
+ 4m4

h

�
log
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h

µ2
� 3
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log
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� 1

64⇥2
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8m4

F

�
log
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F
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� 3

2
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(13)

The parameters m2
H , m

2
h and mF depend on S through

m2
H,h =

m2
1 +m2

2

2
+ �2|S|2 ±

⇧
(m2

1 �m2
2)

2

2
+ �2A2

� |S|2, (14)

mF = �|S|. (15)

The one-loop potential identically vanishes if soft SUSY breaking disappears. Using the
various RG equations it is easy to show explicitly the µ independence of the potential at
leading order in �2 log µ. The potential simplifies considerably using the various parameters
evaluated at the scale µC satisfying m2

S(µC) = 0,

V (S) =
1

64⇥2
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H
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log
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� 8m4
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. (16)

Defining y ⇥ �2|S|2 the minimum condition for V reads

m2
H

�
log

m2
H

µ2
C

� 1

2
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dm2

H

dy
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h

�
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dm2

h
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� 4y

�
log

y
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C
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. (17)

At the minimum of the potential we are interested to fine-tune the various parameters to
give m2

h = 0. This allows us to extract the value of A2
�

A2
� =

(m2
1 + y2)(m2

2 + y2)

y2
. (18)

Imposing this in eq. (17) one finds

m2
h = 0 ,
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H = m2

1 +m2
2 + 2y2,

dm2
H
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= 2 +

m2
1m
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2 � y2
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2 + 2y)
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Inputs:

Outputs:

m1, m2, A⇠, µC , ⇠

det M2
H , tan�, f, ASHH
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The Higgs quartic around H=0

VSM (H) = �SM |H|4

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (’13)
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Figure 2: Upper: RG evolution of ⇤ (left) and of ⇥� (right) varying Mt, �3(MZ), Mh by
±3⇧. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(⇤)

�
4|⇤|/yt

and sign(⇤)
�

8|⇤|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic ⇥-function is shown in units of its top contribution, ⇥�(top
contribution) = �3y4t /8⌅

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇤ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

⌅
8⌅.
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A postdiction for the Higgs mass?

W = ⇠SHuHd + . . .

E

SM + s + aSM + a

µcms ' ⇠
4⇡µc M⇤

Figure 2: The E↵ective Field Theories below M⇤, µc and the saxion mass ms.

where the last term arises from a diagram with a virtual s and two trilinear interactions and
we ignore the running of A⇠ and ms between µc and ms. The important point is that this term
is negative-definite and very large due to the lightness of s. The natural expectation is that
(A⇠)2/m2

s ⇠ 16⇡2, so that �(ms) ⌧ 0 and there is no electroweak vacuum with hhi ⌧ ms.
However, we insist on an environmental requirement of electroweak symmetry breaking at

a scale close to that observed. To accomplish this we scan the soft supersymmetry breaking
parameters at M⇤. This allowed us to take one combination of the Higgs doublets much lighter
than µC , but this tuning alone is insu�cient. If no universes have the required electroweak
symmetry breaking then our theory is excluded. However, some universes do have the desired
weak scale, those that have a cancellation between the two terms in (18) so that (A⇠)2/m2

s ⇠ 1
(recall that µ ⇠ µC , which scans with the soft parameters)3. This is only a 1 in 10 fine-tune,
much milder than that required to get a light Higgs doublet. This fine-tuning, like that for mh,
is an inevitable consequence of our theory. The necessity of this fine-tuning has an important
consequence: it allows us to predict the probability distribution for the Higgs quartic coupling
and therefore the Higgs boson mass, as we discuss next.

4 The Higgs Quartic from Vacuum Stability

For generic values of the various soft parameters entering the Higgs sector, the SM Higgs quartic
in eq. (21) is negative and much too large to lead to an acceptable electroweak vacuum state:
for order one tan �, the negative contribution coming from integrating out the saxion field is
between one and two orders of magnitude bigger than the vacuum stability bound [13].
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The saxion mass is one-loop below the other sparticles. Integrating it out gives a large 
and negative contribution to the Higgs quartic coupling. The H=0 vacuum is unstable. 
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where the last term arises from a diagram with a virtual s and two trilinear interactions and
we ignore the running of A⇠ and ms between µc and ms. The important point is that this term
is negative-definite and very large due to the lightness of s. The natural expectation is that
(A⇠)2/m2

s ⇠ 16⇡2, so that �(ms) ⌧ 0 and there is no electroweak vacuum with hhi ⌧ ms.
However, we insist on an environmental requirement of electroweak symmetry breaking at

a scale close to that observed. To accomplish this we scan the soft supersymmetry breaking
parameters at M⇤. This allowed us to take one combination of the Higgs doublets much lighter
than µC , but this tuning alone is insu�cient. If no universes have the required electroweak
symmetry breaking then our theory is excluded. However, some universes do have the desired
weak scale, those that have a cancellation between the two terms in (18) so that (A⇠)2/m2

s ⇠ 1
(recall that µ ⇠ µC , which scans with the soft parameters)3. This is only a 1 in 10 fine-tune,
much milder than that required to get a light Higgs doublet. This fine-tuning, like that for mh,
is an inevitable consequence of our theory. The necessity of this fine-tuning has an important
consequence: it allows us to predict the probability distribution for the Higgs quartic coupling
and therefore the Higgs boson mass, as we discuss next.

4 The Higgs Quartic from Vacuum Stability

For generic values of the various soft parameters entering the Higgs sector, the SM Higgs quartic
in eq. (21) is negative and much too large to lead to an acceptable electroweak vacuum state:
for order one tan �, the negative contribution coming from integrating out the saxion field is
between one and two orders of magnitude bigger than the vacuum stability bound [13].

Let us rewrite the quartic boundary condition at ms of eq. (21) as

�(ms) = �
+

� ��, �� = �
0

✏2. (22)

�
+

= �h(ms) is obtained by scaling (19) from µc to ms. Including the leading scaling from the
top quark coupling gives

�
+

=

✓
g2 + g0 2

8
cos2 2� +

⇠2

4
sin2 2� +

3y4

t

8⇡2

ln(4⇡/⇠)

◆

µc

(23)

3A <⇠ ms also avoids having a deeper minimum of the potential (16) at hsi ⇠ hhi ⇠ A/⇠.

8

W = ⇠SHuHd + . . .

E

SM + s + aSM + a

µcms ' ⇠
4⇡µc M⇤

Figure 2: The E↵ective Field Theories below M⇤, µc and the saxion mass ms.
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a scale close to that observed. To accomplish this we scan the soft supersymmetry breaking
parameters at M⇤. This allowed us to take one combination of the Higgs doublets much lighter
than µC , but this tuning alone is insu�cient. If no universes have the required electroweak
symmetry breaking then our theory is excluded. However, some universes do have the desired
weak scale, those that have a cancellation between the two terms in (18) so that (A⇠)2/m2
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(recall that µ ⇠ µC , which scans with the soft parameters)3. This is only a 1 in 10 fine-tune,
much milder than that required to get a light Higgs doublet. This fine-tuning, like that for mh,
is an inevitable consequence of our theory. The necessity of this fine-tuning has an important
consequence: it allows us to predict the probability distribution for the Higgs quartic coupling
and therefore the Higgs boson mass, as we discuss next.
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is an inevitable consequence of our theory. The necessity of this fine-tuning has an important
consequence: it allows us to predict the probability distribution for the Higgs quartic coupling
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and �
0

is a large coupling of order (4⇡)2, which is defined from eq. (21).
The soft supersymmetry breaking parameters are taken to scan at the cuto↵ M⇤. This leads

to only a very restricted scanning of �
+

. There is a very mild logarithmic scanning of (g, g0, ⇠, yt)
through the scale µc which scans. As tan � scans, it induces only mild scanning of �

+

as g, g0, ⇠
are roughly comparable; also, �

+

has an upper bound because cos2 � + sin2 � = 1.
On the other hand, �� and ✏ scan strongly as they depend directly on the soft parameters.

While ✏ is naturally of order one and can have both signs, its anthropically allowed range is
between one and two orders of magnitude smaller, depending on ⇠, so that an environmental
cancellation is forced on the right-hand side of (24). Due to this accurate cancellation, assuming
generic pdfs for the various soft parameters, the probability distribution for ✏ in the anthropically
relevant range can be accurately approximated by a flat prior,4

dP (✏) / d✏. (25)

The corresponding prior distribution for �� is

dP (��) / ��1/2

� d�� (26)

and is shown with arbitrary normalization by the black curve in Fig. 3. Since the scanning
of �

+

is so mild, this allows us to calculate the probability distribution for observed values of
�(ms).

The requirement that the SM electroweak vacuum has a lifetime longer than 1010 years,
against quantum tunneling at scale ms, leads to a sharp anthropic boundary at �(ms) =
�

cr

(ms) [13]. Requiring � > �
cr

imposes an upper bound on ��

�� < �
+

� �
cr

(27)

shown in Fig. 3 for various values of ⇠ by vertical colored bars.
In this allowed region the normalized distribution is

dP (��) =
1

2

��1/2

�p
�

+

� �
cr

d�� (28)

and is shown in Fig. 4 for three reference values of ⇠. For simplicity we took tan � = 1 and
ignored the top quark contribution in (23), so �

+

= ⇠2/4. The probability distribution P (��)
is peaked toward the catastrophic boundary �� = �

+

� �
cr

.

4
This same argument is used in the literature to obtain the a priori distribution for the cosmological constant

which is then used to discuss its anthropic constraints.
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= ⇠2/4. The probability distribution P (��)
is peaked toward the catastrophic boundary �� = �
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This same argument is used in the literature to obtain the a priori distribution for the cosmological constant

which is then used to discuss its anthropic constraints.
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Figure 4: Left: SM phase diagram in terms of quartic Higgs coupling � and top Yukawa coupling
yt renormalised at the Planck scale. The region where the instability scale �I is larger than
1018 GeV is indicated as ‘Planck-scale dominated’. Right: Zoom around the experimentally
measured values of the couplings, which correspond to the thin ellipse roughly at the centre of
the panel. The dotted lines show contours of �I in GeV.

EW vacuum’ corresponds to a situation in which � is negative at the weak scale, and therefore
the usual Higgs vacuum does not exist. In the region denoted as ‘Planck-scale dominated’ the
instability scale �I is larger than 1018 GeV. In this situation we expect that both the Higgs
potential and the tunnelling rate receive large gravitational corrections and any assessment
about vacuum stability becomes unreliable.

From the left panel of fig. 4 it is evident that, even when we consider the situation in
terms of high-energy couplings, our universe appears to live under very special conditions.
The interesting theoretical question is to understand if the apparent peculiarity of �(MPl)
and yt(MPl) carry any important information about phenomena well beyond the reach of any
collider experiment. Of course this result could be just an accidental coincidence, because in
reality the SM potential is significantly modified by new physics at low or intermediate scales.
Indeed, the Higgs naturalness problem corroborates this possibility. However, both the reputed
violation of naturalness in the cosmological constant and the present lack of new physics at
the LHC cast doubts on the validity of the naturalness criterion for the Higgs boson. Of
course, even without a natural EW sector, there are good reasons to believe in the existence
of new degrees of freedom at intermediate energies. Neutrino masses, dark matter, axion,
inflation, baryon asymmetry provide good motivations for the existence of new dynamics below
the Planck mass. However, for each of these problems we can imagine solutions that either
involve physics well above the instability scale or do not significantly modify the shape of the
Higgs potential. As a typical example, take the see-saw mechanism. As shown in ref. [29], for
neutrino masses smaller than 0.1 eV (as suggested by neutrino-oscillation data without mass
degeneracies), either neutrino Yukawa couplings are too small to modify the running of � or
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Anthropic explanation for the existence of a heavy quark?
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and �
0

is a large coupling of order (4⇡)2, which is defined from eq. (21).
The soft supersymmetry breaking parameters are taken to scan at the cuto↵ M⇤. This leads

to only a very restricted scanning of �
+

. There is a very mild logarithmic scanning of (g, g0, ⇠, yt)
through the scale µc which scans. As tan � scans, it induces only mild scanning of �

+

as g, g0, ⇠
are roughly comparable; also, �

+

has an upper bound because cos2 � + sin2 � = 1.
On the other hand, �� and ✏ scan strongly as they depend directly on the soft parameters.

While ✏ is naturally of order one and can have both signs, its anthropically allowed range is
between one and two orders of magnitude smaller, depending on ⇠, so that an environmental
cancellation is forced on the right-hand side of (24). Due to this accurate cancellation, assuming
generic pdfs for the various soft parameters, the probability distribution for ✏ in the anthropically
relevant range can be accurately approximated by a flat prior,4

dP (✏) / d✏. (25)

The corresponding prior distribution for �� is

dP (��) / ��1/2

� d�� (26)

and is shown with arbitrary normalization by the black curve in Fig. 3. Since the scanning
of �

+

is so mild, this allows us to calculate the probability distribution for observed values of
�(ms).

The requirement that the SM electroweak vacuum has a lifetime longer than 1010 years,
against quantum tunneling at scale ms, leads to a sharp anthropic boundary at �(ms) =
�

cr

(ms) [13]. Requiring � > �
cr

imposes an upper bound on ��
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� �
cr

(27)

shown in Fig. 3 for various values of ⇠ by vertical colored bars.
In this allowed region the normalized distribution is
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and is shown in Fig. 4 for three reference values of ⇠. For simplicity we took tan � = 1 and
ignored the top quark contribution in (23), so �

+

= ⇠2/4. The probability distribution P (��)
is peaked toward the catastrophic boundary �� = �

+

� �
cr

.
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With dP (��) in hand, we compute the average value of the Higgs quartic and its variance

h�i =
2

3
�

+

+
1

3
�

cr

, �� =
2

3
p

5
|�

+

� �
cr

| (29)

where �2

� = h�2i � h�i2. Notice that while it is clear from Fig. 4 that the average value of ��
increases with �

+

, eq. (29) shows that the average value of � gets farther and farther from its
catastrophic value �

cr

and asymptote to h�i ⇠ �
+

.
In Fig. 5 we plot the mean and 1� range of �(µc) as a function of ⇠. The values of eq. (29)

are scaled up from ms to µc using SM RG equations so that all quantities in Fig. 5 refer to
fixed values of µc = 1011 GeV (1014 GeV) in the left (right) panel. We include the 1-loop top
contribution from (23), which is visible in the prediction at low ⇠. The theoretical extrapolation
to µc of the low-energy Higgs quartic coupling obtained from the Higgs mass measurement [13]
is shown by the red band. The agreement of the Higgs mass prediction (black) with data (red)
is striking. In particular, very small values of �(µc) in the range from �0.02 to +0.01 can be
understood from values of ⇠⇤ that are order unity.

5 The spectrum of the model

The three input parameters m2

1

, m2

2

and A⇠ can be traded for the more physical ones detM2

H ,
A and tan �. detM2

H and A are furthermore constrained by the anthropic requirements coming
from EWSB. To simplify the discussion of the model we will fix both of them to 0, even though
this is not strictly necessary for A. Having done this the Higgs sector of the model is completely
defined by three parameters µC , ⇠(µC) and tan �. In the left panel of Fig. we plot the ratio
µ/µC ⌘ ⇠vS/µC as a function of tan �. As anticipated in the previous section this ratio is O(1)
for all relevant values of tan �. Furthermore it is independent of ⇠ as the parameter enters the
lagrangian only through the combination ⇠S.

In the right panel of Fig. we show, as a function of tan �, the value of the heavy Higgs, saxion
and axino masses, normalized to the scale µC . The axino mass which is generated at tree level
is tiny

mtree

ã =
⇠2v2

µ
sin 2� (30)

coming from integrating out the higgsino. The axino mass receives a much larger contribution
from the loop in Fig.

m1-loop

ã =
⇠2

8⇡2

µ sin 2�
m2

A

µ2 �m2

A

ln
|µ|2

m2

A

. (31)

This loop is analogous to the one-loop higgsino threshold contribution to the bino and wino
masses in anomaly mediation [?].

Since the RG evolution makes ⇠ grow in the UV, the allowed values of ⇠ can be constrained
from above by the requiring it to be in the perturbative range up to the cuto↵ scale M⇤. In
Fig. 7 we show the maximal value that ⇠ can attain at the scale µC imposing that ⇠2/4⇡2 < 0.3
at the Planck scale. This maximal value depends on tan �. In Fig. 7 we also require the top
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Pre-Inflation scenario we have the double di↵erential probability distribution

dP

d log m̃ d✓
/ ✓

�
⇢a � ⇢min

a

�
✓ (⇢max

a � ⇢a)
v2

v2 + m̃2

1

1 + ⇢a/⇢B

m̃n . (47)

The first two theta functions describe catastrophic boundaries, associated to virialization and
close encounters, respectively. In what follows, we assume ⇢min

a = 0.5⇢D0 and ⇢max
a = 104⇢D0.

The factor involving v accounts for the fine-tuning to satisfy the anthropic EWSB requirement.
The term dependent on the ratio ⇢a/⇢B is a measure factor [24], and ⇢B is the baryon energy
density which we assume does not scan. Finally, n is an unknown parameter describing the
distribution.

The axion energy density ⇢a depends on the three variables (✓i, f, HI), or equivalently on
(✓i, m̃, TRH). Below a certain ✓min ⇠ HI/(2⇡f) the axion density is not dependent on ✓i anymore.
The condition of no LSP relic density imposes

m̃ >
8⇡2

⇠2
TRH . (48)

This gives a lower bound on the range of m̃ where we are allowed to scan for fixed ⇠ and TRH.
For example, for ⇠ ' 0.1 as chosen before, we end up with the condition m̃ > 8⇥ 103 TRH. For
fixed reheating temperature, the HI-dependent term in Eq. (46) is a decreasing function of m̃,
and when the inequality in Eq. (48) is saturated its size results in

HI

2⇡f
' 1

2⇡

⇠

m̃

r
8⇡

3

1

MPl

 
TRH

0.66 g�1/4
⇤

!2

 0.013 ⇠3 g1/2
⇤

TRH

MPl

. (49)

Given the condition in Eq. (48), we do not want TRH to be too high, otherwise we would have
an enormous SUSY breaking scale. To be conservative we consider TRH such that the condition
in Eq. (48) becomes m̃ > 109 GeV (or equivalently f > 1010 GeV). This implies that the HI-
dependent contribution to the axion density in Eq. (46) is completely negligible, as it becomes
relevant for values of ✓min that would require a transplanckian PQ breaking scale in order to
satisfy the virialization boundary.

For simplicity we study two slices of the (m̃, ✓i) scanning parameters at fixed values of

✓i =

⇢
10�2 fine tuned angle

1 typical value
. (50)

Fixing ✓i determines the allowed range for m̃ between the virialization and close encounters
anthropic boundaries

7.9⇥ 1014 GeV  m̃

⇠
 3⇥ 1018 GeV ✓i = 10�2 , (51)

3.6⇥ 1011 GeV  m̃

⇠
 1.4⇥ 1015 GeV ✓i = 1 . (52)

In Fig. (8) we plot the normalized probability distributions for m̃ for n = 2, 3, 4 for each of
these slices of the multiverse. The examples of n = 2, 3, 4 shown by the red, green and blue
curves illustrate three di↵erent multiverse scenarios for axion dark matter
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Figure 8: Probability distributions for m̃ for ✓i = 1 (left panel) and ✓i = 0.01 (right panel). In
each case we show the probability distribution for three representative values of n.

• For n = 2 the probability distribution for m̃ is peaked towards small values, leading to
typical observers close to the virialization boundary, as proposed in Ref. [23]. There is a
caveat to this case, if m̃ is further decreased by many orders of magnitude to the weak
scale, then LSP dark matter could satisfy the virialization requirements. This is addressed
in the next sub-section.

• The case n = 3 features a peak in the probability distribution, as a consequence of the
measure factor from Ref. [24]. This has the remarkable feature of explaining why the
baryon and dark matter energy densities are comparable.

• Finally, n = 4 has a probability distribution peaked at large values of m̃, so that typical
observers are near the close encounter boundary. The proximity of our universe to this
boundary is possible, but has not been demonstrated.

For simplicity, above we studied fixed ✓i slices of the multiverse. In fact one must study the
probability distribution of Eq. (47) over the full range of scanning parameters (m̃, ✓i). One again
discovers the above three behaviors, but the corresponding values of n are a↵ected by the larger
scan, in particular by the possibility of ✓i running to small values at large f . For a distribution
for m̃ that is not very steep, n  2, one discovers that typical observers have ✓i order unity and
values of f of order 1011 GeV, close to the virialization boundary[23]. For small values of n, it
is the cost of electroweak symmetry breaking that prefers values of f and m̃ as low as allowed
by virialization.

6.3 The Irrelevance of LSP Dark Matter

We conclude this Section with the results of the freeze-out calculation for the LSP relic density,
justifying why we did not consider this contribution in the discussion above. The LSP is an
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⇠ = 0.1

For mSUSY ~ 100TeV axino DM is again allowed 



A model with low scale SUSY?

To the matter content of the MSSM add a singlet chiral superfield, 
coupled through

W =
1

M⇤
S2H1H2

work in progress…


