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Classical scale invariance?
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Why scale invariance?

If the mass of the Higgs boson is put to zero in the SM, the Lagrangian

has a wider symmetry: it is scale and conformally invariant:

Dilatations - global scale transformations (σ = const)

Ψ(x) → σnΨ(σx) ,

n = 1 for scalars and vectors and n = 3/2 for fermions.

It is tempting to use this symmetry for solution of the hierarchy problem
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Different approaches

Lagrangian is invariant at the classical level, and scale symmetry

is broken by quantum corrections a’la Coleman-Weinberg

Meissner, Nicolai; Iso, Okada, Orikasa; Boyle, Farnsworth, Fitzgerald,

Schade; Salvio, Strumia

Simplest theory realising this idea, without gravity Iso, Okada, Orikasa

: SU(3) × SU(2) × U(1) × U(1)B−L: Standard Model, one extra

vector field - gauging of B − L, one extra complex scalar field χ with

lepton number 2, 3 right-handed neutrinos.
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Attractive features:

Coleman-Weinberg mechanism works (it does not work in the SM)

Quantisation of electric charges comes from requirement of

cancellation of anomalies

Phenomenology is OK: neutrino masses are generated, dark

matter candidate, baryogenesis, possibilities for inflation

Main problem: inclusion of gravity in a scale-invariant way, to be

consistent with the starting idea Iso, Kengo, MS

Simplest possibility – non-minimal coupling of χ to Ricci scalar, |χ|2R
requires 〈χ〉 ∼ MP , and thus the small couplings to the SM fields,

and thus to cosmological moduli problem: light scalar that have no time

to setup in the Coleman-Weinberg ground state
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More complicated theory, Salvio, Strumia - gravity with higher

derivatives.

Attractive features:

Renormalisable theory

Coleman-Weinberg mechanism works (it does not work in the SM)

Inflation

Main problem: ghost in the gravitational sector,

Mgh ≃ 3 × 1010 GeV ≪ MP

the theory is unstable
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Exact quantum scale invariance

Frascati, 19 December 2014 – p. 9



Quantum scale invariance
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Quantum scale invariance

Common lore: quantum scale invariance does not exist, divergence of

dilatation current is not-zero due to quantum corrections:

∂µJ
µ ∝ β(g)Ga

αβG
αβ a ,
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Quantum scale invariance
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Quantum scale invariance

Common lore: quantum scale invariance does not exist, divergence of

dilatation current is not-zero due to quantum corrections:

∂µJ
µ ∝ β(g)Ga

αβG
αβ a ,

Sidney Coleman: “For scale invariance,..., the situation is hopeless;

any cutoff procedure necessarily involves a large mass, and a large

mass necessarily breaks scale invariance in a large way.”

Known exceptions - not realistic theories like N=4 SYM

Does not make any sense to talk about
it?
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Toy model

Classically scale-invariant Lagrangian

L =
1

2
(∂µh)

2 +
1

2
(∂µχ)

2 − V (ϕ, χ)

Potential ( χ - “dilaton”, ϕ - “Higgs”):

V (ϕ, χ) =
λ

4

(

h2 − α

λ
χ2

)2

+ βχ4,

β < 0 : vacuum is unstable

β = 0 : flat direction, h2 = α
λ
χ2. Choice of parameters:

α ∼
(

MW

MP

)2

∼ 10−32, to get the Higgs-Planck hierarchy correctly.
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Standard reasoning

Dimensional regularisation d = 4 − 2ǫ, MS subtraction scheme:

mass dimension of the scalar fields: 1 − ǫ,

mass dimension of the coupling constant: 2ǫ

Counter-terms:

λ = µ2ǫ

[

λR +

∞
∑

k=1

an

ǫn

]

,

µ is a dimensionful parameter!!

One-loop effective potential along the flat direction:

V1(χ) =
m4

H(χ)

64π2

[

log
m2

H(χ)

µ2
− 3

2

]

,

Frascati, 19 December 2014 – p. 12



Result: explicit breaking of the dilatation symmetry. Dilaton acquires a

nonzero mass due to radiative corrections.
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Result: explicit breaking of the dilatation symmetry. Dilaton acquires a

nonzero mass due to radiative corrections.

Reason: mismatch in mass dimensions of bare (λ) and renormalized

couplings (λR)
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Result: explicit breaking of the dilatation symmetry. Dilaton acquires a

nonzero mass due to radiative corrections.

Reason: mismatch in mass dimensions of bare (λ) and renormalized

couplings (λR)

Idea: Replace µ2ǫ by combinations of fields χ and h,

which have the correct mass dimension:

µ2ǫ → χ
2ǫ

1−ǫFǫ(x) ,

where x = h/χ. Fǫ(x) is a function depending on the

parameter ǫ with the property F0(x) = 1.

Zenhäusern, M.S

Englert, Truffin, Gastmans, 1976
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Example of computation

“Natural choice”, to be explained below:

µ2ǫ →
[

ω2
]

ǫ
1−ǫ ,

(

ξχχ
2 + ξhh

2
)

≡ ω2

Potential:

U =
λR

4

[

ω2
]

ǫ
1−ǫ

[

h2 − ζ2
Rχ2

]2
,

Counter-terms

Ucc =
[

ω2
]

ǫ
1−ǫ

[

Ah2χ2

(

1

ǭ
+ a

)

+Bχ4

(

1

ǭ
+ b

)

+Ch4

(

1

ǭ
+ c

)

]

,

To be fixed from conditions of absence of divergences and presence

of spontaneous breaking of scale-invariance
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U1 =
m4(h)

64π2

[

log
m2(h)

v2
+ O

(

ζ2
R

)

]

+
λ2
R

64π2

[

C0v
4 + C2v

2h2 + C4h
4
]

+ O
(

h6

χ2

)

,

where m2(h) = λR(3h2 − v2) and

C0 =
3

2

[

2a − 1 + 2 log

(

ζ2
R

ξχ

)

+
4

3
log 2λR + O(ζ2

R)

]

,

C2 = −3

[

2a − 3 + 2 log

(

ζ2
R

ξχ

)

+ O(ζ2
R)

]

,

C4 =
3

2

[

2a − 5 + 2 log

(

ζ2
R

ξχ

)

− 4 log 2λR + O(ζ2
R)

]

.
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Origin of ΛQCD

Consider the high energy (
√
s ≫ v but

√
s ≪ χ0) behaviour of

scattering amplitudes on the example of Higgs-Higgs scattering

(assuming, that ζR ≪ 1). In one-loop approximation

Γ4 = λR +
9λ2

R

64π2

[

log

(

s

ξχχ
2
0

)

+ const

]

+ O
(

ζ2
R

)

.

This implies that at v ≪ √
s ≪ χ0 the effective Higgs self-coupling

runs in a way prescribed by the ordinary renormalization group!

For QCD:

ΛQCD = χ0e
− 1

2b0αs , β(αs) = b0α
2
s
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Almost trivial statement - by construction: Quantum effective action is

scale invariant in all orders of perturbation theory.

Less trivial statement Gretsch, Monin: Quantum effective action is

conformally invariant in all orders of perturbation theory.

The main problem with this construction: theory is not renormalisable,

one needs to add infinite number of counter-terms.

However:

For α ≪ 1 all counter-terms are suppressed by the dimensionful

parameter 〈χ〉

We get an effective field theory valid up to the energy scale fixed

by 〈χ〉

Gravity is non-renormalisable anyway, and making 〈χ〉 ∼ MP

does not make a theory worse
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Hierarchy problem

For α = β = 0 the classical Lagrangian has an extra symmetry :

χ → χ + const. Therefore, there are no large perturbative

corrections to the Higgs mass: those proportional to χ contain

necessarily α or β, those proportional to λ contain only logs of χ.

This construction leads to “natural” hierarchy χ ≫ h. However, no

explanation of why α ≪ 1.
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Important ingredient for naturalness: almost exact shift symmetry.

Requirement of the shift symmetry ≡ requirement of absence of heavy

particles with sufficiently strong interaction with the Higgs field and the

dilaton, e.g.

λhh
2φ2 + λχχ

2φ2

λh ∼ λχ ∼ 1 spoils the argument!

Conjecture: natural theory should not have heavy particles between

the Fermi and Planck scales
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Inclusion of gravity

Planck scale: through non-minimal coupling of the dilaton to the Ricci

scalar,

Gravity part

LG = −
(

ξχχ
2 + ξhh

2
) R

2
,

This term, for ξχ ∼ 1, does break the shift symmetry. However, this is

a coefficient in front of graviton kinetic term. Since the graviton stays

massless in any constant scalar background, the perturbative

computations of gravitational corrections to the Higgs mass in

scale-invariant regularisation are suppressed by MP . There are no

corrections proportional to MP !
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Consequences

Theory is “natural” in perturbative sense: Higgs mass is stable

against radiative corrections
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Consequences

Theory is “natural” in perturbative sense: Higgs mass is stable

against radiative corrections

The dilaton is massless in all orders of perturbation theory

Since it is a Goldstone boson of spontaneously broken symmetry

it has only derivative couplings to matter (inclusion of gravity is

essential!)
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Consequences

Theory is “natural” in perturbative sense: Higgs mass is stable

against radiative corrections

The dilaton is massless in all orders of perturbation theory

Since it is a Goldstone boson of spontaneously broken symmetry

it has only derivative couplings to matter (inclusion of gravity is

essential!)

Fifth force or Brans-Dicke constraints are not applicable to it

Frascati, 19 December 2014 – p. 21



Problems

What happens beyond perturbation theory?

What leads to selection of parameter β = 0 ≡ existence of flat

direction ≡ absence of the cosmological constant ?

Unitarity and high-energy behaviour: What is the high-energy

behaviour (E > MPl) of the scattering amplitudes? Is the theory

unitary? Can it have a scale-invariant UV completion?
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The minimal model - scale

invariant νMSM
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Particle content

Particles of the SM

+

graviton

+

dilaton

+
3 Majorana leptons
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Scale-invariant Lagrangian

LνMSM = LSM[M→0] + LG +
1

2
(∂µχ)

2 − V (ϕ, χ)

+
(

N̄Iiγ
µ∂µNI − hαI L̄αNIϕ̃ − fIN̄I

c
NIχ + h.c.

)

,

Potential ( χ - dilaton, ϕ - Higgs, ϕ†ϕ = 2h2):

V (ϕ, χ) = λ

(

ϕ†ϕ − α

2λ
χ2

)2

+ βχ4,

Gravity part

LG = −
(

ξχχ
2 + 2ξhϕ

†ϕ
) R

2
,
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Roles of different particles

The roles of dilaton:

determine the Planck mass

give mass to the Higgs

give masses to 3 Majorana leptons

may lead to dynamical dark energy

Roles of the Higgs boson:

give masses to fermions and vector bosons of the SM

provide inflation
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New physics below the Fermi scale: the νMSM

L
e
ft

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

L
e
ft

R
ig
h
t

L
e
ft

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t�

��

�������

� �
�����

���	�
��

� �
�	�

�	����
���

�

�

	��

�������

� �
�������

������

� �
�	��	�

����
��

�

��
������	�
�������	

� ��
��	�

�������	

� ��
���

�������	

�

�
������	�

��������

� �
��	�

���	����

� �
���

��			�
��

�

�
���	�

��

�

�
��	�	�

�

�

	

�����
��

�

����
�	���

�
�

����
��

� �

����
�	���

�����

�������

�
�
�
��

�
�
�
�
�	

�
�

��������������	���

	��������� !����	��"������#

$
	
�
	
�
�
� 
!
	
��

�
�
"�
�
�
��

��

% %% %%%

�����


�&'���(�

�

�

�����
����	

������

�

L
e
ft

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
f t

L
e
ft

R
ig
h
t

L
e
ft

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t

L
e
ft

R
ig
h
t�

��

�������

� �
�����

���	�
��

� �
�	�

�	����
���

�

�

	��

�������

� �
�������

������

� �
�	��	�

����
��

�

��
������	�
�������	

� ��
��	�

�������	

� ��
���

�������	

�

�
������	�

��������

� �
��	�

���	����

� �
���

��			�
��

�

�
���	�

��

�

�
��	�	�

�

�

	

�����
��

�

����
�	���

�
�

����
��

� �

����
�	���

�����

�������

�
�
�
��

�
�
�
�
�	

�
�

��������������	���

	��������� !����	��"������#

$
	
�
	
�
�
� 
!
	
��

�
�
"�
�
�
��

��

% %% %%%

�����


�&'���(�

�

�

�����
����	

������

�
������


 �
�
��

� �
�
��

�

Role of N1 with mass in keV region: dark matter. Search - with the use

of X-ray telescopes. Already found? Bulbul et al., Boyarsky et al

Role of N2, N3 with mass in 100 MeV – GeV region: “give” masses to

neutrinos and produce baryon asymmetry of the Universe. Search -

intensity and precision frontier, SHiP at CERN.
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The couplings of the νMSM

Particle physics part, accessible to low energy experiments: the

νMSM. Mass scales of the νMSM:

MI < MW (No see-saw)

Consequence: small Yukawa couplings,

FαI ∼
√
matmMI

v
∼ (10−6 − 10−13),

here v ≃ 174 GeV is the VEV of the Higgs field,

matm ≃ 0.05 eV is the atmospheric neutrino mass difference.

Small Yukawas are also necessary for stability of dark matter and

baryogenesis (out of equilibrium at the EW temperature).
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Cosmology and phenomenology

of a minimal model
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Inflation

Chaotic initial condition: fields χ and h are away from their equilibrium

values.

Choice of parameters: ξh ≫ 1, ξχ ≪ 1

Then - dynamics of the Higgs field is more essential χ ≃ const and is

frozen ⇒ Higgs inflation. Denote ξχχ
2 = M2

P .
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Potential in Einstein frame

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χ

0

λ v4/4

0 v

Standard Model

χ - canonically normalized scalar field in Einstein frame.
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This form of the potential is universal for (Bezrukov, MS) yt(173.2) < ycrit
t

:

ycrit

t = 0.9223+0.00118

(

αs − 0.1184

0.0007

)

+0.00085

(

MH − 125.03

0.3

)

+0.0023

(

log ξ

6.9

)

yt(173.2) - top Yukawa coupling in MS- scheme at µ = 173.2 GeV, αs(MZ) -

strong coupling

theoretical uncertainty: δyt/yt ≃ 2 × 10−4 equivalent to changing of MH by ∼ 70

MeV, or mt by ∼ 35 MeV Buttazzo et al

Numerically for ξ = 1, ycrit
t

coincides with the metastability bound on the top Yukawa

coupling
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Potential for the Higgs field may be flat at
large values of h: Linde chaotic inflation
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Potential for the Higgs field may be flat at
large values of h: Linde chaotic inflation

Inflation, Big Bang - all in the framework
of the Standard Model!
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Higgs inflation: yt < ycrit
t
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Stage 1: Higgs inflation, h > MP√
ξ

, slow roll of the Higgs

field

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

inflation

Makes the Universe flat, homogeneous and isotropic

Produces fluctuations leading to structure formation: clusters of

galaxies, etc
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CMB parameters - spectrum and tensor

modes, ξ & 1000

ns = 0.97, r = 0.003
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Stage 2: Big Bang, MP

ξ
< h < MP√

ξ
, Higgs field oscillations

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

R
eh

ea
tin

g

All particles of the Standard Model are produced

Coherent Higgs field disappears

The Universe is heated up to T ∝ MP /ξ ∼ 1014 GeV
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Critical Higgs inflation: yt ≈ ycrit
t
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Bezrukov, MS

For yt very close to ycrit
t : critical Higgs inflation - tensor-to-scalar ratio

can be large, ξ ∼ 10

Behaviour of λ:
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Effective potential

U(χ) ≃
λ(z′)

4ξ2
µ̄4 , z′ =

µ̄

κMP

, µ̄2 = M2

P

(

1 − e
−

2χ
√

6MP

)

The parameter µ that optimises the convergence of the perturbation theory is related to

µ̄ as

µ2 = α2
yt(µ)2

2

µ̄2

ξ(µ)
, α ≃ 0.6

Behaviour of effective potential for λ0 ≃ b/16:

0 1 2 3 4 5

0

1.´10-8

2.´10-8

3.´10-8

4.´10-8

5.´10-8
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The inflationary indexes

r can be large! BICEP 2?

see also Hamada, Kawai, Oda and Park

Critical Higgs inflation only works if both Higgs and top quark masses

are close to their experimental values.
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Living beyond the edge: Higgs

inflation and vacuum

metastability, yt > ycrit
t

!"#$

!"#$%&

!"#&

!"#&%&

!"#'

!"#'%&

!"#(

!)%*" !)%*# !)%*+ !)%*$ !)%*& !)%*'

,
-
.!
/
0
1

23456"(+%#!/017

,36"(#%+89)%''!/01

Frascati, 19 December 2014 – p. 42



Bezrukov, Rubio, MS

Renormalisation of the SM coupling constants at the scale MP /ξ:

“jumps” of λ and yt controlled by UV completion of the SM, which

cannot be found from low-energy observables of the SM

Bezrukov, Magnin, MS., Sibiryakov

λ(MP /ξ) is small due to cancellations between fermionic and bosonic

loops: δλ can be of the order of λ
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Higgs potential

V

χvEW µ0 MP

ξ
MP
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Symmetry restoration
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(Meta) stability of false vacuum

Computation for SM: Espinosa, Giudice, Riotto
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Predictions for critical indexes ns and r are the same as for

non-crtitical Higgs inflation

ns = 0.97, r = 0.003

Critical Higgs inflation at yt > ycrit
t ?

Critical Higgs inflation : small ξ ∼ 10 - the depth of the large Higgs

value vacuum is comparable with the energy stored in the Higgs after

inflation: the required reheating temperature is too large, T+ ≃ 1016

GeV and cannot be achieved.
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History of the Universe
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The problems on neutrino masses, baryon asymmetry of the Universe,

and of Dark Matter can all be solved by particles lighter than the

Electroweak scale: 3 RH neutrinos
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Conclusions
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Quantum scale-invariance leads to:

Unique source for all mass scales.

inflation

Higgs mass is stable against radiative corrections (scale

symmetry + approximate shift symmetry χ → χ + const)

The massless sector of the theory contains dilaton, which has

only derivative couplings to matter

All observational drawbacks of the SM can be solved by new

physics below the Fermi scale
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Problems to solve, theory

Non-perturbative regularisation?

Though the stability of the electroweak scale against quantum

corrections may be achieved, it is unclear why the electroweak

scale is so much smaller than the Planck scale (or why α ≪ 1).

Why eventual cosmological constant is zero (or why β = 0)?

Non-perturbative behaviour, black holes, etc

Unitarity

High energy limit
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Problems to solve, experiment

Confirm the SM at the LHC, ILC, Fcc etc

determine precisely SM parameters : top Yukawa and the Higgs

mass

determine precisely inflationary parameters

Find heavy neutral lepton N1 - DM particle: X-ray telescopes

Find heavy neutral leptons N2,3 - responsible for neutrino masses

and baryogenesis: SHiP

Frascati, 19 December 2014 – p. 52



Back up slides
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Self-consistency of Higgs inflation
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Large ξ - bad or good?

Sibiryakov, ’08; Burgess, Lee, Trott, ’09; Barbon and Espinosa, ’09

Tree amplitudes of scattering of scalars above electroweak vacuum hit

the tree unitarity bound at energies

E > Λ ∼ MP

ξ

The typical energy scale at inflation is

MP√
ξ

≫ Λ

Does it mean that the Higgs inflation is inconsistent?
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Self-consistency of Higgs inflation

A way to proceed:

Bezrukov, Magnin, M.S., Sibiryakov; Ferrara, Kallosh, Linde,

A. Marrani, Van Proeyen

Take the non-zero Higgs field background, and define the region

of applicability of perturbation theory. This region is background

dependent.

Compare the background dependent “cutoff” with the different

energy scales important for inflation and for subsequent evolution

of the Universe.

The background dependent “cutoff” - nothing unusual: Fermi

interaction - “cutoff” does depend on the Higgs field.
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Dynamical cutoff

Computation for the Higgs-gravity part of the SM:

Λ(h) ≃























MP

ξ
, for h . MP

ξ
,

h2ξ
MP

, for MP

ξ
. h . MP√

ξ
,

√
ξh , for h & MP√

ξ
.
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Higgs-dependent cutoff

MP/ξ

MP

MP/ξ MP/√ξ log(φ)

log(Λ)

Weak coupling

ξφ2/MP

√ξ φ
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Strong coupling

Cutoff is higher than the relevant dynamical scales throughout the

whole history of the Universe, including the inflationary epoch and

reheating!!

The Higgs-inflation is self-consistent. Frascati, 19 December 2014 – p. 58



Higgs inflation: radiative
corrections
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Main assumptions

The SM is a valid effective theory up to the Planck scale, i.e. its

Lagrangian can only be modified by higher dimensional operators

suppressed by MP

The quadratic divergences are ignored (the valid procedure at

small energies). Technically, this corresponds to the use of the

minimal subtraction scheme.

Frascati, 19 December 2014 – p. 60



Effective theory of Higgs inflation

Theory is non-renormalizable (as any theory with gravity).

Let’s add to all counter-terms necessary to make it finite with all

possible constant parts having the same structure as counter-terms.

The procedure must respect the classical symmetries of the theory

(scale invariance in Jordan frame = shift symmetry in Einstein frame).

Technically - use dimensional regularisation and MS subtraction

procedure.
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Starting Lagrangian:

L =
(∂µχ)

2

2
− U(χ)

where U(χ) has at large fields the generic form

U(χ) = U0

(

1 +

∞
∑

n=1

une
−nχ/M

)
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U0un

M3
e−nχ̄/M

✧✦
★✥✈ ✈U0um

M3
e−mχ̄/M

∝ 1

ǫ
· U2

0

M8
unum(∂µχ̄)

2e−(n+m)χ̄/M ,

U0un

M4
e−nχ̄/M

✧✦
★✥✎✍ ☞✌✈ ✈U0um

M4
e−mχ̄/M

∝ 1

ǫ
· U2

0

M8
unum

(

(∂2χ̄)2

M2
+

(∂χ̄)4

M4

)

e−(n+m)χ̄/M
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Effective action, incorporating radiative corrections:

L = f (1)(χ)
(∂µχ)

2

2
−U(χ)+f (2)(χ)

(∂2χ)2

M2
+f (3)(χ)

(∂χ)4

M4
+ · · ·

where dots stand for terms with more derivatives. The coefficient

functions are (formal) series in the exponent,

f (i)(χ) =

∞
∑

n=0

f (i)
n e−nχ/M

Important: asymptotic shift symmetry χ → χ + const in Einstein

frame (or scale invariance in the Jordan frame).
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Physics of the “jump” of the constants

Top quark Yukawa interaction in the Einstein frame:

Lt =
yt√
2
t̄tF (χ) , F (χ) =

h

Ω
,

Here Ω2 = 1 + ξh2/M2
P is the conformal factor, and the canonically

normalised field χ is related to the Higgs field h via

dh

dχ
=

Ω2

√

Ω2 + ξ(6ξ + 1)h2/M2
P

.

In the background field χ coupling of the top to χ is proportional to

dF/dχ = F ′.
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Counter-term:

yt → yt +
y3
t

16π2

(

3

ǫ
+ Ct

)

F ′2

h

t t

h

F'

F' F'

h

t t

F''

F'
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F ′(χ) =







1 for h . MP /2
√
6ξ

0 for h & MP /2
√
6ξ

For h . h∗ C is absorbed into definition of low energy coupling and is

not observable:

y
phys
t = yt +

y3

t

16π2
Ct .

For h & h∗ contribution from F ′ disappears: determines a jump of the

coupling around h∗

Frascati, 19 December 2014 – p. 67



Finite parts of counter-terms:

Top Yukawa

yt(µ) → yt(µ) + δyt

[

F ′2 − 1
]

,

Higgs self-coupling

λ(µ) → λ(µ) + δλ

[

(

F ′2 +
1

3
F ′′F

)2

− 1

]

,
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