

- M.S., D. Zenhäusern, Phys. Lett. B 671 (2009) 162
- M.S., D. Zenhäusern, Phys. Lett. B 671 (2009) 187
- J. García-Bellido, J. Rubio, M.S., D. Zenhäusern, Phys. Rev. D84 (2011) 123504
- J. García-Bellido, J. Rubio, M.S., Phys. Lett. (2012)
- F. Bezrukov, G. K. Karananas, J. Rubio and M.S., Phys. Rev. D 87, 096001 (2013)
- R. Armillis, A. Monin and M.S., JHEP 1310, 030 (2013)
- A. Monin and M. S., Phys. Rev. D 88, 067701 (2013)
- F. Bezrukov, J. Rubio and M.S., ArXiv:1412.3811

Outline

- Classical scale invariance?
- Exact quantum scale invariance
- Naturalness and quantum scale invariance
- ullet The minimal model scale invariant uMSM
- Cosmology and phenomenology of the minimal model
- Conclusions

Classical scale invariance?

Why scale invariance?

If the mass of the Higgs boson is put to zero in the SM, the Lagrangian has a wider symmetry: it is scale and conformally invariant:

Dilatations - global scale transformations ($\sigma = const$)

$$\Psi(x) \rightarrow \sigma^n \Psi(\sigma x)$$
,

n=1 for scalars and vectors and n=3/2 for fermions.

It is tempting to use this symmetry for solution of the hierarchy problem

Different approaches

Lagrangian is invariant at the classical level, and scale symmetry is broken by quantum corrections a'la Coleman-Weinberg

Meissner, Nicolai; Iso, Okada, Orikasa; Boyle, Farnsworth, Fitzgerald, Schade; Salvio, Strumia

Simplest theory realising this idea, without gravity Iso, Okada, Orikasa : $SU(3) \times SU(2) \times U(1) \times U(1)_{B-L}$: Standard Model, one extra vector field - gauging of B-L, one extra complex scalar field χ with lepton number 2, 3 right-handed neutrinos.

Attractive features:

- Coleman-Weinberg mechanism works (it does not work in the SM)
- Quantisation of electric charges comes from requirement of cancellation of anomalies
- Phenomenology is OK: neutrino masses are generated, dark matter candidate, baryogenesis, possibilities for inflation

Main problem: inclusion of gravity in a scale-invariant way, to be consistent with the starting idea Iso, Kengo, MS Simplest possibility – non-minimal coupling of χ to Ricci scalar, $|\chi|^2 R$ requires $\langle \chi \rangle \sim M_P$, and thus the small couplings to the SM fields, and thus to cosmological moduli problem: light scalar that have no time to setup in the Coleman-Weinberg ground state

More complicated theory, Salvio, Strumia - gravity with higher derivatives.

Attractive features:

- Renormalisable theory
- Coleman-Weinberg mechanism works (it does not work in the SM)
- Inflation

Main problem: ghost in the gravitational sector,

$$M_{gh} \simeq 3 \times 10^{10} \; \mathrm{GeV} \ll M_P$$

the theory is unstable

Exact quantum scale invariance

Common lore: quantum scale invariance does not exist, divergence of dilatation current is not-zero due to quantum corrections:

$$\partial_{\mu}J^{\mu}\propto eta(g)G^{a}_{lphaeta}G^{lphaeta\;a}\;,$$

Common lore: quantum scale invariance does not exist, divergence of dilatation current is not-zero due to quantum corrections:

$$\partial_{\mu}J^{\mu}\propto eta(g)G^{a}_{lphaeta}G^{lphaeta\;a}\;,$$

Sidney Coleman: "For scale invariance,..., the situation is hopeless; any cutoff procedure necessarily involves a large mass, and a large mass necessarily breaks scale invariance in a large way."

Common lore: quantum scale invariance does not exist, divergence of dilatation current is not-zero due to quantum corrections:

$$\partial_{\mu}J^{\mu}\propto eta(g)G^{a}_{lphaeta}G^{lphaeta\;a}\;,$$

Sidney Coleman: "For scale invariance,..., the situation is hopeless; any cutoff procedure necessarily involves a large mass, and a large mass necessarily breaks scale invariance in a large way."

Known exceptions - not realistic theories like N=4 SYM

Common lore: quantum scale invariance does not exist, divergence of dilatation current is not-zero due to quantum corrections:

$$\partial_{\mu}J^{\mu}\propto eta(g)G^{a}_{lphaeta}G^{lphaeta\;a}\;,$$

Sidney Coleman: "For scale invariance,..., the situation is hopeless; any cutoff procedure necessarily involves a large mass, and a large mass necessarily breaks scale invariance in a large way."

Known exceptions - not realistic theories like N=4 SYM

Does not make any sense to talk about it?

Toy model

Classically scale-invariant Lagrangian

$$\mathcal{L} = rac{1}{2}(\partial_{\mu}h)^2 + rac{1}{2}(\partial_{\mu}\chi)^2 - V(arphi,\chi)$$

Potential (χ - "dilaton", φ - "Higgs"):

$$V(arphi,\chi) = rac{\lambda}{4} \left(h^2 - rac{lpha}{\lambda} \chi^2
ight)^2 + eta \chi^4,$$

 $\beta < 0$: vacuum is unstable

 $\beta = 0$: flat direction, $h^2 = \frac{\alpha}{\lambda} \chi^2$. Choice of parameters:

 $\alpha \sim \left(\frac{M_W}{M_P}\right)^2 \sim 10^{-32}$, to get the Higgs-Planck hierarchy correctly.

Standard reasoning

Dimensional regularisation $d = 4 - 2\epsilon$, \overline{MS} subtraction scheme:

mass dimension of the scalar fields: $1 - \epsilon$,

mass dimension of the coupling constant: 2ϵ

Counter-terms:

$$\lambda = \mu^{2\epsilon} \left[\lambda_R + \sum_{k=1}^{\infty} \frac{a_n}{\epsilon^n} \right] ,$$

μ is a dimensionful parameter!!

One-loop effective potential along the flat direction:

$$V_1(\chi) = rac{m_H^4(\chi)}{64\pi^2} \left[\log rac{m_H^2(\chi)}{\mu^2} - rac{3}{2}
ight] \; ,$$

Result: explicit breaking of the dilatation symmetry. Dilaton acquires a nonzero mass due to radiative corrections.

Result: explicit breaking of the dilatation symmetry. Dilaton acquires a nonzero mass due to radiative corrections.

Reason: mismatch in mass dimensions of bare (λ) and renormalized couplings (λ_R)

Result: explicit breaking of the dilatation symmetry. Dilaton acquires a nonzero mass due to radiative corrections.

Reason: mismatch in mass dimensions of bare (λ) and renormalized couplings (λ_R)

Idea: Replace $\mu^{2\epsilon}$ by combinations of fields χ and h, which have the correct mass dimension:

$$\mu^{2\epsilon} o \chi^{rac{2\epsilon}{1-\epsilon}} F_\epsilon(x) \ ,$$

where $x = h/\chi$. $F_{\epsilon}(x)$ is a function depending on the parameter ϵ with the property $F_0(x) = 1$.

Zenhäusern, M.S

Englert, Truffin, Gastmans, 1976

Example of computation

"Natural choice", to be explained below:

$$\mu^{2\epsilon}
ightarrow \left[\omega^2
ight]^{rac{\epsilon}{1-\epsilon}} \; , \left(\xi_\chi \chi^2 + \xi_h h^2
ight) \equiv \omega^2$$

Potential:

$$U=rac{\lambda_R}{4}\left[\omega^2
ight]^{rac{\epsilon}{1-\epsilon}}\left[h^2-\zeta_R^2\chi^2
ight]^2 \; ,$$

Counter-terms

$$U_{cc} = \left[\omega^2
ight]^{rac{\epsilon}{1-\epsilon}} \left[Ah^2\chi^2\left(rac{1}{ar{\epsilon}}+a
ight) + B\chi^4\left(rac{1}{ar{\epsilon}}+b
ight) + Ch^4\left(rac{1}{ar{\epsilon}}+c
ight)
ight],$$

To be fixed from conditions of absence of divergences and presence of spontaneous breaking of scale-invariance

$$egin{align} U_1 = & rac{m^4(h)}{64\pi^2} \left[\log rac{m^2(h)}{v^2} + \mathcal{O}\left(\zeta_R^2
ight)
ight] \ & + & rac{\lambda_R^2}{64\pi^2} \left[C_0 v^4 + C_2 v^2 h^2 + C_4 h^4
ight] + \mathcal{O}\left(rac{h^6}{\chi^2}
ight), \end{split}$$

where $m^2(h) = \lambda_R(3h^2 - v^2)$ and

$$egin{aligned} C_0 &=& rac{3}{2} \left[2a-1+2\log\left(rac{\zeta_R^2}{\xi_\chi}
ight) + rac{4}{3}\log 2\lambda_R + O(\zeta_R^2)
ight] \,, \ C_2 &=& -3 \left[2a-3+2\log\left(rac{\zeta_R^2}{\xi_\chi}
ight) + O(\zeta_R^2)
ight] \,, \ C_4 &=& rac{3}{2} \left[2a-5+2\log\left(rac{\zeta_R^2}{\xi_\chi}
ight) - 4\log 2\lambda_R + O(\zeta_R^2)
ight] \,. \end{aligned}$$

Origin of Λ_{QCD}

Consider the high energy ($\sqrt{s} \gg v$ but $\sqrt{s} \ll \chi_0$) behaviour of scattering amplitudes on the example of Higgs-Higgs scattering (assuming, that $\zeta_R \ll 1$). In one-loop approximation

$$\Gamma_4 = \lambda_R + rac{9\lambda_R^2}{64\pi^2} \left[\log\left(rac{s}{\xi_\chi \chi_0^2}
ight) + \mathrm{const}
ight] + \mathcal{O}\left(\zeta_R^2
ight) \; .$$

This implies that at $v \ll \sqrt{s} \ll \chi_0$ the effective Higgs self-coupling runs in a way prescribed by the ordinary renormalization group! For QCD:

$$\Lambda_{QCD} = \chi_0 e^{-\frac{1}{2b_0 \alpha_s}}, \quad \beta(\alpha_s) = b_0 \alpha_s^2$$

Almost trivial statement - by construction: Quantum effective action is scale invariant in all orders of perturbation theory.

Less trivial statement Gretsch, Monin: Quantum effective action is conformally invariant in all orders of perturbation theory.

The main problem with this construction: theory is not renormalisable, one needs to add infinite number of counter-terms.

However:

- $m Parameter \langle \chi
 angle$ For $lpha \ll 1$ all counter-terms are suppressed by the dimensionful parameter $\langle \chi
 angle$
- ullet We get an effective field theory valid up to the energy scale fixed by $\langle \chi \rangle$
- Gravity is non-renormalisable anyway, and making $\langle \chi \rangle \sim M_P$ does not make a theory worse

Hierarchy problem

For $\alpha=\beta=0$ the classical Lagrangian has an extra symmetry: $\chi \to \chi + const$. Therefore, there are no large perturbative corrections to the Higgs mass: those proportional to χ contain necessarily α or β , those proportional to λ contain only logs of χ . This construction leads to "natural" hierarchy $\chi\gg h$. However, no explanation of why $\alpha\ll 1$.

Important ingredient for naturalness: almost exact shift symmetry. Requirement of the shift symmetry \equiv requirement of absence of heavy particles with sufficiently strong interaction with the Higgs field and the dilaton, e.g.

$$\lambda_h h^2 \phi^2 + \lambda_\chi \chi^2 \phi^2$$

 $\lambda_h \sim \lambda_\chi \sim 1$ spoils the argument!

Conjecture: natural theory should not have heavy particles between the Fermi and Planck scales

Inclusion of gravity

Planck scale: through non-minimal coupling of the dilaton to the Ricci scalar,

Gravity part

$$\mathcal{L}_G = -\left(\xi_\chi \chi^2 + \xi_h h^2
ight) rac{R}{2} \, ,$$

This term, for $\xi_{\chi} \sim 1$, does break the shift symmetry. However, this is a coefficient in front of graviton kinetic term. Since the graviton stays massless in any constant scalar background, the perturbative computations of gravitational corrections to the Higgs mass in scale-invariant regularisation are suppressed by M_P . There are no corrections proportional to M_P !

Theory is "natural" in perturbative sense: Higgs mass is stable against radiative corrections

- Theory is "natural" in perturbative sense: Higgs mass is stable against radiative corrections
- The dilaton is massless in all orders of perturbation theory

- Theory is "natural" in perturbative sense: Higgs mass is stable against radiative corrections
- The dilaton is massless in all orders of perturbation theory
- Since it is a Goldstone boson of spontaneously broken symmetry it has only derivative couplings to matter (inclusion of gravity is essential!)

- Theory is "natural" in perturbative sense: Higgs mass is stable against radiative corrections
- The dilaton is massless in all orders of perturbation theory
- Since it is a Goldstone boson of spontaneously broken symmetry it has only derivative couplings to matter (inclusion of gravity is essential!)
- Fifth force or Brans-Dicke constraints are not applicable to it

Problems

- What happens beyond perturbation theory?
- ▶ What leads to selection of parameter $\beta = 0 \equiv$ existence of flat direction \equiv absence of the cosmological constant?
- Unitarity and high-energy behaviour: What is the high-energy behaviour ($E > M_{Pl}$) of the scattering amplitudes? Is the theory unitary? Can it have a scale-invariant UV completion?

The minimal model - scale invariant ν MSM

Particle content

Particles of the SM

+

graviton

+

dilaton

+
3 Majorana leptons

Scale-invariant Lagrangian

$$\mathcal{L}_{
u ext{MSM}} = \mathcal{L}_{ ext{SM}[ext{M}
ightarrow 0]} + \mathcal{L}_G + rac{1}{2} (\partial_\mu \chi)^2 - V(arphi, \chi) \ + \left(ar{N}_I i \gamma^\mu \partial_\mu N_I - h_{lpha I} \, ar{L}_lpha N_I ilde{arphi} - f_I ar{N}_I{}^c N_I \chi + ext{h.c.}
ight) \, ,$$

Potential (χ - dilaton, φ - Higgs, $\varphi^{\dagger}\varphi = 2h^2$):

$$V(arphi,\chi) = \lambda \left(arphi^\dagger arphi - rac{lpha}{2\lambda} \chi^2
ight)^2 + eta \chi^4,$$

Gravity part

$$\mathcal{L}_G = -\left(\xi_\chi \chi^2 + 2 \xi_h arphi^\dagger arphi
ight) rac{R}{2} \, ,$$

Roles of different particles

The roles of dilaton:

- determine the Planck mass
- give mass to the Higgs
- give masses to 3 Majorana leptons
- may lead to dynamical dark energy

Roles of the Higgs boson:

- give masses to fermions and vector bosons of the SM
- provide inflation

New physics below the Fermi scale: the νMSM

Role of N_1 with mass in keV region: dark matter. Search - with the use of X-ray telescopes. Already found? Bulbul et al., Boyarsky et al Role of N_2 , N_3 with mass in 100 MeV – GeV region: "give" masses to neutrinos and produce baryon asymmetry of the Universe. Search - intensity and precision frontier, SHiP at CERN.

The couplings of the ν MSM

Particle physics part, accessible to low energy experiments: the ν MSM. Mass scales of the ν MSM:

$$M_I < M_W$$
 (No see-saw)

Consequence: small Yukawa couplings,

$$F_{lpha I} \sim rac{\sqrt{m_{atm} M_I}}{v} \sim (10^{-6} - 10^{-13}),$$

here $v\simeq 174$ GeV is the VEV of the Higgs field, $m_{atm}\simeq 0.05$ eV is the atmospheric neutrino mass difference. Small Yukawas are also necessary for stability of dark matter and baryogenesis (out of equilibrium at the EW temperature).

Cosmology and phenomenology of a minimal model

Inflation

Chaotic initial condition: fields χ and h are away from their equilibrium values.

Choice of parameters: $\xi_h \gg 1$, $\xi_\chi \ll 1$

Then - dynamics of the Higgs field is more essential $\chi \simeq const$ and is frozen \Rightarrow Higgs inflation. Denote $\xi_{\chi}\chi^2 = M_P^2$.

Potential in Einstein frame

 χ - canonically normalized scalar field in Einstein frame.

This form of the potential is universal for (Bezrukov, MS) $y_t(173.2) < y_t^{\text{crit}}$:

$$y_t^{\text{crit}} = 0.9223 + 0.00118 \left(\frac{\alpha_s - 0.1184}{0.0007}\right) + 0.00085 \left(\frac{M_H - 125.03}{0.3}\right) + 0.0023 \left(\frac{\log \xi}{6.9}\right)$$

 $y_t(173.2)$ - top Yukawa coupling in $\overline{
m MS}$ - scheme at $\mu=173.2$ GeV, $lpha_s(M_Z)$ - strong coupling

theoretical uncertainty: $\delta y_t/y_t \simeq 2 \times 10^{-4}$ equivalent to changing of M_H by ~ 70 MeV, or m_t by ~ 35 MeV Buttazzo et al

Numerically for $\xi=1, \quad y_t^{\rm crit}$ coincides with the metastability bound on the top Yukawa coupling $_{\rm M_f=172.38\pm0.66~GeV}$

Potential for the Higgs field may be flat at large values of h: Linde chaotic inflation

Potential for the Higgs field may be flat at large values of h: Linde chaotic inflation

Inflation, Big Bang - all in the framework of the Standard Model!

Higgs inflation: $y_t < y_t^{\mathrm{crit}}$

Stage 1: Higgs inflation, $h > \frac{M_P}{\sqrt{\xi}}$, slow roll of the Higgs field

- Makes the Universe flat, homogeneous and isotropic
- Produces fluctuations leading to structure formation: clusters of galaxies, etc

CMB parameters - spectrum and tensor modes, $\xi\gtrsim 1000$

Stage 2: Big Bang, $\frac{M_P}{\xi} < h < \frac{M_P}{\sqrt{\xi}}$, Higgs field oscillations

- All particles of the Standard Model are produced
- Coherent Higgs field disappears
- The Universe is heated up to $T \propto M_P/\xi \sim 10^{14} \; {\rm GeV}$

Critical Higgs inflation: $y_t pprox y_t^{\mathrm{crit}}$

Bezrukov, MS

For y_t very close to $y_t^{\rm crit}$: critical Higgs inflation - tensor-to-scalar ratio can be large, $\xi \sim 10$

Behaviour of λ :

Effective potential

$$U(\chi) \simeq rac{\lambda(z')}{4\xi^2} ar{\mu}^4 \; , \; \; z' = rac{ar{\mu}}{\kappa M_P} , \; \; ar{\mu}^2 = M_P^2 \left(1 - e^{-rac{2\chi}{\sqrt{6}M_P}}
ight)$$

The parameter μ that optimises the convergence of the perturbation theory is related to $\bar{\mu}$ as

$$\mu^2 = \alpha^2 \frac{y_t(\mu)^2}{2} \frac{\bar{\mu}^2}{\xi(\mu)} , \ \ \alpha \simeq 0.6$$

Behaviour of effective potential for $\lambda_0 \simeq b/16$:

The inflationary indexes

r can be large! BICEP 2?

see also Hamada, Kawai, Oda and Park

Critical Higgs inflation only works if both Higgs and top quark masses are close to their experimental values.

Living beyond the edge: Higgs inflation and vacuum metastability, $y_t > y_t^{ m crit}$

Bezrukov, Rubio, MS

Renormalisation of the SM coupling constants at the scale M_P/ξ : "jumps" of λ and y_t controlled by UV completion of the SM, which cannot be found from low-energy observables of the SM Bezrukov, Magnin, MS., Sibiryakov

 $\lambda(M_P/\xi)$ is small due to cancellations between fermionic and bosonic loops: $\delta\lambda$ can be of the order of λ

Higgs potential

Symmetry restoration

Reheating temperature $T_R \simeq 2 imes 10^{14}~{
m GeV} > T_+ \simeq 7 imes 10^{13}~{
m GeV},$ $T_c = 6 imes 10^{13}~{
m GeV}$

(Meta) stability of false vacuum

Computation for SM: Espinosa, Giudice, Riotto

Predictions for critical indexes n_s and r are the same as for non-critical Higgs inflation

$$n_s = 0.97, \ r = 0.003$$

Critical Higgs inflation at $y_t > y_t^{\text{crit}}$?

Critical Higgs inflation : small $\xi \sim 10$ - the depth of the large Higgs value vacuum is comparable with the energy stored in the Higgs after inflation: the required reheating temperature is too large, $T_+ \simeq 10^{16}$ GeV and cannot be achieved.

History of the Universe

The problems on neutrino masses, baryon asymmetry of the Universe, and of Dark Matter can all be solved by particles lighter than the Electroweak scale: 3 RH neutrinos

Conclusions

Quantum scale-invariance leads to:

- Quantum scale-invariance leads to:
 - Unique source for all mass scales.

- Quantum scale-invariance leads to:
 - Unique source for all mass scales.
 - inflation

- Quantum scale-invariance leads to:
 - Unique source for all mass scales.
 - inflation
 - Higgs mass is stable against radiative corrections (scale symmetry + approximate shift symmetry $\chi \rightarrow \chi + const$)

- Quantum scale-invariance leads to:
 - Unique source for all mass scales.
 - inflation
 - Higgs mass is stable against radiative corrections (scale symmetry + approximate shift symmetry $\chi \to \chi + const$)
 - The massless sector of the theory contains dilaton, which has only derivative couplings to matter

- Quantum scale-invariance leads to:
 - Unique source for all mass scales.
 - inflation
 - Higgs mass is stable against radiative corrections (scale symmetry + approximate shift symmetry $\chi \to \chi + const$)
 - The massless sector of the theory contains dilaton, which has only derivative couplings to matter
 - All observational drawbacks of the SM can be solved by new physics below the Fermi scale

Non-perturbative regularisation?

- Non-perturbative regularisation?
- Though the stability of the electroweak scale against quantum corrections may be achieved, it is unclear *why* the electroweak scale is so much smaller than the Planck scale (or why $\alpha \ll 1$).

- Non-perturbative regularisation?
- Though the stability of the electroweak scale against quantum corrections may be achieved, it is unclear *why* the electroweak scale is so much smaller than the Planck scale (or why $\alpha \ll 1$).
- ▶ Why eventual cosmological constant is zero (or why $\beta = 0$)?

- Non-perturbative regularisation?
- Though the stability of the electroweak scale against quantum corrections may be achieved, it is unclear *why* the electroweak scale is so much smaller than the Planck scale (or why $\alpha \ll 1$).
- ▶ Why eventual cosmological constant is zero (or why $\beta = 0$)?
- Non-perturbative behaviour, black holes, etc

- Non-perturbative regularisation?
- Though the stability of the electroweak scale against quantum corrections may be achieved, it is unclear *why* the electroweak scale is so much smaller than the Planck scale (or why $\alpha \ll 1$).
- ▶ Why eventual cosmological constant is zero (or why $\beta = 0$)?
- Non-perturbative behaviour, black holes, etc
- Unitarity

- Non-perturbative regularisation?
- Though the stability of the electroweak scale against quantum corrections may be achieved, it is unclear *why* the electroweak scale is so much smaller than the Planck scale (or why $\alpha \ll 1$).
- ▶ Why eventual cosmological constant is zero (or why $\beta = 0$)?
- Non-perturbative behaviour, black holes, etc
- Unitarity
- High energy limit

Problems to solve, experiment

Confirm the SM at the LHC, ILC, Fcc etc

- Confirm the SM at the LHC, ILC, Fcc etc
- determine precisely SM parameters: top Yukawa and the Higgs mass

- Confirm the SM at the LHC, ILC, Fcc etc
- determine precisely SM parameters : top Yukawa and the Higgs mass
- determine precisely inflationary parameters

- Confirm the SM at the LHC, ILC, Fcc etc
- determine precisely SM parameters: top Yukawa and the Higgs mass
- determine precisely inflationary parameters
- ullet Find heavy neutral lepton N_1 DM particle: X-ray telescopes

- Confirm the SM at the LHC, ILC, Fcc etc
- determine precisely SM parameters: top Yukawa and the Higgs mass
- determine precisely inflationary parameters
- ightharpoonup Find heavy neutral lepton N_1 DM particle: X-ray telescopes
- ullet Find heavy neutral leptons $N_{2,3}$ responsible for neutrino masses and baryogenesis: SHiP

Back up slides

Self-consistency of Higgs inflation

Large ξ - bad or good?

Sibiryakov, '08; Burgess, Lee, Trott, '09; Barbon and Espinosa, '09

Tree amplitudes of scattering of scalars above electroweak vacuum hit the tree unitarity bound at energies

$$E>\Lambda\sim rac{M_P}{\xi}$$

The typical energy scale at inflation is

$$rac{M_P}{\sqrt{\xi}}\gg \Lambda$$

Does it mean that the Higgs inflation is inconsistent?

Self-consistency of Higgs inflation

A way to proceed:

Bezrukov, Magnin, M.S., Sibiryakov; Ferrara, Kallosh, Linde, A. Marrani, Van Proeyen

- Take the non-zero Higgs field background, and define the region of applicability of perturbation theory. This region is background dependent.
- Compare the background dependent "cutoff" with the different energy scales important for inflation and for subsequent evolution of the Universe.

The background dependent "cutoff" - nothing unusual: Fermi interaction - "cutoff" does depend on the Higgs field.

Dynamical cutoff

Computation for the Higgs-gravity part of the SM:

$$egin{aligned} \Lambda(h) &\simeq \left\{egin{array}{l} rac{M_P}{\xi} \ , & ext{for } h \lesssim rac{M_P}{\xi} \ , \ rac{h^2 \xi}{M_P} \ , & ext{for } rac{M_P}{\xi} \lesssim h \lesssim rac{M_P}{\sqrt{\xi}} \ , \ \end{array}
ight. \end{aligned}$$

Higgs-dependent cutoff

Cutoff is higher than the relevant dynamical scales throughout the whole history of the Universe, including the inflationary epoch and reheating!!

The Higgs-inflation is self-consistent.

Higgs inflation: radiative corrections

Main assumptions

- The SM is a valid effective theory up to the Planck scale, i.e. its Lagrangian can only be modified by higher dimensional operators suppressed by M_P
- The quadratic divergences are ignored (the valid procedure at small energies). Technically, this corresponds to the use of the minimal subtraction scheme.

Effective theory of Higgs inflation

Theory is non-renormalizable (as any theory with gravity).

Let's add to all counter-terms necessary to make it finite with all possible constant parts having the same structure as counter-terms.

The procedure must respect the classical symmetries of the theory (scale invariance in Jordan frame = shift symmetry in Einstein frame). Technically - use dimensional regularisation and $\overline{\text{MS}}$ subtraction procedure.

Starting Lagrangian:

$$L=rac{(\partial_{\mu}\chi)^{2}}{2}-U(\chi)$$

where $U(\chi)$ has at large fields the generic form

$$U(\chi) = U_0 \left(1 + \sum_{n=1}^{\infty} u_n e^{-n\chi/M} \right)$$

$$\frac{U_0 u_n}{M^3} e^{-n\bar{\chi}/M} \underbrace{\frac{U_0 u_m}{M^3} e^{-m\bar{\chi}/M}}_{\frac{1}{M^3}} e^{-m\bar{\chi}/M}$$

$$\propto \frac{1}{\epsilon} \cdot \frac{U_0^2}{M^8} u_n u_m (\partial_{\mu}\bar{\chi})^2 e^{-(n+m)\bar{\chi}/M},$$

$$\frac{U_0 u_n}{M^4} e^{-n\bar{\chi}/M} \underbrace{\frac{U_0 u_m}{M^4} e^{-m\bar{\chi}/M}}_{\frac{1}{M^4}} e^{-m\bar{\chi}/M}$$

$$\propto \frac{1}{\epsilon} \cdot \frac{U_0^2}{M^8} u_n u_m \left(\frac{(\partial^2 \bar{\chi})^2}{M^2} + \frac{(\partial \bar{\chi})^4}{M^4}\right) e^{-(n+m)\bar{\chi}/M}$$

Effective action, incorporating radiative corrections:

$$L = f^{(1)}(\chi) rac{(\partial_{\mu} \chi)^2}{2} - U(\chi) + f^{(2)}(\chi) rac{(\partial^2 \chi)^2}{M^2} + f^{(3)}(\chi) rac{(\partial \chi)^4}{M^4} + \cdots$$

where dots stand for terms with more derivatives. The coefficient functions are (formal) series in the exponent,

$$f^{(i)}(\chi) = \sum_{n=0}^{\infty} f_n^{(i)} e^{-n\chi/M}$$

Important: asymptotic shift symmetry $\chi \to \chi + const$ in Einstein frame (or scale invariance in the Jordan frame).

Physics of the "jump" of the constants

Top quark Yukawa interaction in the Einstein frame:

$$L_t = rac{y_t}{\sqrt{2}}ar{t}tF(\chi)\;, F(\chi) = rac{h}{\Omega}\;,$$

Here $\Omega^2 = 1 + \xi h^2/M_P^2$ is the conformal factor, and the canonically normalised field χ is related to the Higgs field h via

$$rac{dh}{d\chi} = rac{\Omega^2}{\sqrt{\Omega^2 + \xi(6\xi+1)h^2/M_P^2}} \ .$$

In the background field χ coupling of the top to χ is proportional to $dF/d\chi = F'$.

Counter-term:

$$y_t
ightarrow y_t + rac{y_t^3}{16\pi^2} \left(rac{3}{\epsilon} + C_t
ight) F'^2$$

$$F'(\chi) = \left\{egin{array}{ll} 1 & ext{for } h \lesssim M_P/2\sqrt{6}\xi \ 0 & ext{for } h \gtrsim M_P/2\sqrt{6}\xi \end{array}
ight.$$

For $h \leq h^*$ C is absorbed into definition of low energy coupling and is not observable:

$$y_t^{ extstyle extstyle$$

For $h \gtrsim h^*$ contribution from F' disappears: determines a jump of the coupling around h^*

Finite parts of counter-terms:

Top Yukawa

$$y_t(\mu)
ightarrow y_t(\mu) + \delta y_t \left[F'^2 - 1
ight] \, ,$$

Higgs self-coupling

$$\lambda(\mu)
ightarrow \lambda(\mu) + \delta \lambda \left[\left(F'^2 + rac{1}{3} F'' F
ight)^2 - 1
ight],$$