Conformal and Electro-Weak Symmetry Breaking

Manfred Lindner

Topical Workshop: Rethinking Naturalness

Look again carefully at the SM as QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- Has (like QED) a triviality problem (Landau poles $\leftarrow \rightarrow$ infinite λ)
 - running U(1)_v coupling (pole well beyond Planck scale... like in QED)
 - running Higgs / top coupling \rightarrow upper bounds on m_H and m_t
 - \rightarrow requires some scale Λ where the SM is embedded
 - \rightarrow the physics of this scale is unknown \rightarrow explicit scale or effective
- Another potential problem is vacuum instability ($\leftarrow \rightarrow$ negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H

SM as **QFT** (without an embedding):

- a hard cutoff Λ and the sensitivity towards Λ has no meaning
- renormalizable, calculable ... just like QED

SM:Triviality and Vacuum Stability Bounds

A special Value of λ at M_{planck} ?

ML '86

downward flow of RG trajectories

- → IR QFP → random λ flows to $m_H > 150 \text{ GeV}$
- \rightarrow m_H \simeq 126 GeV flows to tiny values at M_{Planck}...

Holthausen, ML Lim (2011) Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- the Veltman condition [13–15] $Str \mathcal{M}^2 = 0$,

$$\delta m^{2} = \frac{\Lambda^{2}}{32\pi^{2}v^{2}} Str \mathcal{M}^{2}$$

$$= \frac{1}{32\pi^{2}} \left(\frac{9}{4}g_{2}^{2} + \frac{3}{4}g_{1}^{2} + 6\lambda - 6\lambda_{t}^{2} \right) \Lambda^{2}$$

• vanishing anomalous dimension of the Higgs mass parameter

$$\gamma_m(M_{pl}) = 0, \ m(M_{pl}) \neq 0$$

 m_H < 150 GeV → random λ = O(1) excluded

- Why do all these boundary conditions work?
 - suppression factors compared to random choice = O(1)
 - $-\lambda = F(\lambda, g_i^2, ...)$ loop factors $1/16\pi^2$
 - top loops → fermion loops → factors of (-1)
- \rightarrow scenarios 'predicting' sufficiently suppressed (small/tiny) λ at M_{planck} are OK
- → more precision → selects options; e.g. $\gamma_m = 0$ now ruled out
- → Planck scale boundary conditions seem to fit to experiment...!!!

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of $m_{H_s} m_{t_s} \alpha_s = 0.1184(7) \rightarrow$ currently 1.8 σ in m_t
- other physics: DM, m_v ... axions, ...Planck scale thresholds... $SM+ \longleftarrow \lambda = 0$
- \rightarrow top mass errors: data $\leftarrow \rightarrow$ LO-MC \rightarrow translation of $m_{pole} \rightarrow$ MS bar
- → be cautious about metastability
- → IS THERE A MESSAGE IN : $\lambda(M_{planck}) \simeq 0?$; and what if also $m^2 = 0?$

→ Re-thinking Naturalness...

think about / discuss / understand old or new modified basic concepts ...

- ... before you write down specific models
- ... before you complicate things (confuse yourself...) by technical steps (like a lattice, Λ , ...) which are unphysical
- ... and/or before you start to discuss non-perturbative stuff

→ new concepts → new symmetries → ???

Interpretating special Conditions: E.g. $\lambda(M_{Planck}) = 0$

- $\lambda \phi^4 \rightarrow 0$ at the Planck scale \rightarrow no Higgs self-interaction (V is flat)
- \rightarrow m_H at low E radiativly generated value related to m_t and g_i
- → SM emdeded directly / related to gravity ...!?
- What about the hierarchy problem?
 - → GR is different: Non-renormalizable!
 - → requires new concepts beyond QFT/gauge theories: ... ?
 - → BAD: We have no facts which concepts are realized by nature
 - → Two GOOD aspects:
 - 1) QFTs cannot explain absolute masses and couplings
 - QFT embedings = shifting the problem only to the next level
 - → new concepts beyond QFT might explain absolute values

- 2) Asymmetry SM←→Planck scale may allow new solutions of the HP
- → new non-QFT Planck-scale concepts could have mechanism which explain hierarchies
- \rightarrow lost in effective theory = SM

Anaology: Type II superconductor
Ginzburg-Landau effective QFT ←→ BCS theory

$$E \approx \alpha |\phi|^2 + \beta |\phi|^4 + \dots \iff \alpha, \beta, \text{ dynamical details lost}$$

→ The hierarchy problem may be an artefact of the bottom-up QFT perspective. New concepts beyond QFT at the Planck-scale could explain things top-down.

Within known Concepts: Symmetry...

The Hierarchy Problem: Not $\Lambda \rightarrow$ two explicit scalar Scales

- Renormalizable QFTs with two scalars ϕ , Φ with masses m, M and a mass hierarchy m << M
- These scalars must interact since $\phi^+\phi$ and $\Phi^+\Phi$ are singlets
 - $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist in addition to ϕ^4 and Φ^4
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 - → two vastly different scalar scales are generically unstable

Therefore: If (=since) the SM Higgs field exists

- \rightarrow problem: embeding with a 2nd scalar with much larger mass
- **delta** usual solutions:
 - a) new scale @TeV
 - b) protective symmetry @TeV

b) is usually SUSY, but SUSY & gauge unification = SUSY GUT → doublet-triplet splitting problem → hierarchy problem back

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
 - **→** no preferred scale and therefore no scale problems
- Conformal Anomaly (CA): Quantum effects explicitly break CS existence of CA → CS preserving regularization does not exist
 - -- dimensional regularization is close to CS and gives only $ln(\Lambda)$
 - cutoff reg. \rightarrow Λ^2 terms; violates CS badly \rightarrow Ward Identity
 - **Bardeen:** maybe CS still forbids Λ² divergences
 - \rightarrow CS breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
 - **→** anomaly induced spontaneous EWSB

NOTE: asymmetric logic! The fact the dimensional regularization kills a Λ^2 dependence is well known. Argument goes the other way!

Looking at it in different Ways...

- Basics of QFT: Renormalization $\leftarrow \rightarrow$ commutator
 - $[\Phi(X),\Pi(y)] \sim \delta^3(x-y) \rightarrow \frac{\text{delta funtion}}{\text{delta funtion}} \rightarrow \text{distribution}$
 - freedom to define $\delta^*\delta \rightarrow$ renormalization $\leftarrow \rightarrow$ counterterms
 - along come technicalities: lattice, Λ, Pauli-Villars, MS-bar, ...
- Reminder: Technicalities do not establish physical existence!
- Nice examples → BPHZ-renormalization
- Symmetries are essential!

Question: Is gauge symmetry spoiled by discovering massive gauge bosons? → NO ←→ Higgs mechanism

- **→** non-linear realization of the underlying symmetry
- **→** important consequence: naïve power counting is wrong

Gauge invariance → only log sensitivity

Versions of QCD...

- QCD with massless (chrial) fermions
 - **→** gauge + conformal symmetry
 - \rightarrow dimensional transmutation $\rightarrow \Lambda_{\rm QCD}$
 - → reference scale; everything else is scale ratios
 - \rightarrow no Λ^2 sensitivity there is no other physical scale!
 - **→** no hierarchy problem

Question: Do fundamental theories require absolute scales?

Why not everything in relative terms?

Don't blame a theory on scale problems which you invented (a lattice, a cutoff, ...)

Important: The conformal anomaly

 $\leftarrow \rightarrow$ dimensional transmutation $\leftarrow \rightarrow \beta$ -fcts. $\leftarrow \rightarrow \log s$

Now massless scalar QCD...

- Massless scalar instead of chiral fermions
- Gauge and conformal symmetry
- Technically there seems to be a Λ^2 divergence
 - **→** but this has no meaning since (if) there is no other explicit physical scale
- Dimensional transmutation ; $\rightarrow \Lambda_{\rm OCD}$
 - → reference scale; everything else is scale ratios
 - \rightarrow conformal anomaly \rightarrow β -fcts. \rightarrow only logs

Relict of conformal symmetry

→ only log sensitivity

Implications

Gauge invariance → only log sensitivity

If conformal symmetry is realized in a non-linear way → protective relic of conformal symmetry → only log sensitivity

- No hierarchy problem, even though there is the conformal anomaly
- Dimensional transmutation due to log running like in QCD
 - **→** scalars can condense and set scales like fermions
 - ⇒ use this in Coleman Weinberg effective potential calculations \leftarrow ⇒ most attractive channels (MAC) \leftarrow ⇒ β -functions

Implementing the Ideas at different Levels

→ at all levels: non-linear realization of conformal symmetry

Further general Comments

- New (hidden) sector ←→ DM, neutrino masses, ...
- Question: Isn't the Planck-Scale spoiling things?

 → non-linear realization... → conformal gravity...
 ideas: see e.g. 1403.4226 by A. Salvio and A. Strumia
 K. Hamada, 1109.6109, 0811.1647, 0907.3969, ...
- Question: What about inflation? see e.g. 1405.3987 by K. Kannike, A. Racioppi, M. Raidal or 1308.6338 by V. Khoze
- What about unification ...
- UV stability: ultimate solution should be asymptotically safe (have UV-FPs) ... \rightarrow U(1) from non-abelian group
- Justifying classical scale invariance →

Open points... but let's play with the idea

Why the minimalistic SM does not work

Minimalistic:

SM + choose μ = 0 \leftrightarrow CS

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- → induces for m_t < 79 GeVa Higgs mass m_H = 8.9 GeV

This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum

$$\leftarrow \rightarrow m_H \sim loop factor \sim 1/16\pi^2$$

AND: We need neutrino masses, dark matter, ...

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow$ no scalar mass terms
- the scalars interact $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations)$

particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3) \times (\operatorname{SU}(2)_L \times \operatorname{SU}(2)_R) \times (\operatorname{SU}(3)_C \times \operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R o -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

Phenomenology

Figure 3. The S pair production cross section from gluon fusion channel is calculated for different value of m_S . The 95% confidence level exclusion limit on $\sigma \times BR$ for $\sqrt{s} = 7 \text{ TeV}$ by ATLAS is plotted. We assume 100% BR of $\langle S^{\dagger} S \rangle$ into two jets.

Realizing the Idea: Examples for other Directions

SM + extra singlet: Φ , φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in a hidden sector Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML

SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt

SM + colored scalar which condenses at TeV scale Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Neutrino Masses = New Physics...

Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters → **SM**+

Are right-handed neutrinos established?

New scalar tripelts (3_{I}) or fermionic 1₁ ro 3₁

→left-handed Majorana mass term:

$$\rightarrow M_L \overline{L} L^c$$

Both $v_{\rm R}$ and new singlets / triplets:

$$\rightarrow$$
 see-saw type II, III $m_v = M_L - m_D M_R^{-1} m_D^T$

Higher dimensional operators: d=5, ...

$$\Leftrightarrow$$
 \mathcal{L}_{i}

$$\Leftrightarrow \quad \mathcal{L}_{\text{mass}} = \kappa \cdot \overline{\nu}_L^C \nu_L \Phi^T \Phi$$

Radiative neutrino mass generation

SUSY, extra dimensions, ...

- → inspiring options, many questions, connections to LFV, LHC, ...
 - → SM+ → can/may solve two of the SM problems:
 - Leptogenesis as explanation of BAU
 - keV sterile neutrinos as excellent warm dark matter candidate
- **→** progress:
 - new experimental results ...waiting...
 - theoretical guidance ...guessing...

Guidance by the larger Picture: GUTs

Gauge unification suggests GUTs

Ingredients:

- unified gauge group
- unified particle multiplets $\leftarrow \rightarrow \nu_R$
 - → Q,L Yukawa couplings connected

• • • •

- → proton decay,...
- generations are just copies

3. generation

$$SU(5) \times U(1)$$

$$SU(3)_{C} \times SU(3)_{L} \times SU(3)_{R}$$

$$SU(4)_{PS} \times SU(2)_{L} \times SU(2)_{R}$$

$$SU(5)$$

$$SU(3)_{C} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$$

$$SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$$

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- **→** flavour symmetries (finite number for limited rank)
- **→** symmetry not texture zeros

GUT & Flavour Unification

- → GUT group x flavour group
- example: $SO(10) \times SU(3)_F$
- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB e.g. Z2, S3, D5, A4, ...
 - **→** structures in flavour space
 - → compare with data

- → aim: distinguish models by future precision and learn about the origin of flavour
- \rightarrow reality so far: many models get killed by data (see e.g. θ_{13} ...)

Hints / Arguments / ... for Sterile Neutrinos

Particle Physics: LSND, Gallium, MiniBooNE, reactor anomaly, ...

CMB: $N_v = 3.3 \pm 0.27 \rightarrow \text{extra eV-ish } v$'s possible PLANCK 2013

BBN: $N_v = 3-4 \rightarrow possible e.g. Coc$

Astrophysics: keV-ish sterile neutrinos could explain pulsar kicks

Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, ...

Dark matter: keV sterile neutrinos are excellent WDM

Asaka, Blanchet, Shaposhnikov, ... ML, Bezrukov, Hettmanperger

Sterile v's and improved EW fits: TeV-ish v's improve χ^2

Akhmedov, Kartavtsev, ML, Michaels and J. Smirnov

Most likely not all true, but one is enough:

VERY IMPORTANT IMPLICATIONS → new direct experiments

Options for Neutrino Mass Spectra

M_L , m_D , M_R may have almost any form / values:

- zeros (symmetries)

- → 3x3 active almost unitary

$$M_L=0$$
, $m_D=M_W$, $M_R=$ high: see-saw

 M_R singular $M_L = M_R = 0$ $M_L = M_R = \varepsilon$ singular-SS

$$\mathbf{M}_{\mathrm{L}} = \mathbf{M}_{\mathrm{R}} = 0$$

Dirac

$$= 0 M_{L} = M_{R} = \varepsilon$$
pseudo Dirac

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov, arXiv:1405.6204

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + EW scale
 - **→** spectrum of Yukawa couplings ⊗ TeV or EW scale
 - many possibilities

Examples

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$\mathrm{SM} + \mathrm{v_R} + \mathrm{singlet}$$
 $\langle \phi
angle pprox \mathrm{TeV}$ $\langle H
angle pprox 1/4\,\mathrm{TeV}$

- **→** generically expect a TeV seesaw
- BUT: y_M might be tiny
- → wide range of sterile masses → includes pseudo-Dirac case

Radiative masses

Potential:
$$V = \lambda_L \eta H_1^{\dagger} H_2 \varphi + h.c. + ...$$

$$\mathcal{M} = egin{pmatrix} \mu_1 & y_D \langle H
angle \ y_D^T \langle H
angle & \mu_2 \end{pmatrix}$$

 $\mathcal{M}=m_L$

or

Potential:
$$V = \lambda \varphi_1 H^T i \sigma_2 \Delta^{\dagger} \tilde{H} + \lambda' \varphi_1^2 \varphi_2 \varphi_3 + h.c. + ...$$

→pseudo-Dirac case

More Examples: Inverse Seesaw

Seesaw & LNV

$$\nu_R: (1_{SU(2)}, 0_Y, 0_{HS})$$

$$\nu_x : (1_{SU(2)}, 0_Y, n_{HS})$$

Seesaw & LNV
$$u_R: (1_{SU(2)}, 0_Y, 0_{HS}) \qquad \mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 \\ y_D^T \langle H \rangle & 0 & y_{Rx} \langle \phi \rangle \\ 0 & y_{Rx}^T \langle \phi \rangle & \mu \end{pmatrix}$$

$$\epsilon = \frac{1}{2} y_D^{\dagger} (y_{Rx}^{-1})^* (y_{Rx}^{-1})^T y_D \cdot \frac{\langle H \rangle^2}{\langle \phi \rangle^2}$$
$$\langle \phi \rangle > \langle H \rangle \text{ and } m_{\nu} \approx \mu \, \epsilon$$

μ is suppressed (LNV) natural scale keV

The punch line:

- all usual neutrino mass terms can be generated
- No explicit masses → all via Yukawa couplings → different numerical expectations

→ More Flexible Neutrino Mass Spectrum

... see-saw spectrum may be rather different than usual. E.g. ...

Summary

- > SM (+m_v+DM) works perfectly; no signs of new physics
- > The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up
- Revisit how the hierarchy problem may be solved
- $\lambda(M_{Planck}) = 0$? $\leftarrow \rightarrow$ precise value for m_t
- Embedings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential excluded
 - extended versions → work!
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
 - → testable consequences @ LHC, DM search, neutrinos