Conformal and Electro-Weak Symmetry Breaking

Manfred Lindner

Max-Planck-Institut für Kernphysik
Heidelberg

Topical Workshop: Rethinking Naturalness

17-19 December 2014 LNF, Alte Energie
...wait for the upgrade ...

THIS WASN'T PREDICTED IN OUR MODEL — WHAT SHOULD WE DO?

DON'T SAY ANYTHING. MAYBE NO ONE WILL NOTICE.

...this may already point into new directions
Look again carefully at the SM as QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization ➔ only differences are calculable
 - SM itself is perfectly OK ➔ many things unexplained…

- Has (like QED) a triviality problem (Landau poles ↔ infinite \(\lambda \))
 - running \(U(1)_Y \) coupling (pole well beyond Planck scale… - like in QED)
 - running Higgs / top coupling ➔ upper bounds on \(m_H \) and \(m_t \)
 ➔ requires some scale \(\Lambda \) where the SM is embedded
 ➔ the physics of this scale is unknown ➔ explicit scale or effective

- Another potential problem is vacuum instability (↔ negative \(\lambda \))
 - does occur in SM for large top mass > 79 GeV ➔ lower bounds on \(m_H \)

SM as QFT (without an embedding):
- a hard cutoff \(\Lambda \) and the sensitivity towards \(\Lambda \) has no meaning
- renormalizable, calculable … - just like QED
SM: Triviality and Vacuum Stability Bounds

\[\Lambda (\text{GeV}) \]

\[m_H (\text{GeV}) \]

126 GeV < \(m_H < 174 \) GeV

SM does not exist w/o embedding
- U(1) coupling
- Higgs self-coupling

\[\lambda (M_{\text{pl}}) \simeq 0 \]
- EW-SB radiative
- just SM?

Holthausen, ML, Lim (2011)

126 GeV is here!

RGE arguments seem to work
- we need some embedding
\[\longleftrightarrow \] no BSM physics observed!
- just a SM Higgs

ML ‘86

\[\Lambda \]

\[\ln (\mu) \]

Landau pole

OLC 2016
A special Value of λ at M_{Planck}?

Holthausen, ML Lim (2011)

Different conceivable special conditions:

- Vacuum stability
 \[\lambda(M_{\text{pl}}) = 0 \ [7-12] \]

- vanishing of the beta function of λ
 \[\beta_\lambda(M_{\text{pl}}) = 0 \ [9, 10] \]

- the Veltman condition \[13-15\] \[\text{Str} M^2 = 0, \]
 \[\delta m^2 = \frac{\Lambda^2}{32\pi^2 v^2} \text{Str} M^2 \]
 \[= \frac{1}{32\pi^2} \left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 + 6\lambda - 6\lambda_t^2 \right) \Lambda^2 \]

- downward flow of RG trajectories
 \[\rightarrow \text{IR QFP} \rightarrow \text{random } \lambda \text{ flows to } m_H > 150 \text{ GeV} \]
 \[\rightarrow m_H \sim 126 \text{ GeV flows to tiny values at } M_{\text{Planck}} \ldots \]
• Why do all these boundary conditions work?
 - suppression factors compared to random choice = $O(1)$
 - $\lambda = F(\lambda, g_i^2, \ldots) \Rightarrow$ loop factors $1/16\pi^2$
 - top loops \Rightarrow fermion loops \Rightarrow factors of (-1)

\Rightarrow scenarios ‘predicting’ sufficiently suppressed (small/tiny) λ at M_{Planck} are OK
\Rightarrow more precision \Rightarrow selects options ; e.g. $\gamma_m = 0$ now ruled out
\Rightarrow Planck scale boundary conditions seem to fit to experiment…!!!
Is the Higgs Potential at M_{Planck} flat?

Holthausen, ML, Lim

Notes:
- remarkable relation between weak scale, m_t, couplings and M_{Planck} ↔ precision
- strong cancellations between Higgs and top loops
 → very sensitive to exact value and error of m_H, m_t, $\alpha_s = 0.1184(7)$ → currently 1.8σ in m_t
- other physics: DM, m_ν … axions, …Planck scale thresholds… SM+ ↔ $\lambda = 0$
 → top mass errors: data ↔ LO-MC → translation of m_{pole} → MS bar
 → be cautious about metastability
 → IS THERE A MESSAGE IN : $\lambda(M_{\text{planck}}) \sim 0$? ; and what if also $m^2 = 0$?
Re-thinking Naturalness…

think about / discuss / understand old or new modified basic concepts …
… before you write down specific models
… before you complicate things (confuse yourself…) by technical steps (like a lattice, \(\Lambda \), …) which are unphysical
… and/or before you start to discuss non-perturbative stuff

⇒ new concepts ⇒ new symmetries ⇒ ???
Interpretating special Conditions: E.g. $\lambda(M_{\text{Planck}}) = 0$

$\lambda \phi^4 \Rightarrow 0$ at the Planck scale \Rightarrow no Higgs self-interaction (V is flat)
$\Rightarrow m_H$ at low E radiatively generated - value related to m_t and g_i
\Rightarrow SM emdeded directly / related to gravity …!?

- What about the hierarchy problem?
 \Rightarrow GR is different: Non-renormalizable!
 \Rightarrow requires new concepts beyond QFT/gauge theories: … ?
 \Rightarrow BAD: We have no facts which concepts are realized by nature
 \Rightarrow Two GOOD aspects:

1) QFTs cannot explain absolute masses and couplings
 - QFT embedings = shifting the problem only to the next level
 \Rightarrow new concepts beyond QFT might explain absolute values
2) Asymmetry SM\leftrightarrowPlanck scale may allow new solutions of the HP

→ new non-QFT Planck-scale concepts could have mechanism which explain hierarchies

→ lost in effective theory = SM

Anaology: Type II superconductor

Ginzburg-Landau effective QFT \leftrightarrow BCS theory

\[E \approx \alpha |\phi|^2 + \beta |\phi|^4 + \ldots \]

\leftrightarrow α, β, dynamical details lost

→ The hierarchy problem may be an artefact of the bottom-up QFT perspective. New concepts beyond QFT at the Planck-scale could explain things top-down.
Within known Concepts: Symmetry...
The Hierarchy Problem: Not $\Lambda \rightarrow$ two explicit scalar Scales

- Renormalizable QFTs with two scalars φ, Φ with masses m, M and a mass hierarchy $m \ll M$
- These scalars must interact since $\varphi^+\varphi$ and $\Phi^+\Phi$ are singlets
 $\Rightarrow \lambda_{\text{mix}}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist in addition to φ^4 and Φ^4
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 \Rightarrow two vastly different scalar scales are generically unstable

Therefore: If (=since) the SM Higgs field exists

\Rightarrow problem: embedding with a 2nd scalar with much larger mass

\Rightarrow usual solutions:

- a) new scale @TeV
- b) protective symmetry @TeV

}\Rightarrow LHC !

b) is usually SUSY, but SUSY & gauge unification = SUSY GUT

\Rightarrow doublet-triplet splitting problem \Rightarrow hierarchy problem back

M. Lindner, MPIK
Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 ➔ absence of Λ^2 and $\ln(\Lambda)$ divergences
 ➔ no preferred scale and therefore no scale problems

- Conformal Anomaly (CA): Quantum effects explicitly break CS
 existence of CA ➔ CS preserving regularization does not exist
 - dimensional regularization is close to CS and gives only $\ln(\Lambda)$
 - cutoff reg. ➔ Λ^2 terms; violates CS badly ➔ Ward Identity

 Bardeen: maybe CS still forbids Λ^2 divergences
 ➔ CS breaking ↔ β-functions ↔ $\ln(\Lambda)$ divergences
 ➔ anomaly induced spontaneous EWSB

NOTE: asymmetric logic! The fact the dimensional regularization kills a Λ^2 dependence is well known. Argument goes the other way!
Looking at it in different Ways…

• Basics of QFT: Renormalization ↔ commutator
 - $[\Phi(x),\Pi(y)] \sim \delta^3(x-y)$ ➔ delta function ➔ distribution
 - freedom to define $\delta^*\delta$ ➔ renormalization ↔ counterterms
 - along come technicalities: lattice, Λ, Pauli-Villars, MS-bar, …

• Reminder: Technicalities do not establish physical existence!

• Nice examples ➔ BPHZ-renormalization

• Symmetries are essential!

Question: Is gauge symmetry spoiled by discovering massive gauge bosons? ➔ NO ↔ Higgs mechanism

➔ non-linear realization of the underlying symmetry
➔ important consequence: naïve power counting is wrong

Gauge invariance ➔ only log sensitivity
Versions of QCD…

- **QCD with massless (chrial) fermions**
 - gauge + conformal symmetry
 - dimensional transmutation Λ_{QCD}
 - reference scale; everything else is scale ratios
 - no Λ^2 sensitivity – there is no other physical scale!
 - no hierarchy problem

Question: Do fundamental theories require absolute scales? Why not everything in relative terms? Don’t blame a theory on scale problems which you invented (a lattice, a cutoff, …)

Important: The conformal anomaly
- dimensional transmutation \leftrightarrow β-fcts. \leftrightarrow logs
Now massless scalar QCD…

- Massless scalar instead of chiral fermions
- Gauge and conformal symmetry
- Technically there seems to be a Λ^2 divergence
 ➔ but this has no meaning since (if) there is no other explicit physical scale
- Dimensional transmutation ; ➔ Λ_{QCD}
 ➔ reference scale ; everything else is scale ratios
 ➔ conformal anomaly ➔ β-fcts. ➔ only logs

Relict of conformal symmetry
 ➔ only log sensitivity
Implications

Gauge invariance \Rightarrow only log sensitivity

If conformal symmetry is realized in a non-linear way \Rightarrow protective relic of conformal symmetry \Rightarrow only log sensitivity

- No hierarchy problem, even though there is the conformal anomaly
- Dimensional transmutation due to log running like in QCD
 \Rightarrow scalars can condense and set scales like fermions
 \Rightarrow use this in Coleman Weinberg effective potential calculations
 \leftrightarrow most attractive channels (MAC) \leftrightarrow β-functions
Implementing the Ideas at different Levels

-> at all levels: non-linear realization of conformal symmetry
Further general Comments

• New (hidden) sector \[\leftrightarrow\]\ DM, neutrino masses, …

• Question: Isn’t the Planck-Scale spoiling things?
 \[\Rightarrow\] non-linear realization… \[\Rightarrow\] conformal gravity…
 ideas: see e.g. 1403.4226 by A. Salvio and A. Strumia
 K. Hamada, 1109.6109, 0811.1647, 0907.3969, …

• Question: What about inflation?
 see e.g. 1405.3987 by K. Kannike, A. Racioppi, M. Raidal
 or 1308.6338 by V. Khoze

• What about unification …

• UV stability: ultimate solution should be asymptotically safe (have UV-FPs) … \[\Rightarrow\] U(1) from non-abelian group

• Justifying classical scale invariance \[\Rightarrow\] …
Open points… but let’s play with the idea
Why the minimalistic SM does not work

Minimalistic:
SM + choose $\mu = 0 \iff$ CS

Coleman Weinberg: effective potential
\Rightarrow CS breaking (dimensional transmutation)
\Rightarrow induces for $m_t < 79$ GeV
- a Higgs mass $m_H = 8.9$ GeV

This would conceptually realize the idea, but:
Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum
$\iff m_H \sim \text{loop factor} \sim 1/16\pi^2$

AND: We need neutrino masses, dark matter, …
Realizing the Idea via Higgs Portals

- SM scalar \(\Phi \) plus some new scalar \(\varphi \) (or more scalars)
- CS \(\rightarrow \) no scalar mass terms
- the scalars interact \(\Rightarrow \) \(\lambda_{\text{mix}}(\varphi^+\varphi)(\Phi^+\Phi) \) must exist

 \(\Rightarrow \) a condensate of \(<\varphi^+\varphi> \) produces \(\lambda_{\text{mix}}<\varphi^+\varphi>(\Phi^+\Phi) = \mu^2(\Phi^+\Phi) \)

 \(\Rightarrow \) effective mass term for \(\Phi \)

- CS anomalous … \(\rightarrow \) breaking \(\rightarrow \) only \(\ln(\Lambda) \)

 \(\Rightarrow \) implies a TeV-ish condensate for \(\varphi \) to obtain \(<\Phi> = 246 \) GeV

- Model building possibilities / phenomenological aspects:
 - \(\varphi \) could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining…
 - extra hidden U(1) potentially problematic \(\leftrightarrow \) U(1) mixing
 - avoid Yukawas which couple visible and hidden sector

 \(\Rightarrow \) phenomenology safe due to Higgs portal, but there is TeV-ish new physics!
Radiative SB in conformal LR-extension of SM

(\text{use isomorphism SU(2) } \times \text{ SU(2)} \cong \text{ Spin(4) } \rightarrow \text{ representations})

\begin{align*}
\text{particle} & \quad \text{parity } \mathcal{P} & \quad \mathbb{Z}_4 & \quad \text{Spin}(1, 3) \times (\text{SU}(2)_L \times \text{SU}(2)_R) \times (\text{SU}(3)_C \times \text{U}(1)_{B-L}) \\
L_{1,2,3} = \left\{ \begin{array}{c} L_L \\ -iL_R \end{array} \right\} & \quad P^{PL}(t, -x) & \quad L_R \rightarrow iL_R & \quad \left[\left(\frac{1}{2}, 0 \right) \left(2, 1 \right) + \left(0, \frac{1}{2} \right) \left(1, 2 \right) \right] (1, -1) \\
Q_{1,2,3} = \left\{ \begin{array}{c} Q_L \\ -iQ_R \end{array} \right\} & \quad P^{PQ}(t, -x) & \quad Q_R \rightarrow -iQ_R & \quad \left[\left(\frac{1}{2}, 0 \right) \left(2, 1 \right) + \left(0, \frac{1}{2} \right) \left(1, 2 \right) \right] (3, \frac{1}{3}) \\
\Phi = \begin{pmatrix} 0 & \Phi \\ -\Phi^* & 0 \end{pmatrix} & \quad P\Phi^*P(t, -x) & \quad \Phi \rightarrow i\Phi & \quad (0, 0) \left(2, 2 \right) (1, 0) \\
\Psi = \begin{pmatrix} \chi_L \\ -i\chi_R \end{pmatrix} & \quad P\Psi(t, -x) & \quad \chi_R \rightarrow -i\chi_R & \quad (0, 0) \left[\left(2, 1 \right) + \left(1, 2 \right) \right] (1, -1)
\end{align*}

\rightarrow \text{ the usual fermions, one bi-doublet, two doublets} \\
\rightarrow \text{ a } \mathbb{Z}_4 \text{ symmetry} \\
\rightarrow \text{ no scalar mass terms } \leftrightarrow \text{ CS}
Most general gauge and scale invariant potential respecting Z_4

\[V(\phi, \psi) = \frac{\kappa_1}{2} (\overline{\psi} \psi)^2 + \frac{\kappa_2}{2} (\overline{\psi} \Gamma \psi)^2 + \lambda_1 (\text{tr} \phi^\dagger \phi)^2 + \lambda_2 (\text{tr} \phi \phi + \text{tr} \phi^\dagger \phi^\dagger)^2 + \lambda_3 (\text{tr} \phi \phi - \text{tr} \phi^\dagger \phi^\dagger)^2 + \beta_1 \overline{\psi} \text{tr} \phi^\dagger \phi + f_1 \overline{\psi} \Gamma [\phi^\dagger, \phi] \psi, \]

calculate V_{eff}

Gildner-Weinberg formalism (RG improvement of flat directions)
- anomaly breaks CS
- spontaneous breaking of parity, Z_4, LR and EW symmetry
- $m_H << v$; typically suppressed by 1-2 orders of magnitude
 Reason: V_{eff} flat around minimum
 $\leftrightarrow m_H \sim$ loop factor $\sim 1/16\pi^2$
 \rightarrow generic feature \rightarrow predictions
- everything works nicely...

requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?
New scalar representation $S \rightarrow$ QCD gap equation:

$$C_2(S)\alpha(\Lambda) \gtrsim X.$$

$C_2(\Lambda)$ increases with larger representations \leftrightarrow condensation for smaller values of running α

$$\mathcal{L} = \mathcal{L}_{\text{SM, } m^2 \to 0} + (D_{\mu;i,j}S_j)^\dagger(D_{\mu;k}S_k) + \lambda_{HS}H^\dagger H S - \lambda_{1_z} [\bar{S} \times S \times \bar{S} \times S]_{1_z}$$

$$\lambda_{HS} \langle S^\dagger S \rangle H^\dagger H \rightarrow \lambda_{HS} \Lambda^2 H^\dagger H$$

$$m_{h}^2 = 2\lambda_{HS} \Lambda^2$$

$$\frac{\lambda_h}{\lambda_{HS}} = \frac{\Lambda^2}{v^2}$$
Figure 3. The S pair production cross section from gluon fusion channel is calculated for different values of m_S. The 95% confidence level exclusion limit on $\sigma \times \text{BR}$ for $\sqrt{s} = 7$ TeV by ATLAS is plotted. We assume 100% BR of $\langle S^+ S \rangle$ into two jets.
Realizing the Idea: Examples for other Directions

SM + extra singlet: \(\Phi, \varphi \)
Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in a hidden sector
Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML

SM embedded into larger symmetry (CW-type LR)
Holthausen, ML, M. Schmidt

SM + colored scalar which condenses at TeV scale
Kubo, Lim, ML

Since the SM-only version does not work \(\Rightarrow \) observable effects:
- Higgs coupling to other scalars (singlet, hidden sector, …)
- dark matter candidates \(\leftrightarrow \) hidden sectors & Higgs portals
- consequences for neutrino masses
Neutrino Masses = New Physics...

Simplest possibility: add 3 right handed neutrino fields

\[\nu_L \ g_N \ \nu_R \]

\[\nu_R \times \nu_R \]

\[<\phi> = v \]

\[\mathcal{L} \]

Majorana

\[\begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} \]

like quarks and charged leptons \(\Rightarrow \) Dirac mass terms (including NMS mixing)

New ingredients: 1) Majorana mass (explicit) 2) lepton number violation

6x6 block mass matrix block diagonalization \(M_R \) heavy \(\Rightarrow \) 3 light \(\nu \)'s

NEW ingredients, 9 parameters \(\Rightarrow \) SM+
Are right-handed neutrinos established?

New scalar tripelts (3_L) or fermionic $1_L \rightarrow 3_L$

 gauche left-handed Majorana mass term:

$$\Rightarrow M_L \overline{LL}^c$$

Both ν_R and new singlets / triplets:

\Rightarrow see-saw type II, III

$$m_\nu = M_L - m_D M_R^{-1} m_D^T$$

Higher dimensional operators: $d=5, \ldots$

$$\Rightarrow \mathcal{L}_{mass} = \kappa \cdot \overline{\nu}_L \nu_L \Phi^T \Phi$$

$$\Rightarrow M_L \overline{LL}^c$$
Radiative neutrino mass generation

SUSY, extra dimensions, …

→ inspiring options, many questions, connections to LFV, LHC, ...
→ SM+ → can/may solve two of the SM problems:
 - Leptogenesis as explanation of BAU
 - keV sterile neutrinos as excellent warm dark matter candidate
→ progress:
 - new experimental results ...waiting...
 - theoretical guidance ...guessing...
Guidance by the larger Picture: GUTs

Gauge unification suggests GUTs

Ingredients:
- unified gauge group
- unified particle multiplets $\leftrightarrow \nu_R$
 \Rightarrow Q, L Yukawa couplings connected

 \Rightarrow proton decay, ...
- generations are just copies

Diagram:

- $SU(5) \times U(1)$
 - $SU(3)_C \times SU(3)_L \times SU(3)_R$
- $SO(10)$
- $SU(4)_{PS} \times SU(2)_L \times SU(2)_R$
- $SU(5)$
- $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- $SU(3)_C \times SU(2)_L \times U(1)_Y$
Flavour Unification

- so far no understanding of flavour, 3 generations
- apparent regularities in quark and lepton parameters
 ➞ flavour symmetries (finite number for limited rank)
 ➞ symmetry not texture zeros

Examples:
- $U(1)$
- $SU(2)$
- $SU(3)$
- $SO(3)$
- $S(3)_L \times S(3)_R$
- $O(3)_L \times O(3)_R$
- $A_4; Z_3 \triangleleft Z_2$
- $S(3)$
- Nothing
GUT & Flavour Unification

- **GUT group x flavour group**
 - example: $SO(10) \times SU(3)_F$
 - SSB of $SU(3)_F$ between Λ_{GUT} and Λ_{Planck}
 - all flavour Goldstone Bosons eaten
 - discrete sub-groups survive \(\leftrightarrow\) SSB
 - e.g. Z_2, S_3, D_5, A_4, ...
 - structures in flavour space
 - compare with data

- **aim:** distinguish models by future precision and learn about the origin of flavour
- **reality so far:** many models get killed by data (see e.g. θ_{13}...)

M. Lindner, MPIK
Hints / Arguments / … for Sterile Neutrinos

Particle Physics: LSND, Gallium, MiniBooNE, reactor anomaly, …

CMB: $N_\nu = 3.3 \pm 0.27 \rightarrow$ extra eV-ish ν’s possible PLANCK 2013

BBN: $N_\nu = 3-4 \rightarrow$ possible e.g. Coc

Astrophysics: keV-ish sterile neutrinos could explain pulsar kicks
Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, …

Dark matter: keV sterile neutrinos are excellent WDM
Asaka, Blanchet, Shaposhnikov, … ML, Bezrukov, Hettmanperger

Sterile ν’s and improved EW fits: TeV-ish ν’s improve χ^2
Akhmedov, Kartavtsev, ML, Michaels and J. Smirnov

Most likely not all true, but one is enough:

VERY IMPORTANT IMPLICATIONS \rightarrow new direct experiments
Options for Neutrino Mass Spectra

\[\begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} M_L & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} \]

\(M_L, \ m_D, \ M_R\) may have almost any form / values:
- zeros (symmetries)
- 0 + tiny corrections
- scales: \(M_W, M_{GUT}, \ldots\)

\(\Rightarrow\) diagonalization: 3+N EV
\(\Rightarrow\) 3x3 active almost unitary

<table>
<thead>
<tr>
<th>(M_L=0, \ m_D = M_W, \ M_R=\text{high}: \text{see-saw})</th>
<th>(M_R) singular singular-SS</th>
<th>(M_L = M_R = 0)</th>
<th>(M_L = M_R = \varepsilon) pseudo Dirac</th>
</tr>
</thead>
<tbody>
<tr>
<td>sterile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M. Lindner, MPIK
Conformal Symmetry & Neutrino Masses

• No explicit scale ➞ no explicit (Dirac or Majorana) mass term ➞ only Yukawa couplings ⊗ generic scales

• Enlarge the Standard Model field spectrum like in 0706.1829 - R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas

• Consider direct product groups: SM ⊗ HS

• Two scales: CS breaking scale at O(TeV) + EW scale

➤ spectrum of Yukawa couplings ⊗ TeV or EW scale ➤ many possibilities
Examples

\[\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^{T} \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix} \]

- generically expect a TeV seesaw
- BUT: \(y_M \) might be tiny
- wide range of sterile masses \(\Rightarrow \) includes pseudo-Dirac case

Radiative masses

\(\mathcal{M} = m_L \)

or

\[\mathcal{M} = \begin{pmatrix} \mu_1 & y_D \langle H \rangle \\ y_D^{T} \langle H \rangle & \mu_2 \end{pmatrix} \]

\(\Rightarrow \) pseudo-Dirac case

Yukawa seesaw:
SM + \(\nu_R \) + singlet
\(\langle \phi \rangle \approx \) TeV
\(\langle H \rangle \approx 1/4 \) TeV
More Examples: Inverse Seesaw

Seesaw & LNV

\[\nu_R : (1_{SU(2)}, 0_Y, 0_{HS}) \]
\[\nu_x : (1_{SU(2)}, 0_Y, n_{HS}) \]

\[\epsilon = \frac{1}{2} y_D^\dagger (y_{Rx}^{-1})^* (y_{Rx}^{-1})^T y_D \cdot \frac{\langle H \rangle^2}{\langle \phi \rangle^2} \]

\[\langle \phi \rangle > \langle H \rangle \text{ and } m_\nu \approx \mu \epsilon \]

\mu \text{ is suppressed (LNV) natural scale keV}

The punch line:
- all usual neutrino mass terms can be generated
- No explicit masses \(\Rightarrow\) all via Yukawa couplings \(\Rightarrow\) different numerical expectations

M. Lindner, MPIK
More Flexible Neutrino Mass Spectrum

...see-saw spectrum may be rather different than usual. E.g. ...

- Leptogenesis from the decay of two remaining heavy sterile neutrinos works perfectly!
 Bezrukov, Kartavtsev, ML

- One light sterile neutrino \sim keV = DM

- Light active neutrinos < eV

m_ν

Leptogenesis
Summary

- SM (+m_\nu+DM) works perfectly; no signs of new physics

- The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up

- Revisit how the hierarchy problem may be solved
 - \(\lambda(M_{\text{Planck}}) = 0 \)? ↔ precise value for \(m_t \)
 - Embeddings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential – excluded
 - extended versions → work!
 → implications for Higgs couplings, dark matter, …
 → implications for neutrino masses
 → testable consequences @ LHC, DM search, neutrinos