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First run of the LHC (7-8 TeV) 

One historical success:  
the discovery of the Higgs boson  

Second run of the LHC (13-14 TeV) 

Hopefully another historical 
success: the discovery of BSM 
physics 

?? 



The RUN I of LHC (7/8 TeV) has not produced 
any real hint of BSM 

There was a reasonable hope to see signals of 
BSM in Higgs physics: 

The Higgs represents a new (the last) sector 
of the SM: “terra incognita”  

Main arguments to expect BSM at LHC rely 
on the Naturalness of the EWSB (Hierarchy 
Problem) 

EWSB sector is a natural arena 
to find BSM 



If BSM physics is related to Higgs properties, it 
must live within the error bars! 



Apart from Higgs physics, impressive agreement 
with SM predictions: 



Absence of hints of BSM from Run I 

Naturalness arguments  
(which are behind the Hierarchy Problem) 

Tension...  (?) 



Recall (once more) the Hierarchy Problem.... 
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This is still the main reason to expect BSM 
at the reach of the LHC 



Admittedly, Naturalness criterion (associated to the 
Hierarchy Problem) is 

quite imprecise 

But, to which extent the LHC results are in 
tension with it?        

maybe too naive 

maybe a misconception 



Notice: 

The LHC has explored a lot of physics up to 
~ 1.5 TeV, but not all (at all)    

    

The H.P. (naturalness) bound applies to the 
BSM physics associated to the top    

But, even if indeed there are top partners 
(of any kind) at ~1 TeV, they could have 
easily escaped the LHC (Run I)    



E.g.  if BSM       SUSY,    ⌘ top partners      stops ⌘
 (or smaller) is (could be) OK mt̃ = 700 GeV



So maybe it is a bit too soon to give up 

It could even happen that the naturalness 
criterion is sound, but the BSM is just above 
the Run II reach (hope not) 



On the other hand, 

Naturalness bounds on BSM physics based on 
the crude form of the H.P. argument are too 
simplistic. 

Naturalness bounds are more precise when 
they are analyzed for concrete BSM scenarios, 
evaluating the UV-physics contributions to m2 
in terms of the initial parameters of the theory. 



E.g. 

For the MSSM, the dominant contribution to m2 
(at 1-loop LL, DR-squeme): 
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(naive) Naturalness doesn’t apply 

Misconceptions about H.P. 
Landscape 
Other alternatives (“Agravity”, ...) 

(naive) Naturalness applies 

New Physics at the ~ TeV scale 
Possibly at the LHC reach 
SUSY, Composite, Extra Dim. ... 
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We still don’t know which way 
has been chosen by NATURE 

Other alternatives (“Agravity”, ...) 



Let us assume that naturalness arguments apply 

So we expect BSM physics, hopefully at the 
reach of LHC-II.  Which kind of BSM? 

. . 

SUSY


Warped Extra-Dimensions...


Composite/NGB Higgs...


When you go to the details they all look uglier. 

Which one you prefer is a matter of taste 



Beautiful symmetry, strongly suggested by 
string theories 

SUSY


Elegant solution to the 
Hierarchy Problem 

Motivations: 



SUSY is still one of the preferred 
candidated for BSM physics: 

Gauge Unification 

Radiative EW breaking 

Good DM (WIMPs) candidates 

Higgs looks fundamental, and   mh < 135 GeV



a bit too heavy for naive 
SUSY expectations 

No signal of SUSY from LHC-8 TeV 

These two facts imply >⇠ 1 TeVmSUSY particles 

fine-tuning to get the 
correct EW scale 

mh ' 125 GeV

(as all BSM scenarios) 

BUT 



a bit too heavy for naive 
SUSY expectations 

No signal of SUSY from LHC-8 TeV 

These two facts imply >⇠ 1 TeVmSUSY particles 

fine-tuning to get the 
correct EW scale 

mh ' 125 GeV

(as all BSM scenarios) 

BUT 



Recall (for MSSM) : 

tree-level contrib. 
(≤ MZ

2) 
rad. contrib.  threshold corr.  

mh ' 125 GeV typically implies mt̃
>⇠ 1 TeV
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a bit too heavy for naive 
SUSY expectations 

No signal of SUSY from LHC-8 TeV 

These two facts imply >⇠ 1 TeVmSUSY particles 
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(as all BSM scenarios) 



a bit too heavy for naive 
SUSY expectations 

No signal of SUSY from LHC-8 TeV 

These two facts imply >⇠ 1 TeVmSUSY particles 

fine-tuning to get the 
correct EW scale 

mh ' 125 GeV

(as all BSM scenarios) 



It is not straightforward to translate LHC 
results into bounds on SUSY (MSSM) 

MSSM has ~ 100 independent parameters ! 

(most of them related to the unknown mechanism of 
SUSY and transmission to the observable sector): 



Two main strategies: 

Translate the LHC results into constraints 
on representative SUSY models: 

Use simplified models to express the bounds  

CMSSM,  NUHM,  NUGM, ...  



Simplified models are very useful, but one has to be 
careful interpreting the results.  

36 

E.g. limits on electroweakinos from tri-lepton signal 



Simplified models are very useful, but one has to be 
careful interpreting the results.  

36 

E.g. limits on electroweakinos from tri-lepton signal 



(at MX) 

Typical Spectrum 

Example of representative model:   CMSSM 



LHC constraints on the CMSSM 

Mostly from multijet + ET 



Roughly speaking, for the CMSSM:  

CMSSM is in trouble  

Besides,  stops are typically  not much lighter 
than squarks                                    

mq̃
>⇠ 1.8 TeV, Mg̃

>⇠ 1.4 TeV

Not only the CMSSM is fine-tuned, but even if the 
model is true, the chances to be discovered at the 
LHC are decreasing dramatically. 



Cabrera, Casas and Ruiz de Austri (2012)
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Figure 2: 2D marginalized posterior probability distribution of the CMSSM in the m1/2�m0 and
the mg̃ � mq̃ planes. Left panels show the flat priors case and right panels the logarithmic one.
Both for µ > 0. The inner and outer contours enclose respective 68% and 95% joint regions.

at least with the current techniques to search for physics beyond the SM in LHC data.

In the long-term future the probability is substantially higher, but still the chances of not

discovering it are larger. To put this in optimistic/wishful-thinking terms, since mh ' 126

GeV, if one believes in the CMSSM one should not be worried about the no-detection of

SUSY at LHC up to now! But its detection in the future will be challenging too. This is

the main conclusion of the Bayesian analysis at this stage.

On the other hand, it should be kept in mind that in a Bayesian analysis one assumes

that the scenario studied (in this case the CMSSM) is the true one, and then one determines

the probability distribution in the parameter space. It does not give a direct measure of

how likely is the scenario itself, unless one compares it with an alternative scenario using

evidence-comparison techniques. We will come back to this point in the discussion of sect.

6 below. But it is already clear that the experimental results on the Higgs mass have

pushed the probability to a region which was statistically disfavored (fine-tuned) before

the discovery, which sheds shadows on the naturalness of the CMSSM. In sect. 6 we will
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ME Cabrera, J.A.C., R. Ruiz de Austri 2012 

Bayesian analysis of CMSSM 

C. Balazs, A. Buckley, D. Carter, B. Farmer and M. White 

A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski et. al.;  

S. Akula, P. Nath and G. Peim  

O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. Dolan et al.  

C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. R. de Austri et. al.,  

see also 



Certainly, the enormous universality of the CMSSM is 
not a theoretical or phenomenological requirement  

Going beyond CMSSM is very plausible


(only partially, to avoid FV processes) 



Still, there quite general LHC constraints for most 
MSSM models 

  Heavy (1st and 2nd gen.) squarks,  

Heavy gluino,  

At least one heavy stop (from mh),  

mq̃
>⇠ 1.8 TeV

Mg̃
>⇠ 1.4 TeV

mt̃
>⇠ 1 TeV

unless  At ' Amax

t

generic problems with fine-tuning for the MSSM




There are possible exceptions, if SUSY leaves in 
special corners of the parameter space, 
 
e.g. if the SUSY spectrum is “compressed”, so that 
visible particles in the events have small pT. 

There are further possiblities going beyond the 
MSSM:     NMSSM, BMSSM, etc. 

Such situation would fool the LHC to some 
extent. It is certainly possible, but it sounds 
artificial (a “trick” to save low-energy SUSY) 



In any case, we cannot just “forget” about 
the fine-tuning problem, since the main 
reason to consider Weak-Scale SUSY was 
to avoid the Hierarchy Problem (fine-
tuning of EW breaking in the SM) 



To which extent is the CMSSM (or a generic 
MSSM) fine-tuned? 

Is there any MSSM scenario with little fine-tuning? 



To which extent is the CMSSM (or a generic 
MSSM) fine-tuned? 

Is there any MSSM scenario with little fine-tuning? 

Natural SUSY ⌘ MSSM as natural (non-fine-tuned)  
as possible 

Since fine-tuning seems to be the main 
problem with SUSY, a reasonable guide 
to explore SUSY is to look for scenarios 
as little fine-tuned as possible 



These questions require a careful analysis 
of the fine-tuning issue, admittedly an 
slippery question 



Studies of fine-tuning in SUSY have been done since 
long ago 
 
Natural SUSY is not really a new idea! 

J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner '86; R. Barbieri and 
G. Giudice '88, de Carlos and J.A.C. '92, G. Kane, C. Kolda, L. Roszkowski 
and J. Wells '94, G. W. Anderson and D. J. Castano '95; J. L. Feng, K. T. 
Matchev and T. Moroi '00; J. A. C., , J. R. Espinosa and I. Hidalgo '04, ... 
 

The idea was re-launched by Papucci, Ruderman & Weiler ‘11 
and it has motivated a lot of work in recent times 
J. E. Younkin and S. P. Martin '12; Arbey et al. ’12; S. Fichet '12; E. Hardy '13; 
K. Kowalska and E. M. Sessolo '13; C. Han, K. -i. Hikasa, L. Wu, J. M. Yang 
and Y. Zhang '13; E. Dudas, G. von Gersdorff, S. Pokorski and R. Ziegler '13; 
J. Fan and M. Reece '14;  T. Gherghetta, B. von Harling, A. D. Medina and M. 
A. Schmidt '14; K. Kowalska, L. Roszkowski, E. M. Sessolo and S. Trojanowski 
'14; J. L. Feng '14; H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata '14; 
S. P. Martin '14; Baer, Barger, Mickelson, Padeffe-Kirkland '14, ... 



The “standard” Natural SUSY scenario 

In the effective 
SM theory 

VSM = m2|HSM|2 + �|HSM|4

Papucci, Ruderman & 
Weiler ‘11 

 

m2 ' |µ|2 +m2
Hu

=
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At loop level there are additional constraints. The Higgs potential in a SUSY theory is

corrected by both gauge and Yukawa interactions, the largest contribution coming from the

top-stop loop. In extensions of the MSSM there can be additional corrections, e.g. coming

from Higgs singlet interactions in the NMSSM, which can be important for large values of

the couplings. The radiative corrections to m2
Hu

proportional to the top Yukawa coupling

are given by,
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at one loop in the Leading Logarithmic (LL) approximation (which is su�cient for the

current discussion), see e.g. [49]. Here ⇤ denotes the scale at which SUSY breaking e↵ects

are mediated to the Supersymmetric SM. Since the soft parameters m2
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and At control

the stop spectrum, as it is well-known, the requirement of a natural Higgs potential sets an

upper bound on the stop masses. In particular one has
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where xt = At/
q

m2
t̃1

+ m2
t̃2
. Eq. 6 imposes a bound on the heaviest stop mass. Moreover,

for a fixed Higgs boson mass, a hierarchical stop spectrum induced by a large o↵-diagonal

term At tend to worsen the fine-tuning due to the direct presence of At in the r.h.s. of eq. 5.

All the other radiative contributions to the Higgs potential from the other SM particles

pose much weaker bounds on the supersymmetric spectrum. The only exception is the

gluino, which induces a large correction to the top squark masses at 1-loop and therefore

feeds into the Higgs potential at two loops. One finds, in the LL approximation,
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where M3 is the gluino mass and we have neglected the mixed AtM3 contributions that can

be relevant for large A-terms. From the previous equation, the gluino mass is bounded from

above by naturalness to satisfy,
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In the case of Dirac gauginos [50] there is only one power of the logarithm4 in Eq. 7, amelio-

4 The other logarithm is traded for a logarithm of the ratio of soft masses. We assume that the new log is

O(1), but in principle it can be tuned to provide further suppression.
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1-loop LL 
corrections 



  “popular” predictions of Natural SUSY 

  stops should be  light (< 1 TeV) 

gluino not too heavy (< 2 TeV) 

very light Higgsinos (< 500 GeV) 

(for               , i.e. ~10% fine-tuning) 

  Demanding 
�m2

m2
<⇠ �, (� ⇠ 10)

� = 10



However the “standard” arguments are too simplistic 

1-loop LL is not accurate enough 

physical squark, gluino and Higgsino masses 
are not initial parameters 

one should evaluate the required 
cancellation in terms of the initial parameters  

there is not a one-to-one correspondence 
between initial parameters and physical 
masses  



MX . This is a perfectly reasonable assumption that takes place in well-motivated theoretical
scenarios, such as mSUGRA, dilaton-dominated SUSY breaking or gauge-mediation. Then one has
to evaluate the impact of the initial parameters on m2

Hu
, and see whether or not the requirement of

no-fine-tuning implies necessarily light stops. A most relevant analytic study concerning this issue
is the work by Feng et al., when they found the focus point region of the CMSSM [15]. In the
MSSM, the (1-loop) RG variation of a shift in the initial values of m2
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where t ⌘ lnQ, with Q the MS renormalization-scale, and yt is the top Yukawa coupling. Con-
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0
i

' 1/3 occurs precisely for the integration between MX

and the electroweak scale, provided tan� is large enough. Thus the value of m2
Hu

depends very
little (in the CMSSM) on the initial scalar mass. However the dependence of the stop masses with
m0 is given by CHECK THESE NUMBERS

�m2
tL ⇠ 0.7�m0, �m2

tR ⇠ 0.3�m0 (2.10)

Therefore, if the stops are heavy because m0 is large, this does not imply fine-tuning. This is a clear
counter-example on the need of having light stops to ensure naturalness.

From the previous discussion it turns out that the most rigorous way to analyze the fine-
tuning is to determine the full dependence of the electroweak scale (and other potentially fine-tuned
quantities, see below) on the initial parameters, and then derive the regions of constant fine-tuning
in the parameter space. These regions can be (non-trivially) translated into regions of constant
fine-tuning in the space of possible physical spectra. This goal is enormously simplified if one
determines in the first place the analytical dependence of low-energy quantities on the high-energy
initial parameters, a task which will be carefully addressed in subsect. 3.1.

2.3 Fine-tunings left aside

In a supersymmetric scenario of the Natural SUSY type there are two implicit potential fine-tunings
that have to be taken into account to evaluate the global degree of fine-tuning. They stem from the
need of having a physical Higgs mass consistent with mexp

h ' 126 GeV and from the requirement
of rather large tan�. Let us comment on them in order.

Fine-tuning to get mexp

h ' 126 GeV

As is well known the tree-level Higgs mass in the MSSM is given by (m2
h)tree�level = M2

Z cos2 2�, so
radiative corrections are needed in order to reconcile it with the experimental value. A simplified
expression of such corrections [16] [more refs ??? ], useful for the sake of the discussion, is
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tuning is to determine the full dependence of the electroweak scale (and other potentially fine-tuned
quantities, see below) on the initial parameters, and then derive the regions of constant fine-tuning
in the parameter space. These regions can be (non-trivially) translated into regions of constant
fine-tuning in the space of possible physical spectra. This goal is enormously simplified if one
determines in the first place the analytical dependence of low-energy quantities on the high-energy
initial parameters, a task which will be carefully addressed in subsect. 3.1.

2.3 Fine-tunings left aside

In a supersymmetric scenario of the Natural SUSY type there are two implicit potential fine-tunings
that have to be taken into account to evaluate the global degree of fine-tuning. They stem from the
need of having a physical Higgs mass consistent with mexp

h ' 126 GeV and from the requirement
of rather large tan�. Let us comment on them in order.

Fine-tuning to get mexp

h ' 126 GeV

As is well known the tree-level Higgs mass in the MSSM is given by (m2
h)tree�level = M2

Z cos2 2�, so
radiative corrections are needed in order to reconcile it with the experimental value. A simplified
expression of such corrections [16] [more refs ??? ], useful for the sake of the discussion, is

�m2
h =

3GFp
2⇡2

m4
t

 

log

 

m2
t̃

m2
t

!

+
X2

t

m2
t̃

 

1� X2
t

12m2
t̃

!!

(2.11)
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E.g. if the scalar masses are universal at H.E. 
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If the stops are heavy because m0 is 
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This is a clear counter-example to 
Natural SUSY requiring light stops 
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noticing that 
  

there are other potential fine-tunings, 
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Figure 8. Contours of constant Higgs boson mass (black, contours formh = 120, 123, 125, 127 GeV)
and fine tuning (red), eq. (3.14), in theM3-At plane. From left to right, HE = 2·1016, 1010, 104 GeV.
The unphysical region with tachyonic stops is shaded in gray.

From eq.(2.12), we can write, for tan� � 1,

tan� ' m2
Hd

+m2
Hu

+ 2µ2

Bµ
=

m2
A

Bµ
(6.5)

where mA is the mass of the pseudoscalar Higgs and all the quantities are understood at the low-
energy (LE) scale. As discussed in subsect. 3.1, the fine-tuning to get large tan� can be reasonable
quantified using the BG criterion. Namely, for any any initial parameter of the theory, ✓, we define
the associated fine-tuning, �(tan �)

✓

�(tan �)
✓ =

✓

tan�

d tan�

d✓
=

✓

m2
A



dm2
A

d✓
� tan�

d(Bµ)

d✓

�

(6.6)

where we have used eq.(6.5). For large tan�, �(tan �)
✓ is normally dominated by the second term in

the r.h.s. of (6.6)

�

�

�

�(tan �)
✓

�

�

�

' tan�

�

�

�

�

✓

m2
A

d(Bµ)

d✓

�

�

�

�

(6.7)

The next step is to express Bµ in terms of the initial (HE-scale) parameters. E.g. assuming
MHE = MX , MLE = 1TeV , from Table 7

Bµ|low ' Bµ+ 0.46M3µ� 0.35M2µ� 0.34Atµ� 0.03M1µ+ · · · (6.8)

where the quantities on the r.h.s. are at the HE scale. The corresponding fine-tuning �s for the
relevant parameters12 B,M3,M2, At read

�

�

�

�(tan �)
{B,M3,M2,At}

�

�

�

' tan�

�

�

�

�

µ

m2
A

{B, 0.46M3, 0.35M2, 0.34At}
�

�

�

�

(6.9)

where we recall that r.h.s. parameters at the HE-scale. Going to particular models, one clearly
expects some of the µ{B, M3, M2, At} quantities to beof the order of m2

A. This meand that
a certain fine-tuning, �(tan �) >⇠ 5 � 10 occurs if tan� >⇠ 15 � 30. Since this fine-tuning has
a di↵erent nature from the E.W. one (discussed in detail in the previous sections), and given
the probabilistic meaning of the fine-tuning parameters, this implies that the two �s have to be
multiplied, � = �(EW )�(tan �)

✓ , which generically results in an unbearable fine-tuning (¿ 500-1000).

12Note that �(tan �)
µ ' 1.
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with mt̃ the average stop mass and Xt = At�µ cot�. The Xt-contribution arises from the threshold
corrections to the quartic coupling at the stop scale. This threshold correction is maximized for
Xt =

p
6mt̃. Notice that if the threshold correction were not present one would need stops of about

3 TeV (check this) for large tan� (and much larger as tan� decreases), completely inconsistent
with the requirements of Natural SUSY in its original formulation. However, taking Xt close to
the ”maximal” value, Xt '

p
6mt̃, it is possible to obtain the correct Higgs mass with rather light

stops, even in the 500� 700 GeV range; a fact frequently invoked in the literature to reconcile the
Higgs mass with Natural SUSY.

The problem is that requiring Xt '
p
6mt̃ amounts also to a certain fine-tuning if one needs to

lie close to such value with great precision. The precision (and thus the fine-tuning) required depends
in turn on the values of tan� and the stop masses. Therefore, when analyzing the naturalness issue
one should take into account, beside the fine-tuning associated to the electroweak breaking, the one
associated to the precise value required for Xt. In subsect. 6.1 below we discuss the size of this
fine-tuning in further detail.

Fine-tuning to get large tan�

The value of tan� ⌘ hHui/hHdi is given, at tree level, by

2

tan�
' sin 2� =

2Bµ

m2
H1

+m2
H2

+ 2µ2
=

2Bµ

m2
A

(2.12)

where mA is the mass of the pseudoscalar Higgs state; all the quantities above are understood
to be evaluated at the low-scale. Clearly, in order to get large tan� one needs small Bµ at low-
energy. But even starting with vanishing B at MX one gets a large radiative correction due to
the RG running. Consequently, very large values of tan� are very fine-tuned2, as they require a
cancellation between the initial value of B and the radiative contributions. On the other hand,
moderately large values may be non-fined-tuned, depending on the size of the RG contribution to
Bµ and the value of mA. Hence, a complete analysis of the MSSM naturalness has to address this
potential source of fine-tuning.

3 The electroweak fine-tuning of the MSSM

In the MSSM, the vaccum expectation value of the Higgs, v2/2 = |hHui|2 + |hHdi|2, is given, at
tree-level, by the minimization relation

� 1

8
(g2 + g02)v2 = �M2

Z

2
= µ2 � m2

H1
�m2

H2
tan2 �

tan2 � � 1
(3.1)

As it is well known, the value of tan� must be rather large, so that the tree-level Higgs mass,
(m2

h)tree�level = M2
Z cos2 2�, is as large as possible, ' M2

Z . Otherwise, the radiative corrections
needed to reconcile the Higgs mass with its experimental value, would imply gigantic stop masses
and thus an extremely fine-tuned scenario (see subsect. 2.3 above). Hence, for Natural SUSY the
limit of large tan� is the relevant one. Then, the relation (3.1) gets simplified

� 1

8
(g2 + g02)v2 = �M2

Z

2
= µ2 +m2

H2
(3.2)

The two terms of r.h.s are of opposite sign and typically larger than the l.h.s., thus the potential
fine-tuning associated to the electroweak breaking.

2The existence of this fine-tuning was first observed in ref. [? ] and has been discussed, from the

Bayesian point of view in ref. [? ].
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At tree-level and large  tan�

1-loop corrections: 

�(QEW) ' 2m2
h

v2
�(Q

SUSY threshold

) =
1

8
(g2 + g02) =

2M2

Z

v2

It is well-known that the radiative corrections to the Higgs potential reduce the fine-tuning [].
This e↵ect can be honestly included taking into account that the e↵ective quartic coupling of the
SM-like Higgs runs from its initial value at the SUSY threshold3, �(Qthreshold) = 1

8 (g
2 + g02),

until its final value at the electroweak scale, �(QEW ). The e↵ect of this running is equiva-
lent to include the radiative contributions to the Higgs mass, which increase the tree-level mass,
(m2

h)tree�level = 2�(Qthreshold)v2 = M2
Z , up to the experimental one, m2

h = 2�(QEW )v2. Con-
sequently, the replacement of �tree�level by the radiatively-corrected one is equivalent to replace
M2

Z ! m2
h in eq.(3.2) above, i.e.

� m2
h

2
= µ2 +m2

H2
(3.3)

which is the expression from which we will evaluate the electroweak fine-tuning in the MSSM. As
mentioned above, the radiative corrections slightly alleviate this fine-tuning, since mh > MZ .

3.1 The measure of the fine-tuning

It is a common practice to quantify the amount of fine-tuning using the Barbieri-Giudice (BG)
parametrization [], which in our case reads

@m2
h

@✓i
= �✓i

m2
h

✓
, � ⌘ Max |�✓i | (3.4)

where ✓✓i is an independent parameter that defines the model under consideration and �✓i is the
fine-tuning parameter asociated to it. Typically ✓i are the initial (high-energy) values of the soft
terms and the µ parameter. However, for specific scenarios of SUSY breaking and transmission to
the observable sector, the initial parameters might be particular theoretical parameters that define
the scenario and thus determine the soft terms, e.g. a Goldstino angle in scenarios of moduli-
dominated SUSY breaking. We will comment further on this issue in subsect. 3.3.2.

It is worth to briefly comment on the statistical meaning of �✓i . In ref.[] it was argued that
(the maximum of all) |�✓i | represents the inverse of the probability of a cancellation among terms
of a given size to obtain a result which is |�✓i | times smaller. This can be intuitively seen as follows.
Expanding m2

h(✓i) around a point in parameter space that gives the desired cancellation, say {✓0i },
up to the linear term in the parameters, one finds that only a small neighborhood �✓i ⇠ ✓0i /�✓i

around this point gives a value of m2
h smaller or equal to the experimental value [17]. Hence, if one

assumes that ✓i could reasonably have taken any value of the order of magnitude of ✓0i , then only for
a small fraction

�

��✓i/✓
0
i

�

� ⇠ ��1
✓i

of this region one gets m2
h
<⇠ (mexp

h )2, thus the rough probabilistic
meaning of �✓i . Note that the value of � can be interpreted as the inverse of the p-value to get
the correct value of m2

h. If ✓ is the parameter that gives the maximum � parameter, then

p�value '
�

�

�

�

�✓

✓0

�

�

�

�

⌘ ��1 (3.5)

It is important to note that for the previous arguments it was implicitely assumed that the possible
values of a ✓i�parameter are distributed, with approximately flat probability, in the [0, ✓i] range.
In a Bayesian language, the prior on the parameters was assumed to be flat, within the mentioned
range. If the assumptions are di↵erent (e.g. because the allowed ranges of some parameters are
restricted by theoretical consistency or experimental data, or because the priors are not flat),

3A convenient choice for the SUSY-threshold is the average stop mass, since the 1-loop correction to

the Higgs potential is dominated by the stop contribution. Hence, choosing Q
threshold

' m
˜t, the 1-loop

correction is minimized and the Higgs potential is well approximated by the tree-level form.
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How to measure of the EW fine-tuning


Most used and popular criterion:  

Ellis, Enqvist, Nanopoulos & Zwirner’ 86 
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Ciafaloni & Strumia’ 97 
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These issues become more clear using a 
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Bayesian approach




Approximate the likelihood as 

Treat         as another exp. data   

then the probabilistic interpretation has to be consistently modified. These issues become more
transparently expressed using a Bayesian approach.

In a Bayesian analysis, the goal is to generate a map of the relative probability of the di↵erent
regions of the parameter space of the model under consideration (MSSM in our case), using all
the available (theoretical and experimental) information. This is the so-called posterior probability,
p(✓i|data), where ‘data’ stands for all the experimental information and ✓i represent the various
parameters of the model. The posterior is given by the Bayes’ Theorem

p(✓i|data) = p(data|✓i) p(✓i) 1

p(data)
, (3.6)

where p(data|✓i) is the likelihood (sometimes denoted by L), i.e. the probability density of observing
the given data if nature has chosen to be at the {✓i} point of the parameter space (this is the quantity
used in frequentist approaches); p(✓i) is the prior, i.e. the “theoretical” probability density that we
assign a priori to the point in the parameter space; and, finally, p(data) is a normalization factor
which plays no role unless one wishes to compare di↵erent classes of models.

Now, for the sake of concreteness, let us focus on a particular parameter defining the MSSM,
namely the µ�parameter4 . Now, instead of solving µ in terms of MZ and the other supersymmetric
parameters using the minimization conditions (as usual), one can (actually should) treat M exp

Z ,
i.e. the E.W. scale, as experimental data on a similar footing with the others, entering the total
likelihood, L. Approximating the MZ likelihood as a Dirac delta,

p(data|M1,M2, · · · , µ) ' �(MZ �M exp
Z ) Lrest , (3.7)

where Lrest is the likelihood associated to all the physical observables, except MZ , one can marginal-
ize the µ�parameter

p(M1,M2, · · · | data) =
Z

dµ p(M1,M2, · · · , µ|data)

/ Lrest

�

�

�

�

dµ

dMZ

�

�

�

�

µZ

p(M1,M2, · · · , µZ) , (3.8)

where we have used eqs. (3.6, 3.7). Here µZ is the value of µ that reproduces M exp
Z for the given

values of {M1,M2, · · · }, and p(M1,M2, · · · , µ) is the prior in the initial parameters (still undefined).
Note that the above Jacobian factor in eq.(3.8) can be written as5

�

�

�

�

dµ

dMZ

�

�

�

�

µZ

/
�

�

�

�

µ

�µ

�

�

�

�

µZ

, (3.9)

where the constant factors are aborbed in the global normalization factor of eq.(3.6). The important
point is that the relative probabilty density of a point in the MSSM parameter space is multiplied by
��1

µ , which is consistent with the above probabilitic interpretation of �. Actually, the equivalence
is exact if one assumes that the prior in the parameters is factorizable, i.e. p(M1,M2, · · · , µ) =
p(M1)p(M2) · · · p(µ), and p(µZ) / 1/µZ , so that the numerator in (3.9) is cancelled. This can
happen in two di↵erent ways. First, if µ has a flat prior, but its range is ⇠ [0, µZ ], then the
normalization of the µ�prior goes like / 1/µZ . This is exactly the kind of assumption made in

4Of course, one can take here another parameter and the argument goes the same (actually, in some

theoretical scenarios µ may be not an initial parameter). On the other hand, µ is a convenient choice since

it is the parameter usually solved in terms of MZ in phenomenological analyses.
5Notice that the dependence of MZ on µ is through eq.(3.3), which determines the Higgs VEV. Thus

dM2
Z

dµ
/ dm2

h
dµ

.
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Use the delta to marginalize any parameter, e.g. µ

����
µ

�µ

����
µ=µZ

consistent with the interpretation 
of             as probability ��1

Cabrera, JAC & 
Ruiz de Austri ‘08 



The analogy is complete if   

p(M1,M2, · · · | data) / p(µZ)

����
µ

�µ

����
µ=µZ

prior at  µ = µZ

p(µZ) ⇠
1

µZ

  Range of                             and   

or    

µ ⇠ [0, µZ ] p(µ) ⇠ flat

p(µ) ⇠ logarithmic, i.e. p(µ) / 1/µ

/ ��1
µ

This occurs if 

The modification of F-T criterion for other cases is 
straightforward 



In summary, the “standard fine-tuning 
measure” is reasonable in many cases 

The Bayes analysis tells the implicit 
assumptions for its validity 

If a particular theoretical model does not fulfill 
them, the “standard fine-tuning criterion” is 
inappropriate and should be consistently 
modified 



“Program” to evaluate naturalness 
bounds on the SUSY spectrum : 

Express           in terms of the initial  
parameters,      , given at a certain scale,     

Evaluate 

Translate limits on        into limits on the 
SUSY spectrum 

m2
h
✓i MHE

✓i3.-


2.-


1.-


limits on ✓i

�✓i =
✓i
m2

h

@m2

h

@✓i
 �max



Express           in terms of the initial  
parameters,    , , given at a certain scale,     

m2
h
✓i MHE

1.-


For                          fixed, consistency requires 

m2
Hu

(LE) = cM3M
2
3 + cM2M

2
2 + cM1M

2
1 + cAt

A2
t + cAtM3AtM3 + cM2M

2
2 + · · ·

+cM3M2M3M2 + · · ·+ cmHu
m2

Hu
+ cmQ̃3

m2
Q̃3

+ cmt̃R
m2

t̃R
+ · · ·

MHE , MLE



E.g. for  MHE = MX , MLE = 1 TeV

m2
Hu

(LE) = �1.603M2
3 + 0.285AtM3 + 0.203M2

2 � 0.109A2
t � 0.134M3M2

+0.068AtM2 + 0.631m2
Hu

� 0.367m2
Q̃3

� 0.290m2
t̃R

+ · · ·

µ(LE) = 1.002 µ

Express           in terms of the initial  
parameters,    , , given at a certain scale,     

m2
h
✓i MHE

1.-




Fits of this kind are quite common in the literature, 
but we have obtained it in a very careful way: 

  2-loop RGEs in two steps (important for              ): 

MZ MLE MHE

↵i, yt

                           free parameters MLE , MHE

ci(MLE) ' ci(1 TeV) + bi ln
MLE

1 TeV



m2
Hu

(LE) m2
Hd

(LE)
HE c b c b

M2
3 �1.603 0.381 �0.055 0.016

m2
Hu

0.631 0.019 0.025 �0.001
m2

Q3
�0.367 0.018 0.016 0.000

m2
U3

�0.290 0.017 �0.051 0.001
AtM3 0.285 �0.024 �0.002 0.001
M2

2 0.203 0.006 0.410 �0.016
M2M3 �0.134 0.021 �0.016 0.003
A2

t �0.109 �0.006 – –
AtM2 0.068 0.000 �0.002 0.000
m2

U1,2
0.054 �0.001 �0.052 0.001

m2
Hd

0.026 �0.001 0.961 0.001
m2

E1,2
�0.026 0.001 0.025 �0.001

m2
E3

�0.026 0.001 0.023 �0.001
m2

L1,2
0.025 �0.001 �0.027 0.001

m2
L3

0.025 �0.001 �0.029 0.001
m2

Q1,2
�0.025 0.000 0.024 0.000

m2
D1,2

�0.025 0.000 0.026 �0.001

m2
D3

�0.024 0.000 0.017 0.000
M1M3 �0.020 0.002 �0.001 0.000
AtM1 0.012 0.000 – –
M2

1 0.006 0.002 0.033 0.000
M1M2 �0.005 0.000 �0.001 0.000
AbM3 �0.002 0.000 0.022 �0.005
A2

b 0.001 0.000 �0.010 0.001
AbM2 – – 0.005 �0.001
A2

⌧ – – �0.003 0.000
A⌧M2 – – 0.002 0.000
AbAt – – 0.001 0.000
A⌧M1 – – 0.001 0.000

Table 1. c(1TeV) and b coe�cients for the Higgs boson squared soft masses, where ‘–’ stands for
HE parameters with c(1TeV) < 0.001.

A common practice is to consider the (HE) soft terms and the µ�term as the independent
parameters, say ⇥↵ =

�

µ,M3,M2,M1, At,m
2
Hu

,m2
Hd

,m2
U3
,m2

Q3
, · · · , which equivales to the so-

called ”unconstrained MSSM”. Then one easily computes �⇥↵

�⇥↵ =
⇥↵

m2
h

@m2
h

@⇥↵
= �2

⇥↵

m2
h

@m2
Hu

@⇥↵
(3.14)

The above identification @m2
h

@⇥↵
' �2

@m2
Hu

@⇥↵
comes from eq.(3.3) and thus is valid for all the parameters

except µ, for which we simply have @m2
h

@µ = �2µ @µ(LE)
@µ ' �2µ. Note that for any other other

theoretical scenario, the �s associated to the genuine initial parameters, say ✓i, can be written in
terms of �⇥↵ using the chain-rule

�✓i ⌘
@ lnm2

h

@ ln ✓i
=
X

↵

@ lnm2
h

@ ln⇥↵

@ ln⇥↵

@ ln ✓i
=
X

↵

�⇥↵

@ ln⇥↵

@ ln ✓i
(3.15)
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MHE = MX



m2
Hu

(LE=1TeV)
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Figure 4. m2
Hu

(MLE) coefficients dependence on the HE scale, for MLE = 1TeV and tanβ = 10 .
For further details, see eqs. (A.1–A.3).
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MHE(GeV)

ci

cM2
3



  We have done this, not only for          , but for all quantities m2
Hu

m2
Q̃3

, m2
ũ3
, M3, M2, At, · · ·

This will be necessary later to translate F-T bounds on 
the HE-parameters into constraints on the physical 
spectrum 



m2
Q3

(LE) m2
U3
(LE) m2

D3
(LE)

HE c b c b c b

M2
3 3.191 �0.563 2.754 �0.462 3.678 �0.672

m2
Q3

0.871 0.007 �0.192 0.013 �0.029 0.002

M2
2 0.333 �0.008 �0.151 0.017 �0.010 0.002

m2
Hu

�0.118 0.006 �0.189 0.011 �0.015 0.000
m2

U3
�0.095 0.005 0.706 0.011 0.032 0.000

M2M3 �0.084 0.015 �0.100 0.018 �0.026 0.007
AtM3 0.072 �0.003 0.159 �0.010 �0.010 0.003
A2

t �0.034 �0.002 �0.070 �0.004 0.001 0.000
AtM2 0.020 0.000 0.047 0.000 �0.001 0.000
m2

Q1,2
�0.017 0.001 0.030 0.000 �0.025 0.002

m2
D3

�0.015 0.001 0.032 0.000 0.973 0.001
m2

U1,2
0.014 0.000 �0.073 0.002 0.031 0.000

m2
D1,2

�0.012 0.001 0.032 0.000 �0.021 0.001

M1M3 �0.009 0.001 �0.018 0.002 �0.004 0.001
m2

E1,2,3
�0.009 0.000 0.034 �0.001 �0.017 0.000

m2
L1,2,3

0.008 0.000 �0.034 0.001 0.017 0.000

AbM3 0.006 �0.001 �0.001 0.000 0.014 �0.003
M2

1 �0.006 0.001 0.041 0.001 0.014 0.000
m2

Hd
0.005 0.000 �0.034 0.001 0.011 0.000

AtM1 0.004 0.000 0.007 0.000 – –
A2

b �0.003 0.000 – – �0.006 0.001
M1M2 �0.002 0.000 �0.003 0.000 – –
AbM2 0.002 0.000 – – 0.004 �0.001
AbAt 0.001 0.000 – – 0.001 0.000

Table 2. c(1TeV) and b coe�cients for the squared soft masses of the third family squarks, where
‘–’ stands for HE parameters with c(1TeV) < 0.001.

Finally, in order to obtain fine-tuning bounds on the parameters of the model we demand |�✓i | <⇠
�max, where �max is the maximum amount of fine-tuning one is willing to accept. E.g.

�max = 100 (3.16)

represents a fine-tuning of ⇠ 1%.

3.3.1 The unconstrained MSSM

Let us explore further the size and structure of the fine-tuning, and the corresponding bounds on
the initial parameters, in the unconstrained MSSM, i.e. taking as initial parameters the HE values
of the soft terms and the µ-term: ⇥↵ =

�

µ,M3,M2,M1, At,m
2
Hu

,m2
Hd

,m2
U3
,m2

Q3
, · · · . This is

interesting by itself, and, as discussed above, it can be considered the first step to compute the
fine-tuning in any theoretical scenario. For any of those parameters we demand

|�⇥↵
| <⇠ �max (3.17)

where �⇥↵ are given by eq.(3.14). Now, for the parameters that appear just once in eqs.(3.12, 3.13)
the corresponding naturalness bound (3.17) is trivial and has the form of an upper limit on the size
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E.g. 



Evaluate 2.-
 �✓i =
✓i
m2

h

@m2

h

@✓i
 �max

m2
Hu

��
LE

= f(M3,M2, · · · ,m2
Q̃3

,m2
ũ3
, · · · ,m2

Hu
, · · · , At, · · · )HE

parameters of 
“unconstrained MSSM” ⇥↵ ⌘



Evaluate 2.-
 �✓i =
✓i
m2

h

@m2

h

@✓i
 �max

m2
Hu

��
LE

= f(M3,M2, · · · ,m2
Q̃3

,m2
ũ3
, · · · ,m2

Hu
, · · · , At, · · · )HE

parameters of 
“unconstrained MSSM” ⇥↵ ⌘

  “Unconstrained MSSM”: 

  Generic scenario defined by      : 

�⇥↵ =
⇥↵

m2
h

@m2
h

@⇥↵

�✓i =
✓i
m2

h

@m2
h

@✓i
=

✓i
m2

h

X

↵

@m2
h

@⇥↵

@⇥↵

@✓i

✓i



The complete knowledge of the c-coefficients 
allows to evaluate the fine-tuning for any 
theoretical model, defined at any HE scale, in 
a very easy way. 



Prototype model:  Unconstrained MSSM 

Dimension-2 parameters (                                      ) do 
not get mixed in the        

m2
Q̃3

, m2
ũ3
, m2

Hu
· · ·

�s

e.g. ���mũ3

�� =
����2cmũ3

m2

ũ3

m2

h

����  �(max)

m2

˜tR
<⇠

�����
1

2cmt̃R

������
max m2

h ' 1.72 �max m2

h



Prototype model:  Unconstrained MSSM 

M3, M2, At, · · ·Dimension-1 parameters (                              ) do mix 

e.g. |�M3 | =
2

m2

h

��2cM3M
2

3

+ cM3M2M3

M
2

+ cM3AtM3

At

��  �(max)

|�M2 | =
2

m2

h

��2cM2M
2

2

+ cM3M2M3

M
2

+ cM2AtM2

At

��  �(max)

|�At | =
2

m2

h

��2cAtA
2

t + cM3AtM3

At + cM2AtM2

At

��  �(max)

m2
L3
(LE) m2

E3
(LE) m2

L1
(LE) m2

E1
(LE)

HE c b c b c b c b

m2
L3

0.971 0.001 0.045 �0.001 �0.027 0.001 0.051 �0.001
M2

2 0.416 �0.017 �0.004 0.000 0.418 �0.018 – –
m2

U1,2
�0.052 0.001 0.104 �0.002 �0.052 0.001 0.104 �0.002

m2
U3

�0.051 0.001 0.103 �0.002 �0.051 0.001 0.103 �0.002
M2

1 0.034 0.000 0.136 �0.002 0.034 0.000 0.137 �0.002
m2

Hd
�0.029 0.001 0.045 �0.001 �0.026 0.001 0.051 �0.001

m2
L1

�0.027 0.001 0.051 �0.001 0.973 0.001 0.051 �0.001
m2

L2
�0.027 0.001 0.051 �0.001 �0.027 0.001 0.051 �0.001

m2
D1,2,3

0.026 �0.001 �0.052 0.001 0.026 �0.001 �0.052 0.001

m2
E1

0.025 �0.001 �0.052 0.001 0.025 �0.001 0.948 0.001
m2

E2
0.025 �0.001 �0.052 0.001 0.025 �0.001 �0.052 0.001

m2
Hu

0.025 0.000 �0.051 0.001 0.025 0.000 �0.051 0.001
m2

Q3
0.024 0.000 �0.052 0.001 0.024 0.000 �0.052 0.001

m2
Q1,2

0.024 0.000 �0.053 0.001 0.024 0.000 �0.053 0.001

m2
E3

0.023 �0.001 0.942 0.001 0.025 �0.001 �0.052 0.001
M2M3 �0.009 0.001 0.001 0.000 �0.009 0.001 0.001 0.000
M2

3 �0.007 0.001 �0.001 0.000 �0.007 0.001 �0.001 0.000
A2

⌧ �0.003 0.000 �0.006 0.000 – – – –
A⌧M2 0.002 0.000 0.003 0.000 – – – –
AtM2 �0.001 0.000 – – �0.001 0.000 – –
M1M2 �0.001 0.000 �0.001 0.000 �0.001 0.000 – –
A⌧M1 0.001 0.000 0.001 0.000 – – – –
M1M3 – – �0.002 0.000 – – �0.002 0.000
AtM3 – – �0.001 0.000 – – �0.001 0.000

Table 4. c(1TeV) and b coe�cients for the squared soft masses of the third and first family
sleptons, where ‘–’ stands for HE parameters with c(1TeV) < 0.001. Second generation sleptons
is degenerated with the first family.

M3(LE) M2(LE) M1(LE)
HE c b c b c b

M3 2.224 �0.160 �0.024 0.004 �0.009 0.001
M2 �0.009 0.001 0.806 0.011 �0.001 0.000
At �0.003 0.000 �0.002 0.000 �0.001 0.000
M1 �0.001 0.000 – – 0.431 0.012

Table 5. c(1TeV) and b coe�cients for the gaugino masses, where ‘–’ stands for HE parameters
with c(1TeV) < 0.001.

read (Perhaps better in a symmetric way )

�

�6.41M2
3 � 0.57AtM3 + 0.27M3M2

�

�

<⇠ �max m2
h (3.20)

�

��0.81M2
2 + 0.14AtM2 + 0.27M3M2

�

�

<⇠ �max m2
h (3.21)

�

�0.44A2
t � 0.57AtM3 + 0.14AtM2

�

�

<⇠ �max m2
h (3.22)

where again we have taken MHE = MX and MLE = 1 TeV. Other parameters, like M1, Ab, get also
mixed with them in the bounds, but their coe�cients are much smaller, so we have neglected them.
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Absolute bound: 

At(LE) Ab(LE) A⌧ (LE)
HE c b c b c b

M3 �1.334 0.102 �2.395 0.424 0.019 �0.001
At 0.279 0.007 �0.116 0.012 0.001 0.000
M2 �0.209 0.003 �0.449 0.042 �0.469 0.003
M1 �0.028 0.000 �0.032 0.002 �0.147 �0.001
Ab �0.002 0.000 1.050 �0.060 �0.010 0.000
A⌧ – – �0.003 0.000 0.990 0.015

Table 6. c(1TeV) and b coe�cients for the scalar trilinear couplings, where ‘–’ stands for HE

parameters with c(1TeV) < 0.001.

µ(LE)
HE c b

µ 1.002 0.013

Bµ(LE)
HE c b

Bµ 1.002 0.013
M3µ 0.456 �0.080
M2µ �0.354 0.004
Atµ �0.343 0.013
M1µ �0.030 �0.001
Abµ �0.009 0.001
A⌧µ �0.003 0.000

Table 7. Left, c(1TeV) and b coe�cients for the µ�parameter. Right, c(1TeV) and b coe�cients
for Bµ.

As an example, we show in fig 6 the region in the (M2,M3, At) space that fulfills the inequalities
for �max = 100. The figure is mainly a prisma. Their faces are given by the following approximate
by solution to eqs.(3.20-3.22)

Mmax
3 ' ± mh

r

�max

6.41
+

1

12.82
(0.57At � 0.27M2) (3.23)

Mmax
2 ' ± mh

r

�max

0.81
+

1

1.62
(�0.27M3 � 0.14At) (3.24)

Amax
t ' ± mh

r

�max

0.44
+

1

0.87
(0.57M3 � 0.14M2) (3.25)

where the superscript “max” denotes the, positive and negative, values of the parameter that sat-
urate inequalities (3.20-3.22). Thus eqs.(3.23-3.25) represent the naturalness limits to M3,M2, At.
Notice that the prisma is not dramatically di↵erent from the rectangular parallelepipe we would
have obtained without including the mixed terms in (3.20), (3.23). However, the latter stretch the
naturalness upper bound on |M3| in a non-negligible way. The generic expression for the bounds
derived for dimension-1 parameters (Mi = M3,M2,M1, At, Ab...) is given by:

|Mi| < mh

2

s

�max

|cMi
|

0

@1 +
X

i 6=j

1

4

|cMiMj |
p|cMi

cMi
|

1

A (3.26)

The numerical modification of eqs.(3.20-3.25) for di↵erent values of MLE , MHE can be trivially
obtained from Table 1 and Figure 1
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Bounds on the initial (HE) parameters in 
the Unconstrained MSSM 

5 Results for the unconstrained MSSM

The unconstrained MSSM, where the soft-terms and µ−term at the HE scale are taken as the
independent parameters, has been already considered in the previous subsections as a guide to
discuss the various naturalness bounds. However, we have so far restricted ourselves to the case
MLE = 1 TeV, MHE = MX . It is interesting to show the limits, both on the initial parameters
and on the supersymmetric spectrum, for other choices of MHE. Following the procedure explained
in subsections 4.1 and 4.3, we have computed the fine-tuning constraints for three representative
values of MHE, namely MHE = 2×1016 GeV, 1010 GeV and 104 GeV, keeping MLE = 1 TeV. Using
the plots shown in the Appendix the reader can evaluate the bounds for any other choice of MHE.

The absolute upper bounds on the most relevant HE parameters, obtained from eq.(4.10), with
the additional correction (4.11) for M3, are shown in table 1. Similarly, the corresponding bounds
on supersymmetric masses at low energy, evaluated as in subsection 4.3, are shown in table 2. All
the bounds have been obtained by setting ∆max = 100, they simply scale as

√

∆max/100.

MMHE
= 2× 1016 MMHE

= 1010 MMHE
= 104

Mmax
3 (MHE) 660 1 162 5 376

Mmax
2 (MHE) 1 646 1 750 3 500

Mmax
1 (MHE) 8 002 6 100 11 048

Amax
t (MHE) 2 504 2 227 3 094

mmax
Hu

(MHE) 1 038 1 046 913
mmax

Hd
(MHE) 6 945 14 472 9 784

µmax(MHE) 624 640 630
mmax

Q3
(MHE) 1 458 1 687 3 527

mmax
U3

(MHE) 1 640 1 828 3 710
mmax

D3
(MHE) 5 682 7 812 20 277

mmax
Q1,2

(MHE) 5 601 7 693 19 288

mmax
U1,2

(MHE) 3 818 5 254 13 975

mmax
D1,2

(MHE) 5 613 7 722 19 764

mmax
L1,2,3

(MHE) 5 557 7 664 20 278

mmax
E1,2,3

(MHE) 5 524 7 607 20 278

Table 1. Upper bounds on some of the initial (HE) soft terms and µ−term for three different
values of MHE, in the unconstrained MSSM scenario. All quantities are given in GeV units.

MMHE
= 2× 1016 MMHE

= 1010 MMHE
= 104

Mmax
g̃ 1 440 1 890 5 860

Mmax
W̃

1 303 1 550 3 435

Mmax
B̃

3 368 4 237 10 565

Mmax
H̃

626 610 620

mmax
t̃

1 650 1 973 4 140
mmax

H0 7 252 14 510 9 900

Table 2. Upper bounds on some of the physical masses for three different values of MHE, in the
unconstrained MSSM scenario. All quantities are given in GeV units.

From the previous tables we can notice some generic facts.
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�max = 100



Unfortunately, there is not a one-to-one correspondence between 
the physical masses and the soft-parameters and µ−term at high-
energy. 
The only approximate exception are the gaugino and 
Higgsino masses.  

MHE = MX , MLE = 1 TeV

The average stop mass has also an easy-to-handle form 

m2
t̃ ' 1

2
(5.94M2

3 + 0.68m2
t̃L

+ 0.62m2
t̃R

+ 0.18M2
2 � 0.31m2

Hu
· · · ) +m2

t

MHE = MX , MLE = 1 TeV

Translate limits on        into limits on the 
SUSY spectrum 

✓i3.-


Higgsino masses. Namely, from Tables 7, 9

Mg̃ ≃ M3(MLE) ≃ 2.22M3

MW̃ ≃ M2(MLE) ≃ 0.81M2

MB̃ ≃ M1(MLE) ≃ 0.43M1

MH̃ ≃ µ(MLE) ≃ 1.002µ , (4.19)

where the above numbers correspond to MLE = 1 TeV, MHE = MX . Of course, these are not yet
the physical masses (except for the gluino), since gauginos and Higgsinos get mixed in the chargino
and neutralino mass matrices. However, since we are considering upper limits on these masses, the
mixing entries in those matrices are subdominant and do not appreciably affect the bounds. On the
other hand, as discussed in subsection 4.1, the naturalness limits on (the HE values of)M3, M2 are
more involved than for other parameters, since the respective fine-tuning inequalities get mixed with
each other and with At. Using the (MLE = 1 TeV, MHE = MX) limits on M3,M2,M1, µ obtained
for the unconstrained MSSM (see sects. 4.1 and 5) one gets Mg̃

<
∼ 1440 GeV, MW̃

<
∼ 1300 GeV,

MB̃
<
∼ 3370 GeV and MH̃

<
∼ 626 GeV.

On the contrary, the physical masses of the sparticles, m2
t̃1
, m2

t̃2
, m2

Q1,2
m2

U1,2
, m2

D1,2
, m2

H± ,
etc., are non-trivial combinations of the various initial soft terms and products of them. The case of
the stops is particularly important, since it is a common assumption that Natural SUSY demands
light stops. E.g. using MLE = 1 TeV, MHE = MX , we see from table 3 that the values of m2

Q3
,

m2
U3

at LE are given by:

m2
Q3

(MLE) = 3.191M2
3 + 0.333M2

2 + 0.871m2
Q̃3

− 0.095m2
Ũ3

− 0.118m2
Hu

+ 0.072AtM3 + · · ·

m2
U3
(MLE) = 2.754M2

3 − 0.151M2
2 − 0.192m2

Q̃3
+ 0.706m2

Ũ3
− 0.189m2

Hu
+ 0.159AtM3 + · · · (4.20)

These are not yet the physical stop masses. One has to take into account the top contribution,
m2

t , and the off-diagonal entries in the stop mass matrix, ∼ mtXt where Xt = At + µ cotβ ≃ At.
Finally, one has to extract the mass eigenvalues, m2

t̃1
and m2

t̃2
. A representative, and easier to

calculate, quantity is the average stop mass,

m2
t̃ ≡

1

2
(m2

t̃1
+m2

t̃2
) =

1

2
(m2

Q3
(MLE) +m2

U3
(MLE)) +m2

t

≃ (2.972M2
3 + 0.339m2

Q3
+ 0.305m2

U3
+ 0.091M2

2 − 0.154m2
Hu

· · · ) +m2
t . (4.21)

The average stop mass is also an important quantity to evaluate the threshold correction to the
Higgs mass, and thus it plays an important role in the evaluation of the potential fine-tuning
associated to it, see eq. (2.11) and subsection 6.1. In practice, we have evaluated the upper bound
on mt̃ by setting M3, mQ3

, mU3
and M2 at their upper bounds, neglecting additional terms in the

parenthesis of eq.(4.21). This is equivalent to set m2
Hu

= At = 0, which is a perfectly available
option. In this way we get mt̃

<
∼ 1.7 TeV. Incidentally, with this choice of parameters the bounds

on mt̃1 and mt̃2 become similar (1.9 and 1.4 TeV respectively). Note that m2
Hu

(At) could be
negative (positive), increasing further the upper bound on mt̃. On the other hand, this additional
stretching of the bound is not dramatic and requires a more artificial conspiracy between several
soft terms, so we have ignored this possibility.

From these results it is clear that for the unconstrained MSSM, with MHE = MX , the natu-
ralness bound on the gluino mass is much more important for LHC detection than the one on the
stop masses . Next, we show the numerical values of the various naturalness bounds in a systematic
way.

– 15 –



Bounds on the physical masses in the 
Unconstrained MSSM 

5 Results for the unconstrained MSSM

The unconstrained MSSM, where the soft-terms and µ−term at the HE scale are taken as the
independent parameters, has been already considered in the previous subsections as a guide to
discuss the various naturalness bounds. However, we have so far restricted ourselves to the case
MLE = 1 TeV, MHE = MX . It is interesting to show the limits, both on the initial parameters
and on the supersymmetric spectrum, for other choices of MHE. Following the procedure explained
in subsections 4.1 and 4.3, we have computed the fine-tuning constraints for three representative
values of MHE, namely MHE = 2×1016 GeV, 1010 GeV and 104 GeV, keeping MLE = 1 TeV. Using
the plots shown in the Appendix the reader can evaluate the bounds for any other choice of MHE.

The absolute upper bounds on the most relevant HE parameters, obtained from eq.(4.10), with
the additional correction (4.11) for M3, are shown in table 1. Similarly, the corresponding bounds
on supersymmetric masses at low energy, evaluated as in subsection 4.3, are shown in table 2. All
the bounds have been obtained by setting ∆max = 100, they simply scale as

√

∆max/100.

MMHE
= 2× 1016 MMHE

= 1010 MMHE
= 104

Mmax
3 (MHE) 660 1 162 5 376

Mmax
2 (MHE) 1 646 1 750 3 500

Mmax
1 (MHE) 8 002 6 100 11 048

Amax
t (MHE) 2 504 2 227 3 094

mmax
Hu

(MHE) 1 038 1 046 913
mmax

Hd
(MHE) 6 945 14 472 9 784

µmax(MHE) 624 640 630
mmax

Q3
(MHE) 1 458 1 687 3 527

mmax
U3

(MHE) 1 640 1 828 3 710
mmax

D3
(MHE) 5 682 7 812 20 277

mmax
Q1,2

(MHE) 5 601 7 693 19 288

mmax
U1,2

(MHE) 3 818 5 254 13 975

mmax
D1,2

(MHE) 5 613 7 722 19 764

mmax
L1,2,3

(MHE) 5 557 7 664 20 278

mmax
E1,2,3

(MHE) 5 524 7 607 20 278

Table 1. Upper bounds on some of the initial (HE) soft terms and µ−term for three different
values of MHE, in the unconstrained MSSM scenario. All quantities are given in GeV units.

MMHE
= 2× 1016 MMHE

= 1010 MMHE
= 104

Mmax
g̃ 1 440 1 890 5 860

Mmax
W̃

1 303 1 550 3 435

Mmax
B̃

3 368 4 237 10 565

Mmax
H̃

626 610 620

mmax
t̃

1 650 1 973 4 140
mmax

H0 7 252 14 510 9 900

Table 2. Upper bounds on some of the physical masses for three different values of MHE, in the
unconstrained MSSM scenario. All quantities are given in GeV units.

From the previous tables we can notice some generic facts.
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both stronger and more robust than the bound 
on the stops. 

However, since it comes from a two-loop 
effect, it becomes weaker as the high-energy 
scale decreases. 

The bounds on Higgsinos are, by far, the most 
model-independent ones. 



In specific MSSM scenarios there are 
correlations between the soft terms at MHE 

E.g. suppose 

In practice, in order to obtain the absolute upper bounds onM3,M2, At we have ignored the presence
of additional parameters (M1, Ab, · · · ) in (4.10). Certainly, its inclusion would stretch even further
the absolute bounds, but quite slightly and artificially since this would imply a certain conspiracy
between soft parameters. The numerical modification of eqs.(4.4–4.9) for different values of MLE,
MHE can be straightforwardly obtained from Table 3 and Figure 4.

Choosing ∆max = 100, eqs.(4.7–4.9) give |M3| <
∼ 610 GeV, |M2| <

∼ 1630 GeV, |At| <
∼ 2430 GeV.

The limit on M3 is similar to the one found by Feng [75], although this is in part a coincidence.
In ref. [75] it was chosen M2

3 , rather than M3, as an independent parameter; which reduces the
associated ∆M3

by a factor of 2. So, their bound on M3 was increased (quite artificially in our
opinion) by

√
2. On the other hand, in ref. [75] the RG running was not done in two steps, but

simply running all the way from MX till MZ . Furthermore, they did not consider the mixed terms
of eq.(4.4). And finally they used eq.(3.2) instead of eq.(3.3) to evaluate the fine-tuning. It turns
out that, all together, these three approximations increase the estimate of the fine tuning, thus
decreasing the upper bound on M3 by a factor which happens to be ∼ 1/

√
2.

Actually, for the particular case of the M3−parameter this is not the end of the story. As
discussed in subsection 3.2, the cM2

3
coefficient has a dependence on MLE approximately given

by eq.(3.19). Since MLE ≃ mt̃ and typically m2
t̃
≃ 1

2 (c
(Q3)
M2

3

+ c(U3)
M2

3

)2M2
3 , where c(Q3)

M2
3

, c(U3)
M2

3

are

the coefficients of M2
3 in the LE expression of m2

Q3
, m2

U3
(given in table 4 and Figs. 5, 6 for

any HE scale), one has an additional contribution to the computation of ∆M3
in eq.(3.13). The

corresponding correction to Mmax
3 can be estimated by expanding the new inequality around the

previous value of Mmax
3 . We find

δMmax
3 ≃

1

2

bM3

|cM2
3
|

⎛

⎜

⎜

⎝

√

1
2

(

c(Q3)
M2

3

+ c(U3)
M2

3

)

Mmax
3

1 TeV
−

1

2

⎞

⎟

⎟

⎠

Mmax
3 , (4.11)

where we have neglected subdominant terms7. For MHE = MX and MLE = 1 TeV one has
cM2

3
≃ −1.6, c(Q3)

M2
3

+ c(U3)
M2

3

≃ 6, so the previous correction becomes

δMmax
3 ≃

2.06Mmax
3 − 0.6 TeV

10 TeV
Mmax

3 , (4.12)

This increases further Mmax
3 from 610 GeV to ∼ 660 GeV, i.e. mg̃

<
∼ 1440 GeV which is about

the present experimental lower limit on the gluino mass. Recall that this bound has been obtained
assuming ∆max = 100, thus we conclude that the unconstrained MSSM is fine-tuned at about
1%. We emphasize that these results have been obtained in the framework of the ”unconstrained
MSSM”, so that M3,M2, At are treated as independent, non-theoretically-correlated, parameters;
and under the assumption MHE = MX .

4.2 Correlations between the soft terms

Using the chain rule (3.17) one can easily evaluate the fine-tuning bounds when the initial soft
terms are related in any way determined by the theoretical framework chosen. For instance, it is
reasonable to assume that the soft masses at HE come from the same source, and therefore they
are related, even if they are not equal. E.g. suppose that at HE

{

m2
Hu

,m2
Q3

,m2
U3

}

= {aHu , aQ3
, aU3

}m2
0 . (4.13)

7Note that this correction is applicable as long as MHE is large (>∼ 1010 GeV); otherwise, it is quite small,

the stop mass is not determined anymore by M3.
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Then, plugging eq.(3.10) into eq.(3.17) one immediately derives the fine-tuning condition for m2
0

∣

∣

∣
∆m2

0

∣

∣

∣
=

∣

∣

∣

∣

−2
m2

0

m2
h

(

cm2
Hu

aHu + cm2
Q3

aQ3
+ cm2

U3

aU3

)

∣

∣

∣

∣

<
∼ ∆max , (4.14)

which entails an upper bound on m2
0, and hence on the stop masses at high energy. E.g.

m2
U3

<
∼

1

2

∣

∣

∣

∣

∣

∆max

−0.29 + 0.631aHu
aU3

− 0.367
aQ3

aU3

∣

∣

∣

∣

∣

m2
h , (4.15)

where we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX (Table 3 ).
This bound can be compared with the bound for the unconstrained MSSM, eq.(4.3). Depending on
the relative values between the as , the bound on m2

U3
gets increased (the usual case) or decreased.

For the universal case, aHu = aQ3
= aU3

, one gets mU3
<
∼

√
∆max 550 GeV, which allows for quite

heavy stops with very little fine-tuning.

The same game can be played with the gaugino masses and the trilinear couplings. E.g.
suppose that

{M1,M2,M3, At} = {a1, a2, a3, at}M1/2 . (4.16)

Then, the fine-tuning condition for M1/2 reads
∣

∣∆M1/2

∣

∣
<
∼ ∆max, with

∆M1/2
= −4

M2
1/2

m2
h

(

cM2
3
a23 + cM2

2
a22 + cA2

t
a2t + cM3M2

a3a2 + cM3Ata3at + cM2Ata2at
)

. (4.17)

E.g. the bound on M3 becomes

M2
3

<
∼

a23
4

∣

∣

∣

∣

∆max

1.6a23 − 0.203a22 + 0.109a2t + 0.134a3a2 − 0.285a3at − 0.068a2at

∣

∣

∣

∣

m2
h (4.18)

where, once more, we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX .
For the universal case, a3 = a2 = at, the bound on M3 becomes similar to that of the unconstrained
MSSM. However, for other combinations the bound can be much larger. E.g. for a2

a3
= 3.16,−2.50

and at = 0 the denominator would cancel.8 This represents a different kind of focus-point, in this
case for gauginos.

Other correlations between the soft parameters and the appearance of alternative focus-point
regimes can be explored in a similar way starting at any HE scale, by using the tables and figures
of the Appendix. See ref. [73] for recent work on this subject.

4.3 Bounds on the supersymmetric spectrum

So far, in this section we have explained in detail how to extract the naturalness limits on the initial
(HE) soft terms and µ−term in generic MSSM scenarios. The next step is to translate those bounds
into limits on the physical supersymmetric spectrum. Therefore, one has to go back from the high-
energy scale to low-energy one, using the RG equations. Once more, this can be immediately done
using the analytical expressions discussed in subsection 3.3 and the Appendix for any value of the
HE and the LE scales.

Unfortunately, there is no a one-to-one correspondence between the physical masses, and the
soft-parameters and µ−term at high-energy. The only approximate exception are the gaugino and

8See [59, 60, 65] for some studies about non-universal gaugino masses and fine-tuning.
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In practice, in order to obtain the absolute upper bounds onM3,M2, At we have ignored the presence
of additional parameters (M1, Ab, · · · ) in (4.10). Certainly, its inclusion would stretch even further
the absolute bounds, but quite slightly and artificially since this would imply a certain conspiracy
between soft parameters. The numerical modification of eqs.(4.4–4.9) for different values of MLE,
MHE can be straightforwardly obtained from Table 3 and Figure 4.

Choosing ∆max = 100, eqs.(4.7–4.9) give |M3| <
∼ 610 GeV, |M2| <

∼ 1630 GeV, |At| <
∼ 2430 GeV.

The limit on M3 is similar to the one found by Feng [75], although this is in part a coincidence.
In ref. [75] it was chosen M2

3 , rather than M3, as an independent parameter; which reduces the
associated ∆M3

by a factor of 2. So, their bound on M3 was increased (quite artificially in our
opinion) by

√
2. On the other hand, in ref. [75] the RG running was not done in two steps, but

simply running all the way from MX till MZ . Furthermore, they did not consider the mixed terms
of eq.(4.4). And finally they used eq.(3.2) instead of eq.(3.3) to evaluate the fine-tuning. It turns
out that, all together, these three approximations increase the estimate of the fine tuning, thus
decreasing the upper bound on M3 by a factor which happens to be ∼ 1/

√
2.

Actually, for the particular case of the M3−parameter this is not the end of the story. As
discussed in subsection 3.2, the cM2

3
coefficient has a dependence on MLE approximately given

by eq.(3.19). Since MLE ≃ mt̃ and typically m2
t̃
≃ 1

2 (c
(Q3)
M2

3

+ c(U3)
M2

3

)2M2
3 , where c(Q3)

M2
3

, c(U3)
M2

3

are

the coefficients of M2
3 in the LE expression of m2

Q3
, m2

U3
(given in table 4 and Figs. 5, 6 for

any HE scale), one has an additional contribution to the computation of ∆M3
in eq.(3.13). The

corresponding correction to Mmax
3 can be estimated by expanding the new inequality around the

previous value of Mmax
3 . We find

δMmax
3 ≃

1

2

bM3

|cM2
3
|

⎛

⎜

⎜

⎝

√

1
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c(Q3)
M2

3
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1 TeV
−
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⎞
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Mmax
3 , (4.11)

where we have neglected subdominant terms7. For MHE = MX and MLE = 1 TeV one has
cM2

3
≃ −1.6, c(Q3)

M2
3

+ c(U3)
M2

3

≃ 6, so the previous correction becomes

δMmax
3 ≃

2.06Mmax
3 − 0.6 TeV

10 TeV
Mmax

3 , (4.12)

This increases further Mmax
3 from 610 GeV to ∼ 660 GeV, i.e. mg̃

<
∼ 1440 GeV which is about

the present experimental lower limit on the gluino mass. Recall that this bound has been obtained
assuming ∆max = 100, thus we conclude that the unconstrained MSSM is fine-tuned at about
1%. We emphasize that these results have been obtained in the framework of the ”unconstrained
MSSM”, so that M3,M2, At are treated as independent, non-theoretically-correlated, parameters;
and under the assumption MHE = MX .

4.2 Correlations between the soft terms

Using the chain rule (3.17) one can easily evaluate the fine-tuning bounds when the initial soft
terms are related in any way determined by the theoretical framework chosen. For instance, it is
reasonable to assume that the soft masses at HE come from the same source, and therefore they
are related, even if they are not equal. E.g. suppose that at HE

{

m2
Hu

,m2
Q3

,m2
U3

}

= {aHu , aQ3
, aU3

}m2
0 . (4.13)

7Note that this correction is applicable as long as MHE is large (>∼ 1010 GeV); otherwise, it is quite small,

the stop mass is not determined anymore by M3.
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Then, plugging eq.(3.10) into eq.(3.17) one immediately derives the fine-tuning condition for m2
0
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which entails an upper bound on m2
0, and hence on the stop masses at high energy. E.g.

m2
U3

<
∼

1

2

∣

∣

∣
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∆max

−0.29 + 0.631aHu
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aQ3

aU3

∣
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∣
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where we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX (Table 3 ).
This bound can be compared with the bound for the unconstrained MSSM, eq.(4.3). Depending on
the relative values between the as , the bound on m2

U3
gets increased (the usual case) or decreased.

For the universal case, aHu = aQ3
= aU3

, one gets mU3
<
∼

√
∆max 550 GeV, which allows for quite

heavy stops with very little fine-tuning.

The same game can be played with the gaugino masses and the trilinear couplings. E.g.
suppose that

{M1,M2,M3, At} = {a1, a2, a3, at}M1/2 . (4.16)

Then, the fine-tuning condition for M1/2 reads
∣

∣∆M1/2

∣

∣
<
∼ ∆max, with

∆M1/2
= −4

M2
1/2

m2
h

(

cM2
3
a23 + cM2

2
a22 + cA2

t
a2t + cM3M2

a3a2 + cM3Ata3at + cM2Ata2at
)

. (4.17)

E.g. the bound on M3 becomes

M2
3

<
∼

a23
4

∣

∣

∣

∣

∆max

1.6a23 − 0.203a22 + 0.109a2t + 0.134a3a2 − 0.285a3at − 0.068a2at

∣

∣

∣

∣

m2
h (4.18)

where, once more, we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX .
For the universal case, a3 = a2 = at, the bound on M3 becomes similar to that of the unconstrained
MSSM. However, for other combinations the bound can be much larger. E.g. for a2

a3
= 3.16,−2.50

and at = 0 the denominator would cancel.8 This represents a different kind of focus-point, in this
case for gauginos.

Other correlations between the soft parameters and the appearance of alternative focus-point
regimes can be explored in a similar way starting at any HE scale, by using the tables and figures
of the Appendix. See ref. [73] for recent work on this subject.

4.3 Bounds on the supersymmetric spectrum

So far, in this section we have explained in detail how to extract the naturalness limits on the initial
(HE) soft terms and µ−term in generic MSSM scenarios. The next step is to translate those bounds
into limits on the physical supersymmetric spectrum. Therefore, one has to go back from the high-
energy scale to low-energy one, using the RG equations. Once more, this can be immediately done
using the analytical expressions discussed in subsection 3.3 and the Appendix for any value of the
HE and the LE scales.

Unfortunately, there is no a one-to-one correspondence between the physical masses, and the
soft-parameters and µ−term at high-energy. The only approximate exception are the gaugino and

8See [59, 60, 65] for some studies about non-universal gaugino masses and fine-tuning.
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where we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX (Table 3 ).
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where, once more, we have used the c−coefficients corresponding to MLE = 1 TeV, MHE = MX .
For the universal case, a3 = a2 = at, the bound on M3 becomes similar to that of the unconstrained
MSSM. However, for other combinations the bound can be much larger. E.g. for a2
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and at = 0 the denominator would cancel.8 This represents a different kind of focus-point, in this
case for gauginos.

Other correlations between the soft parameters and the appearance of alternative focus-point
regimes can be explored in a similar way starting at any HE scale, by using the tables and figures
of the Appendix. See ref. [73] for recent work on this subject.

4.3 Bounds on the supersymmetric spectrum

So far, in this section we have explained in detail how to extract the naturalness limits on the initial
(HE) soft terms and µ−term in generic MSSM scenarios. The next step is to translate those bounds
into limits on the physical supersymmetric spectrum. Therefore, one has to go back from the high-
energy scale to low-energy one, using the RG equations. Once more, this can be immediately done
using the analytical expressions discussed in subsection 3.3 and the Appendix for any value of the
HE and the LE scales.

Unfortunately, there is no a one-to-one correspondence between the physical masses, and the
soft-parameters and µ−term at high-energy. The only approximate exception are the gaugino and

8See [59, 60, 65] for some studies about non-universal gaugino masses and fine-tuning.
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a2
a3

= �2.50, 3.16 ; at = 0

M1/2 essentially unconstrained 

It is easy to explore in this way the 
existence of other focus-point scenarios 
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Clearly, if stops are light, there is an additional, 
independent, fine-tuning, whose p-value has to be 
multiplied with the EW one (thus increasing the total 
F-T enormously) 
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Since          is driven to negative values along the 
running, the only way to achieve a sizeable      
(without an enormous F-T price) is to start with 
negative     . 
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At
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But a negative sign for       increases the 
F-T associated to the gluino!  

At

m2
L3
(LE) m2

E3
(LE) m2

L1
(LE) m2

E1
(LE)

HE c b c b c b c b

m2
L3

0.971 0.001 0.045 �0.001 �0.027 0.001 0.051 �0.001
M2

2 0.416 �0.017 �0.004 0.000 0.418 �0.018 – –
m2

U1,2
�0.052 0.001 0.104 �0.002 �0.052 0.001 0.104 �0.002

m2
U3

�0.051 0.001 0.103 �0.002 �0.051 0.001 0.103 �0.002
M2

1 0.034 0.000 0.136 �0.002 0.034 0.000 0.137 �0.002
m2

Hd
�0.029 0.001 0.045 �0.001 �0.026 0.001 0.051 �0.001

m2
L1

�0.027 0.001 0.051 �0.001 0.973 0.001 0.051 �0.001
m2

L2
�0.027 0.001 0.051 �0.001 �0.027 0.001 0.051 �0.001

m2
D1,2,3

0.026 �0.001 �0.052 0.001 0.026 �0.001 �0.052 0.001

m2
E1

0.025 �0.001 �0.052 0.001 0.025 �0.001 0.948 0.001
m2

E2
0.025 �0.001 �0.052 0.001 0.025 �0.001 �0.052 0.001

m2
Hu

0.025 0.000 �0.051 0.001 0.025 0.000 �0.051 0.001
m2

Q3
0.024 0.000 �0.052 0.001 0.024 0.000 �0.052 0.001

m2
Q1,2

0.024 0.000 �0.053 0.001 0.024 0.000 �0.053 0.001

m2
E3

0.023 �0.001 0.942 0.001 0.025 �0.001 �0.052 0.001
M2M3 �0.009 0.001 0.001 0.000 �0.009 0.001 0.001 0.000
M2

3 �0.007 0.001 �0.001 0.000 �0.007 0.001 �0.001 0.000
A2

⌧ �0.003 0.000 �0.006 0.000 – – – –
A⌧M2 0.002 0.000 0.003 0.000 – – – –
AtM2 �0.001 0.000 – – �0.001 0.000 – –
M1M2 �0.001 0.000 �0.001 0.000 �0.001 0.000 – –
A⌧M1 0.001 0.000 0.001 0.000 – – – –
M1M3 – – �0.002 0.000 – – �0.002 0.000
AtM3 – – �0.001 0.000 – – �0.001 0.000

Table 4. c(1TeV) and b coe�cients for the squared soft masses of the third and first family
sleptons, where ‘–’ stands for HE parameters with c(1TeV) < 0.001. Second generation sleptons
is degenerated with the first family.

M3(LE) M2(LE) M1(LE)
HE c b c b c b

M3 2.224 �0.160 �0.024 0.004 �0.009 0.001
M2 �0.009 0.001 0.806 0.011 �0.001 0.000
At �0.003 0.000 �0.002 0.000 �0.001 0.000
M1 �0.001 0.000 – – 0.431 0.012

Table 5. c(1TeV) and b coe�cients for the gaugino masses, where ‘–’ stands for HE parameters
with c(1TeV) < 0.001.

read (Perhaps better in a symmetric way )

�

�6.41M2
3 � 0.57AtM3 + 0.27M3M2

�

�

<⇠ �max m2
h (3.20)

�

��0.81M2
2 + 0.14AtM2 + 0.27M3M2

�

�

<⇠ �max m2
h (3.21)

�

�0.44A2
t � 0.57AtM3 + 0.14AtM2

�

�

<⇠ �max m2
h (3.22)

where again we have taken MHE = MX and MLE = 1 TeV. Other parameters, like M1, Ab, get also
mixed with them in the bounds, but their coe�cients are much smaller, so we have neglected them.
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Figure 8. Contours of constant Higgs boson mass (black, contours formh = 120, 123, 125, 127 GeV)
and fine tuning (red), eq. (3.14), in theM3-At plane. From left to right, HE = 2·1016, 1010, 104 GeV.
The unphysical region with tachyonic stops is shaded in gray.

From eq.(2.12), we can write, for tan� � 1,

tan� ' m2
Hd

+m2
Hu

+ 2µ2

Bµ
=

m2
A

Bµ
(6.5)

where mA is the mass of the pseudoscalar Higgs and all the quantities are understood at the low-
energy (LE) scale. As discussed in subsect. 3.1, the fine-tuning to get large tan� can be reasonable
quantified using the BG criterion. Namely, for any any initial parameter of the theory, ✓, we define
the associated fine-tuning, �(tan �)

✓

�(tan �)
✓ =

✓

tan�

d tan�

d✓
=

✓

m2
A



dm2
A

d✓
� tan�

d(Bµ)

d✓

�

(6.6)

where we have used eq.(6.5). For large tan�, �(tan �)
✓ is normally dominated by the second term in

the r.h.s. of (6.6)
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�(tan �)
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' tan�

�

�

�

�

✓

m2
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d(Bµ)

d✓

�

�

�

�

(6.7)

The next step is to express Bµ in terms of the initial (HE-scale) parameters. E.g. assuming
MHE = MX , MLE = 1TeV , from Table 7

Bµ|low ' Bµ+ 0.46M3µ� 0.35M2µ� 0.34Atµ� 0.03M1µ+ · · · (6.8)

where the quantities on the r.h.s. are at the HE scale. The corresponding fine-tuning �s for the
relevant parameters12 B,M3,M2, At read

�

�

�

�(tan �)
{B,M3,M2,At}

�

�

�

' tan�

�

�

�

�

µ

m2
A

{B, 0.46M3, 0.35M2, 0.34At}
�

�

�

�

(6.9)

where we recall that r.h.s. parameters at the HE-scale. Going to particular models, one clearly
expects some of the µ{B, M3, M2, At} quantities to beof the order of m2

A. This meand that
a certain fine-tuning, �(tan �) >⇠ 5 � 10 occurs if tan� >⇠ 15 � 30. Since this fine-tuning has
a di↵erent nature from the E.W. one (discussed in detail in the previous sections), and given
the probabilistic meaning of the fine-tuning parameters, this implies that the two �s have to be
multiplied, � = �(EW )�(tan �)

✓ , which generically results in an unbearable fine-tuning (¿ 500-1000).

12Note that �(tan �)
µ ' 1.
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results in a significant increase in fine tuning � ⇠ 300. Only for a very low choice of HE, HE = 104,
the positive At is preferred and the high values of fine tuning are solely due to experimental limits
on the gluino mass, nevertheless giving � . 50.
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Figure 8. Contours of constant Higgs boson mass (black, contours formh = 120, 123, 125, 127 GeV)
and fine tuning (red), eq. (3.14), in theM3-At plane. From left to right, HE = 2·1016, 1010, 104 GeV.
The unphysical region with tachyonic stops is shaded in gray.

6.2 Fine-tuning to get large tan�

As pointed out in subsect. 2.3, a large value of tan� generically requires a small value of Bµ at low
energy, which requires a cancellation between the initial value and the radiative contribution form
the RG-running. Here we quantify this fine-tuning and discuss the consequences.

From eq.(2.12), we can write, for tan� � 1,

tan� ' m2
Hd

+m2
Hu

+ 2µ2

Bµ
=

m2
A

Bµ
(6.5)

where mA is the mass of the pseudoscalar Higgs and all the quantities are understood at the low-
energy (LE) scale. As discussed in subsect. 3.1, the fine-tuning to get large tan� can be reasonable
quantified using the BG criterion. Namely, for any any initial parameter of the theory, ✓, we define
the associated fine-tuning, �(tan �)

✓

�(tan �)
✓ =

✓

tan�

d tan�

d✓
=

✓

m2
A



dm2
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d(Bµ)
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(6.6)

where we have used eq.(6.5). For large tan�, �(tan �)
✓ is normally dominated by the second term in

the r.h.s. of (6.6)
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The next step is to express Bµ in terms of the initial (HE-scale) parameters. E.g. assuming
MHE = MX , MLE = 1TeV , from Table 7

Bµ|low ' Bµ+ 0.46M3µ� 0.35M2µ� 0.34Atµ� 0.03M1µ+ · · · (6.8)

where the quantities on the r.h.s. are at the HE scale. The corresponding fine-tuning �s for the
relevant parameters12 B,M3,M2, At read
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12Note that �(tan �)
µ ' 1.
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Figure 8. Contours of constant Higgs boson mass (black, contours formh = 120, 123, 125, 127 GeV)
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6.2 Fine-tuning to get large tan�

As pointed out in subsect. 2.3, a large value of tan� generically requires a small value of Bµ at low
energy, which requires a cancellation between the initial value and the radiative contribution form
the RG-running. Here we quantify this fine-tuning and discuss the consequences.

From eq.(2.12), we can write, for tan� � 1,

tan� ' m2
Hd

+m2
Hu

+ 2µ2

Bµ
=

m2
A

Bµ
(6.5)

where mA is the mass of the pseudoscalar Higgs and all the quantities are understood at the low-
energy (LE) scale. As discussed in subsect. 3.1, the fine-tuning to get large tan� can be reasonable
quantified using the BG criterion. Namely, for any any initial parameter of the theory, ✓, we define
the associated fine-tuning, �(tan �)

✓
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✓ =
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=
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where we have used eq.(6.5). For large tan�, �(tan �)
✓ is normally dominated by the second term in

the r.h.s. of (6.6)
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The next step is to express Bµ in terms of the initial (HE-scale) parameters. E.g. assuming
MHE = MX , MLE = 1TeV , from Table 7

Bµ|low ' Bµ+ 0.46M3µ� 0.35M2µ� 0.34Atµ� 0.03M1µ+ · · · (6.8)

where the quantities on the r.h.s. are at the HE scale. The corresponding fine-tuning �s for the
relevant parameters12 B,M3,M2, At read
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12Note that �(tan �)
µ ' 1.

– 29 –

MHE = MX , MLE = 1 TeV(                                   ) 
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6.2 Fine-tuning to get large tan�

As pointed out in subsect. 2.3, a large value of tan� generically requires a small value of Bµ at low
energy, which requires a cancellation between the initial value and the radiative contribution form
the RG-running. Here we quantify this fine-tuning and discuss the consequences.

From eq.(2.12), we can write, for tan� � 1,
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+m2
Hu
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=
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where mA is the mass of the pseudoscalar Higgs and all the quantities are understood at the low-
energy (LE) scale. As discussed in subsect. 3.1, the fine-tuning to get large tan� can be reasonable
quantified using the BG criterion. Namely, for any any initial parameter of the theory, ✓, we define
the associated fine-tuning, �(tan �)
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where we have used eq.(6.5). For large tan�, �(tan �)
✓ is normally dominated by the second term in

the r.h.s. of (6.6)
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The next step is to express Bµ in terms of the initial (HE-scale) parameters. E.g. assuming
MHE = MX , MLE = 1TeV , from Table 7

Bµ|low ' Bµ+ 0.46M3µ� 0.35M2µ� 0.34Atµ� 0.03M1µ+ · · · (6.8)

where the quantities on the r.h.s. are at the HE scale. The corresponding fine-tuning �s for the
relevant parameters12 B,M3,M2, At read
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12Note that �(tan �)
µ ' 1.
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Typically,                                     for  

where we recall that r.h.s. parameters at the HE-scale. Going to particular models, one clearly
expects some of the µ{B, M3, M2, At} quantities to beof the order of m2

A. This meand that
a certain fine-tuning, �(tan �) >⇠ 5 � 10 occurs if tan� >⇠ 15 � 30. Since this fine-tuning has
a di↵erent nature from the E.W. one (discussed in detail in the previous sections), and given
the probabilistic meaning of the fine-tuning parameters, this implies that the two �s have to be
multiplied, � = �(EW )�(tan �)

✓ , which generically results in an unbearable fine-tuning (¿ 500-1000).
[These conclusions are alleviated if the HE scale is smaller, since the numerical coeficients in (6.8)
decrease and the initial value of B can be smaller.] On the other hand, for �(tan �) <⇠ 5 there is no
really fine-cancellation to get the value of tan� and one can ignore the �(tan �) fine-tuning factor.

The conclusion is that very large tan�, say tan� >⇠ 15 � 30, implies a high fine-tuning price,
unless the special characteristics of the model lead to a small r.h.s. in (6.7), e.g. if m2

A is abnormally
large.

.
Small discussion on the change of the coe�cients when tan� is very large, due to yb, y⌧ still

missing
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Conclusions 

However, the motivation to search BSM at LHC remains. 

The Run I of LHC has not seen any serious hint of BSM 

the results create a moderate tension with the Naturalness 
(Hierarchy Problem) arguments.  

It is perhaps too soon to think that the LHC results are in 
conflict with the Naturalness argument. 

SUSY remains a well-motivated candidate for BSM. 



Conclusions II 

The unconstrained version of the MSSM (with MHE=MX) 
is fine-tuned at ~ 1% (due to the gluino) 

The fine-tuning is substantially less severe if  MHE< MX  

There is really no solid reason based on naturalness to 
expect light stops (in particular lighter than gluino) 

If the stops are heavy because m0 is 
large, then there is no fine-tuning price 

The fine-tuning due to stops also 
decreases if MHE < MX 



Conclusions III 

SUSY is in good shape, though somewhat fine-tuned 

“Natural” SUSY (the less fine-tuned version of the MSSM 
without “fooling” the LHC) is 1%-10% fine-tuned 

If naturalness arguments are sound and SUSY is true, 
we could be about seeing SUSY (or perhaps other BSM) 
in LHC-14 

The most robust prediction from Natural SUSY is, by far,  

mH̃
<⇠ 0.7 GeV

Going beyond the MSSM, i.e. NMSSM, BMSSM, RPV,... 
could reduce the fine-tuning as well 



Natural SUSY ⌘ MSSM as natural (non-fine-tuned)  
as possible 

Since fine-tuning seems to be the main (actually the 
only) problem with SUSY, a reasonable guide to 
explore SUSY scenarios is to look for as little fine-
tuning as possible 


